A Review on Binderless Tungsten Carbide: Development and Application
Corresponding Author: Ke Yan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 13
Abstract
WC-Co alloys have enjoyed great practical significance owing to their excellent properties during the past decades. Despite the advantages, however, recently there have been concerns about the challenges associated with the use of Co, i.e. price instability, toxicity and properties degeneration, which necessitates the fabrication of binderless tungsten carbide (BTC). On the other hand, BTC or BTC composites, none of them, to date has been commercialized and produced on an industrial scale, but only used to a limited extent for specialized applications, such as mechanical seals undergoing high burthen as well as high temperature electrical contacts. There are two challenges in developing BTC: fully densifying the sintered body together with achieving a high toughness. Thus, this review applies towards comprehensively summarize the current knowledge of sintering behavior, microstructure, and mechanical properties of BTC, highlighting the densification improving strategies as well as toughening methods, so as to provide reference for those who would like to enhance the performance of BTC with better reliability advancing them to further wide applications and prepare the material in a way that is environment friendly, harmless to human health and low in production cost. This paper shows that the fabrication of highly dense and high-performance BTC is economically and technically feasible. The properties of BTC can be tailored by judiciously selecting the chemical composition coupled with taking into careful account the effects of processing techniques and parameters.
Highlights:
1 Establish processing-composition-microstructure-property relationships governing binderless tungsten carbide (BTC).
2 Highlight the densification improving strategies and toughening methods for BTC.
3 Provide key challenges as well as the outlook for superior peformance associated with BTC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.Z. Fang, M.C. Koopman, H.T. Wang, Cemented tungsten carbide hardmetal—an introduction, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 123–138. https://doi.org/10.1016/B978-0-08-096527-7.00004-0
- L. Prakash, Introduction to hardmetals—fundamentals and general applications of hardmetals, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 29–90. https://doi.org/10.1016/B978-0-08-096527-7.00002-7
- R. Viswanadham, Science of Hard Materials (Springer, Berlin, 1983). https://doi.org/10.1007/978-1-4684-4319-6
- A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Hardness and deformation of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 647–699. https://doi.org/10.1016/B978-0-08-096527-7.00009-X
- A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Fracture and strength of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 301–343. https://doi.org/10.1016/B978-0-08-096527-7.00010-6
- J.L. Sun, J. Zhao, F. Gong, X.Y. Ni, Z.L. Li, Development and application of WC-based alloys bonded with alternative binder phase. Crit. Rev. Solid. State. 44(3), 211–238 (2019). https://doi.org/10.1080/10408436.2018.1483320
- A. Mukhopadhyay, B. Basu, Recent developments on WC-based bulk composites. J. Mater. Sci. 46(3), 571–589 (2011). https://doi.org/10.1007/s10853-010-5046-7
- A. Krawitz, E. Drake, Residual stresses in cemented carbides—an overview. Int. J. Refract. Met. Hard Mater. 49, 27–35 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.018
- A.D. Krawitz, E.F. Drake, Residual stresses, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 385–404. https://doi.org/10.1016/B978-0-08-096527-7.00013-1
- D. Mari, A.D. Krawitz, J.W. Richardson, W. Benoit, Residual stress in WC–Co measured by neutron diffraction. Mater. Sci. Eng., A 209(1–2), 197–205 (1996). https://doi.org/10.1016/0921-5093(95)10147-0
- H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, Integrated modelling of the global cobalt extraction, supply, price and depletion of extractable resources using the world6 model. BioPhys. Econ. Resour. Qual. 2(1), 4 (2017). https://doi.org/10.1007/s41247-017-0017-0
- S. Bastian, W. Busch, D. Kühnel, A. Springer, T. Meißner et al., Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ. Health Perspect. 117(4), 530 (2009). https://doi.org/10.1289/ehp.0800121
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans 86, 1 (2006)
- Y. Kanemitsu, T. Nishimura, H. Yoshino, K. Takao, Y. Masumoto, Effect of hot isostatic pressing on binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 1(2), 66–68 (1982)
- M.F. Ashby, The CES EduPack Resource Booklet 2: Material and Process Selection Charts (Granta Design Limited, Cambridge, 2009)
- K.M. Tsai, C.Y. Hsieh, H.H. Lu, Sintering of binderless tungsten carbide. Ceram. Int. 36(2), 689–692 (2010). https://doi.org/10.1016/j.ceramint.2009.10.017
- J. Poetschke, V. Richter, T. Gestrich, Sintering behaviour of binderless tungsten carbide, in Euro PM2012 Congress and Exhibition, Basel, pp. 7–12, September 2012
- D.J. Ma, Z.L. Kou, Y.J. Liu, Y.K. Wang, S.P. Gao et al., Sub-micron binderless tungsten carbide sintering behavior under high pressure and high temperature. Int. J. Refract. Met. Hard Mater. 54, 427–432 (2016). https://doi.org/10.1016/j.ijrmhm.2015.10.001
- D. Demirskyi, A. Ragulya, D. Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram. Int. 37(2), 505–512 (2011). https://doi.org/10.1016/j.ceramint.2010.09.036
- R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32(5), 787–792 (1961). https://doi.org/10.1063/1.1736107
- R.L. Coble, Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32(5), 793–799 (1961). https://doi.org/10.1063/1.1736108
- P. Boch, A. Leriche, Sintering and Microstructure of Ceramics, in Ceramic Materials: Processes, Properties, and Applicatons, ed. by P. Boch, J.C. Niepce (ISTE Ltd, New Porth Beach, 2007), pp. 55–94. https://doi.org/10.1002/9780470612415.ch3
- C. Agte, R. Kohlermann, Hilfsmetallarme Hartmetallegierungen. Die Tech. 10, 686–689 (1957)
- T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger, A.R. Rosen, Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide. Nanostruct. Mater. 11(1), 103–113 (1911). https://doi.org/10.1016/S0965-9773(99)00023-9
- V. Richter, G. Boden, M. Nebelung, M. Ruthendorf, Manufacturing and properties of superhard materials with ceramic sintering aids. Presentation of the COST503-3rd Round Annual Meeting, Subgroup Hard Materials, Hannover (1994)
- V. Richter, Hard sintered materials made of nano-sized powders. Annual Report of Fraunhofer IKTS, pp. 44–45 (1995)
- V. Richter, Manufacturing and properties of super-ultrafine hardmetals. Annual Report of Fraunhofer IKTS, pp. 46–47 (1997)
- Editors of JOM, European powder metallurgy association awards innovation. J. Miner. Met. Mater. Soc. 53-3, 4–9 (2001)
- V. Richter, M. Ruthendorf, Wasserstrahlschneidhochdruckdüse. DE Patent No. 10052021 (2000)
- J. Gurland, A study of the effect of carbon content on the structure and properties of sintered WC–Co alloys. Trans. AIME 200(3), 285–290 (1954)
- C.M. Fernandes, A.M.R. Senos, Cemented carbide phase diagrams: a review. Int. J. Refract. Met. Hard Mater. 29(4), 405–418 (2011). https://doi.org/10.1016/j.ijrmhm.2011.02.004
- S.K. Li, J.Q. Li, Y. Li, F.S. Liu, W.Q. Ao, Dense pure binderless WC bulk material prepared by spark plasma sintering. Mater. Sci. Technol. 31(14), 1749–1756 (2015). https://doi.org/10.1179/1743284714Y.0000000753
- A. Gubernat, P. Rutkowski, G. Grabowski, D. Zientara, Hot pressing of tungsten carbide with and without sintering additives. Int. J. Refract. Met. Hard Mater. 43, 193–199 (2014). https://doi.org/10.1016/j.ijrmhm.2013.12.002
- A. Gubernat, L. Stobierski, Fractography of dense metal-like carbides sintered with carbon. Key Eng. Mater. 409, 287–290 (2009). https://doi.org/10.4028/www.scientific.net/KEM.409.287
- J. Poetschke, V. Richter, T. Gestrich, A. Michaelis, Grain growth during sintering of tungsten carbide ceramics. Int. J. Refract. Met. Hard Mater. 43, 309–316 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.001
- R.T. Fox, R. Nilsson, Binderless tungsten carbide carbon control with pressureless sintering. Int. J. Refract. Met. Hard Mater. 76, 82–89 (2018). https://doi.org/10.1016/j.ijrmhm.2018.05.020
- A. Nino, K. Morimura, S. Sugiyama, H. Taimatsu, Effects of C and NbC additions on the microstructure and mechanical properties of binderless WC ceramics. Key Eng. Mater. 749, 205–210 (2017). https://doi.org/10.4028/www.scientific.net/KEM.749.205
- A. Nino, K. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide. Mater. Trans. 53(8), 1475–1480 (2012). https://doi.org/10.2320/matertrans.M2012148
- G.Z. Zhang, C. Wang, J.X. Zhang, M.L. Zhou, T.X. Zhou, Effects of mixed carbon content on spark plasma sintering of binder-free nanostructured WC cemented carbides. Rare Metals Cemented Carbides 33(2), 12–15 (2005)
- L. Girardini, M. Zadra, F. Casari, A. Molinariet, SPS, binderless WC powders, and the problem of sub carbide. Metal Powder Rep. 63(4), 18–22 (2008). https://doi.org/10.1016/S0026-0657(09)70039-6
- S.I. Cha, S.H. Hong, Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng., A 356(1–2), 381–389 (2003). https://doi.org/10.1016/S0921-5093(03)00151-5
- J.F. Zhao, T. Holland, C. Unuvar, Z.A. Munir, Sparking plasma sintering of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater. 27(1), 130–139 (2009). https://doi.org/10.1016/j.ijrmhm.2008.06.004
- K. Kornaus, M. Rączka, A. Gubernat, D. Zientara, Pressureless sintering of binderless tungsten carbide. J. Eur. Ceram. Soc. 37(15), 4567–4576 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.008
- Z.Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53(6), 326–352 (2008). https://doi.org/10.1179/174328008X353538
- J. Poetschke, V. Richter, A. Michaelis, Fundamentals of sintering nanoscaled binderless hardmetals. Int. J. Refract. Met. Hard Mater. 49, 124–132 (2015). https://doi.org/10.1016/j.ijrmhm.2014.04.022
- M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41(3), 85–115 (1996). https://doi.org/10.1179/imr.1996.41.3.85
- C.C. Koch, Nanostructured Materials: Processing, Properties and Applications (Noyes Publications, New York, 2002), pp. 173–217
- A.N. Kumar, M. Watabe, K. Kurokawa, The sintering kinetics of ultrafine tungsten carbide powders. Ceram. Int. 37(7), 2643–2654 (2011). https://doi.org/10.1016/j.ceramint.2011.04.011
- S. Berger, R. Porat, R. Rosen, Nanocrystalline materials: a study of WC-based hard metals. Prog. Mater Sci. 42(1–4), 311–320 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
- Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int. J. Refract. Met. Hard Mater. 27(2), 288–299 (2009). https://doi.org/10.1016/j.ijrmhm.2008.07.011
- K. Brookes, Nano carbides make for low temperature sintering. Metal Powder Rep. 64(9), 26–32 (2009). https://doi.org/10.1016/S0026-0657(09)70217-6
- M. Leiderman, O. Botstein, A. Rosen, Sintering microstructure and properties of sub-micron cemented carbide. Powder Metall. 40, 219 (1997). https://doi.org/10.1179/pom.1997.40.3.219
- R. Porat, S. Berger, A. Rosen, Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides. Nanostruct. Mater. 7(4), 429–436 (1996). https://doi.org/10.1016/0965-9773(96)00014-1
- H. Ogawa, Y. Kataoka, Observation of sintering of several cemented carbides by a new high-temperature sintering dilatometer. High Temp.-High Press. 13(5), 481–494 (1981)
- G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering studies of nanocrystalline WC powder, in Proceedings of the 14th International Plansee Seminar, Metallwerk Plansee, Reutte, February 1997
- H.C. Kim, I.J. Shon, J.E. Garay, Z.A. Munir, Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Int. J. Refract. Met. Hard Mater. 22(6), 257–264 (2004). https://doi.org/10.1016/j.ijrmhm.2004.08.003
- V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J. Alloy. Compd. 708, 547–561 (2017). https://doi.org/10.1016/j.jallcom.2017.03.035
- V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, N.V. Sakharov, M.S. Boldin et al., Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnol. Russ. 10(5–6), 434–448 (2015). https://doi.org/10.1134/S1995078015030040
- B.W. Kwak, J.K. Yoon, I.J. Shon, Pulsed current activated rapid sintering of binderless nanostructured TiC and WC and their properties. J. Nanosci. Nanotechnol. 17(6), 4214–4217 (2017). https://doi.org/10.1166/jnn.2017.13388
- I.J. Shon, Mechanical properties and rapid sintering of binderless nanostructured TiC and WC by high frequency induction heated sintering. J. Ceram. Process. Res. 17(7), 707–711 (2016)
- I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties of nanostructured tungsten carbide and their rapid consolidation by pulsed current activated sintering. Phys. Scripta T139, 014043 (2010). https://doi.org/10.1088/0031-8949/2010/T139/014043
- G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering study of nanocrystalline tungsten carbide powders. Nanostruct. Mater. 10(5), 795–804 (1998). https://doi.org/10.1016/S0965-9773(98)00116-0
- X.Y. Ren, Z.J. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi et al., Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 48, 398–407 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.013
- K. Biswas, A. Mukhopadhyay, B. Basu, K. Chattopadhyay, Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. J. Mater. Res. 22(6), 1491–1501 (2007). https://doi.org/10.1557/JMR.2007.0189
- B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
- R. Holm, Electric Contacts: Theory and Application (Springer, New York, 1967), p. 22. https://doi.org/10.1007/978-3-662-06688-1
- G. Petzow, W.A. Kaysser, Sintering with additives, in Sintering Key Papers, ed. by S. Somiya, Y. Moriyoshi (Elsevier, London, 1990), pp. 615–638. https://doi.org/10.1007/978-94-009-0741-6_39
- J.L. Sun, J. Zhao, M.J. Chen, X.C. Wang, X. Zhong et al., Determination of microstructure and mechanical properties of functionally graded WC–TiC–Al2O3–GNPs micro-nano composite tool materials via two-step sintering. Ceram. Int. 43(12), 9276–9284 (2017). https://doi.org/10.1016/j.ceramint.2017.04.086
- Z. Qiao, J. Räthel, L.M. Berger, M. Herrmann, Investigation of binderless WC–TiC–Cr3C2 hard materials prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 38, 7–14 (2013). https://doi.org/10.1016/j.ijrmhm.2012.12.002
- Z. Li, S. Cheng, C. Shu, N. Qing, C. Xin et al., Hot pressing densification and grain growth behavior of WC–TiC–TaC binderless carbide. Mater. Sci. Eng. Powder Metall. 16(5), 781–786 (2011)
- A. Nino, Y. Izu, T. Sekine, S. Sugiyama, H. Taimatsu, Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int. J. Refract. Met. Hard Mater. 69, 259–265 (2017). https://doi.org/10.1016/j.ijrmhm.2017.09.002
- A. Nino, N. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC–SiC–Mo2C hard ceramics. Int. J. Refract. Met. Hard Mater. 43, 150–156 (2014). https://doi.org/10.1016/j.ijrmhm.2013.11.016
- A. Fazili, L. Nikzad, M.R. RahimiPour, M. Razavi, E. Salahi, Effect of Al2O3 ceramic binder on mechanical and microstructure properties of spark plasma sintered WC–Co cermets. Int. J. Refract. Met. Hard Mater. 69, 189–195 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.010
- A. Vornberger, J. Pötschke, C. Berger, Manufacturing and properties of tungsten carbide-oxide composites. Key Eng. Mater. 742, 223–230 (2017). https://doi.org/10.4028/www.scientific.net/KEM.742.223
- J. Wang, D. Zuo, L. Zhu, W.W. Li, Z.B. Tu et al., Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 71, 167–174 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.016
- O.A. El-Kady, Effect of nano-yttria addition on the properties of WC/Co composites. Mater. Des. 52, 481–486 (2013). https://doi.org/10.1016/j.matdes.2013.05.034
- X.Y. Ren, Z.J. Peng, C. Wang, H.Z. Miao, Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC–La2O3 composites. Ceram. Int. 41(10), 14811–14818 (2015). https://doi.org/10.1016/j.ceramint.2015.08.002
- A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cerme—a review. Mater. Des. 67, 95–106 (2017). https://doi.org/10.1016/j.matdes.2014.10.081
- H. Kim, D. Kim, I. Ko et al., Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process Res. 8(2), 91 (2007)
- S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi, Properties of ultra-fine grain binderless cemented carbide ‘RCCFN’. Int. J. Refract. Met. Hard Mater. 13(5), 305–312 (1995). https://doi.org/10.1016/0263-4368(95)92676-B
- H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, I.J. Shon, Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int. J. Refract. Met. Hard Mater. 26(1), 48–54 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.006
- J.J. Gao, L.K. Jiang, J.P. Song, G.X. Liang, J. Ang et al., Effects of TiC content on microstructure and mechanical property of WC–TiC–TaC cemented carbides. J. Inorg. Mater. 32(8), 891–896 (2017). https://doi.org/10.15541/jim20160633
- H. Engqvist, G.A. Botton, N. Axe, S. Hogmark, A study of grain boundaries in a binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 16(4–6), 309–313 (1998). https://doi.org/10.1016/S0263-4368(98)00034-1
- S.G. Huang, K. Vanmeensel, B. Vander, J. Vleugels, Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater. 26(1), 41–47 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.002
- H.C. Kim, H.K. Park, I.K. Jeong, I.Y. Ko, I.J. Shon, Sintering of binderless WC–Mo2C hard materials by rapid sintering process. Ceram. Int. 34(6), 1419–1423 (2008). https://doi.org/10.1016/j.ceramint.2007.03.029
- H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
- A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Microstructure and mechanical properties of WC–SiC composites. Mater. Trans. 52(8), 1641–1645 (2011). https://doi.org/10.2320/matertrans.M2011045
- S. Sugiyama, D. Kudo, H. Taimatsu, Preparation of WC–SiC whisker composites by hot pressing and their mechanical properties. Mater. Trans. 49(7), 1644–1649 (2008). https://doi.org/10.2320/matertrans.MRA2008019
- A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Effect of Mo2C addition on the microstructures and mechanical properties of WC–SiC ceramics. Int. J. Refract. Met. Hard Mater. 64, 35–39 (2017). https://doi.org/10.1016/j.ijrmhm.2016.12.018
- A. Nino, T. Sekine, K. Sugawara, S. Sugiyama, H. Taimatsu, Effect of added Cr3C2 on the microstructure and mechanical properties of WC–SiC ceramics. Key Eng. Mater. 656, 33 (2015). https://doi.org/10.4028/www.scientific.net/KEM.656-657.33
- O.L. Ighodaro, O.I. Okoli, Fracture toughness enhancement for alumina systems, a review. Int. J. Appl. Ceram. Technol. 5(3), 313–323 (2008). https://doi.org/10.1111/j.1744-7402.2008.02224.x
- W.H. Chen, H.T. Lin, P.K. Nayak, J.L. Huang, Material properties of tungsten carbide–alumina composites fabricated by spark plasma sintering. Ceram. Int. 40(9), 15007–15012 (2014). https://doi.org/10.1016/j.ceramint.2014.06.102
- W. Dong, S. Zhu, Y. Wang, T. Bai, Influence of VC and Cr3C2 as grain growth inhibitors on WC–Al2O3 composites prepared by hot press sintering. Int. J. Refract. Met. Hard Mater. 45, 223–229 (2014). https://doi.org/10.1016/j.ijrmhm.2014.04.011
- W. Dong, S. Zhu, T. Bai, Y. Luo, Influence of Al2O3 whisker concentration on mechanical properties of WC–Al2O3 whisker composite. Ceram. Int. 41(10), 13685–13691 (2015). https://doi.org/10.1016/j.ceramint.2015.07.167
- H. Qu, S. Zhu, Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceram. Int. 39(5), 5415–5425 (2013). https://doi.org/10.1016/j.ceramint.2012.12.049
- W.H. Chen, H.T. Lin, P.K. Nayak, M.P. Chang, J.L. Huang et al., Sintering behavior and mechanical properties of WC–Al2O3 composites prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 48, 414–417 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.016
- W.W. Dong, S.G. Zhu, C.X. Ouyang, The effect of VC on the sintering ability and microstructure of WC–Al2O3 composites. Appl. Mech. Mater. 490, 43–48 (2014). https://doi.org/10.4028/www.scientific.net/AMM.490-491.43
- S.G. Zhu, H.X. Qu, C.X. Ouyang, Hot pressing of tungsten carbide ceramic matrix composites, in Advances in Ceramic Matrix Composites, ed. by I.M. Low (Woodhead Publishing, Cambridge, 2014), pp. 203–229. https://doi.org/10.1016/B978-0-08-102166-8.00009-8
- D. Zheng, X. Li, X. Ai, C. Yang, Y. Li, Bulk WC–Al2O3 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 30(1), 51–56 (2012). https://doi.org/10.1016/j.ijrmhm.2011.07.003
- S.J. Oh, B.S. Kim, J.K. Yoon, K.T. Hong, I.J. Shon, Enhanced mechanical properties and consolidation of the ultra-fine WC–Al2O3 composites using pulsed current activated heating. Ceram. Int. 42(7), 9304–9310 (2016). https://doi.org/10.1016/j.ceramint.2016.02.113
- H. Qu, S. Zhu, Q. Li, C. Quyang, Microstructure and mechanical properties of hot-pressing sintered WC–x vol.% Al2O3 composites. Mater. Sci. Eng., A 543, 96–103 (2012). https://doi.org/10.1016/j.msea.2012.02.053
- S.J. Oh, B.S. Kim, I.J. Shon, Mechanical properties and rapid consolidation of nanostructured WC and WC–Al2O3 composites by high-frequency induction-heated sintering. Int. J. Refract. Met. Hard Mater. 58, 189–195 (2016). https://doi.org/10.1016/j.ijrmhm.2016.04.016
- W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng, P.S. Kuo, Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 22(16), 2827–2833 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2
- D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering. J. Alloy. Compd. 572, 62–67 (2013). https://doi.org/10.1016/j.jallcom.2013.03.259
- F.Z. Yang, J. Zhao, X. Ai, Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC–ZrO2–VC ceramic composites. J. Mater. Process. Technol. 209(9), 4531–4536 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.027
- T. Venkateswaran, D. Sarkar, B. Basu, WC–ZrO2 composites, processing and unlubricated tribological properties. Wear 260(1–2), 1–9 (2006). https://doi.org/10.1016/j.wear.2004.11.005
- T. Venkateswaran, D. Sarkar, B. Basu, Tribological properties of WC–ZrO2 nanocomposites. J. Am. Ceram. Soc. 88(3), 691–697 (2005). https://doi.org/10.1111/j.1551-2916.2005.00129.x
- B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
- O. Malek, B. Lauwers, Y. Perez, P.D. Baets, J. Vleugels, Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc. 29(16), 3371–3378 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.07.013
- A. Nasser, M.A. Kassem, A. Elsayed, M.A. Gepreel, A.A. Moniem, Influence of grain refinement on microstructure and mechanical properties of tungsten carbide/zirconia nanocomposites. J. Mater. Eng. Perform. 25(11), 5065–5075 (2016). https://doi.org/10.1007/s11665-016-2341-8
- B. Basu, T. Venkateswaran, D. Sarkar, Pressureless sintering and tribological properties of WC–ZrO2 composites. J. Eur. Ceram. Soc. 25(9), 1603–1610 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.05.021
- A. Mukhopadhyay, B. Basu, Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites, a review. Int. Mater. Rev. 52(5), 257–288 (2007). https://doi.org/10.1179/174328007X160281
- Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials, a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006). https://doi.org/10.1007/s10853-006-6555-2
- K. Inoue, US Patent, No 3 241 956 (1966)
- M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183–188 (2000). https://doi.org/10.1016/S0921-5093(00)00773-5
- R.S. Mishra, S.H. Risbud, A.K. Mukherjee, Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder. J. Mater. Res. 13(1), 86–89 (1998). https://doi.org/10.1557/JMR.1998.0013
- K.A. Khalil, Advanced sintering of nano-ceramic materials, in Ceramic Materials-Progress in Modern Ceramics, ed. by S. Feng (InTech, Shanghai, 2012), pp. 65–82
- M. Suárez, J.L. Fernández, R. Menéndez, R. Torrecillas, H.U. Kessel et al., Challenges and opportunities for spark plasma sintering, a key technology for a new generation of materials, in Sintering Applications, ed. by B. Ertuğ (InTech, Turkey, 2013), pp. 319–342. https://doi.org/10.5772/53706
- B. Huang, L.D. Chen, S.Q. Bai, Bulk ultrafine binderless WC prepared by spark plasma sintering. Scr. Mater. 54(3), 441–445 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.014
- S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Mater. Sci. Eng., A 351(1–2), 31–38 (2003). https://doi.org/10.1016/S0921-5093(02)00605-6
- Y. Wang, D. Zhu, X. Jiang, P. Sun, Binderless sub-micron WC consolidated by hot pressing and treated by hot isostatic pressing. J. Ceram. Soc. Jpn. 122(1425), 329–335 (2014). https://doi.org/10.2109/jcersj2.122.329
- K.M. Tsai, The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 29(2), 188–201 (2011). https://doi.org/10.1016/j.ijrmhm.2010.10.006
- J. Zhang, G. Zhang, S. Zhao, X. Song, Binder-free WC bulk synthesized by spark plasma sintering. J. Alloy. Compd. 479(1–2), 427–431 (2009). https://doi.org/10.1016/j.jallcom.2008.12.151
- S.K. Sun, Y.M. Kan, G.J. Zhang, Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J. Am. Ceram. Soc. 94(10), 3230–3233 (2011). https://doi.org/10.1111/j.1551-2916.2011.04813.x
- M. Dopita, A. Salomon, D. Chmelik, B. Reichel, Field assisted sintering technique compaction of ultrafine-grained binderless WC hard metals. Acta Phys. Pol., A 122(3), 639 (2012). https://doi.org/10.12693/APhysPolA.122.639
- H.T. Kim, J.S. Kim, Y.S. Kwon, Mechanical properties of binderless tungsten carbide by spark plasma sintering, in Proceedings of the 9th Russian-Korean International Symposium on Science and Technology, KORUS (2005)
- X. Liu, L. Tao, H. Shao, Z. Guo, J. Luo et al., Consolidation and properties of ultrafine binderless cemented carbide by spark plasma sintering. Rare Met. 27(3), 320–323 (2008). https://doi.org/10.1016/S1001-0521(08)60137-0
- X. Xia, X. Li, J. Li, D. Zheng, Microstructure and characterization of WC–2.8 wt% Al2O3–6.8 wt%ZrO2 composites produced by spark plasma sintering. Ceram. Int. 42(12), 14182–14188 (2016). https://doi.org/10.1016/j.ceramint.2016.06.044
- H.C. Kim, I.J. Shon, I.K. Jeong, I.Y. Ko, J.K. Yoon et al., Rapid sintering of ultrafine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met. Mater. Int. 13(1), 39–45 (2007). https://doi.org/10.1007/BF03027821
- I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties and rapid consolidation of ultra-hard tungsten carbide. J. Alloy. Compd. 489(1), L4–L8 (2010). https://doi.org/10.1016/j.jallcom.2009.09.040
- H. Awaji, S.M. Choi, E. Yagi, Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech. Mater. 34(7), 411–422 (2002). https://doi.org/10.1016/S0167-6636(02)00129-1
- M. Taya, S. Hayashi, A.S. Kobayashi, H.S. Yoon, Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73(5), 1382–1391 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05209.x
- B. Budiansky, J.C. Amazigo, A.G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36, 167–187 (1988). https://doi.org/10.1016/S0022-5096(98)90003-5
- M.S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature. J. Alloy. Compd. 296(1–2), 175–182 (2000). https://doi.org/10.1016/S0925-8388(99)00508-3
- J. Ma, S. Zhu, C. Ouyang, Two-step hot-pressing sintering of nanocomposite WC–MgO compacts. J. Eur. Ceram. Soc. 31(10), 1927–1935 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.001
- C. Ouyang, S. Zhu, H. Qu, VC and Cr3C2 doped WC–MgO compacts prepared by hot-pressing sintering. Mater. Des. 40, 550–555 (2012). https://doi.org/10.1016/j.matdes.2012.04.030
- M. Radajewski, C. Schimpf, L. Krüger, Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J. Eur. Ceram. Soc. 37(5), 2031–2037 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.005
- J.L. Sun, J. Zhao, X.Y. Ni, F. Gong et al., Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering. J. Eur. Ceram. Soc. 38(9), 3096–3103 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.037
- J.L. Sun, J. Zhao, M.J. Chen, X.Y. Ni, Z.L. Li et al., Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC–TiC–Al2O3 micro-nano composite tool materials via two-step sintering. J. Alloys Compd. 709, 197–205 (2017). https://doi.org/10.1016/j.jallcom.2017.03.137
- P.M. Kelly, L.F. Rose, The martensitic transformation in ceramics-its role in transformation toughening. Prog. Mater Sci. 47(5), 463–557 (2002). https://doi.org/10.1016/S0079-6425(00)00005-0
- R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
- B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 50(4), 239–256 (2005). https://doi.org/10.1179/174328005X41113
- P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74(2), 255–269 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
- A. Mukhopadhyay, D. Chakravarty, B. Basu, Spark plasma-sintered WC–ZrO2–Co nanocomposites with high fracture toughness and strength. J. Am. Ceram. Soc. 93(6), 1754–1763 (2010). https://doi.org/10.1111/j.1551-2916.2010.03685.x
- J. Wang, R. Stevens, Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24(10), 3421–3440 (1989). https://doi.org/10.1007/BF02385721
- D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, Zirconia-toughened WC with/without VC and Cr3C2. Ceram. Int. 40(1), 2011–2016 (2014). https://doi.org/10.1016/j.ceramint.2013.07.111
- M. Bengisu, O.T. Inal, Whisker toughening of ceramics, toughening mechanisms, fabrication, and composite properties. Annu. Rev. Mater. Sci. 24(1), 83–124 (1994). https://doi.org/10.1146/annurev.ms.24.080194.000503
- M. Bengisu, O.T. Inal, O. Tosyali, On whisker toughening in ceramic materials. Acta Metall. Mater. 39(11), 2509–2517 (1991). https://doi.org/10.1016/0956-7151(91)90066-A
- P.F. Becher, C.H. Hsueh, P. Angelini et al., Toughening behavior in whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc. 71(12), 1050–1061 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05791.x
- X.B. Li, C.M. Ke, N. Li, Progress in ceramic matrix composite by SiC whisker toughening. Mater. Rev. 21(8), 394–397 (2007)
- Y.J. Chao, J. Liu, Study of WC ceramic tool material by SiC whisker toughening. Rare Metals Cemented Carbides 33(4), 13–16 (2005)
- H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
- D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering. Mater. Sci. Eng., A 561, 445–451 (2013). https://doi.org/10.1016/j.msea.2012.10.059
- Y. Li, D. Zheng, X. Li, S. Qu, C. Yang, Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 540–546 (2013). https://doi.org/10.1016/j.ijrmhm.2013.07.004
- Y. Li, X. Li, D. Zheng, S. Qu, C. Yang, et al., Tungsten carbide composite material comprising aluminium oxide particles and silicon nitride whiskers and preparation process thereof. WO, WO/2013/020317 (2013)
- R. Lakshminarayanan, D.K. Shetty, R.A. Cutler, Toughening of layered ceramic composites with residual surface compression. J. Am. Ceram. Soc. 79(1), 79–87 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb07883.x
- G. Blugan, R. Dobedoe, M. Lugovy, S. Koebel, J. Kuebler, Si3N4–TiN based micro-laminates with rising R-curve behavior. Compos. Part B 37(6), 459–465 (2006). https://doi.org/10.1016/j.compositesb.2006.02.013
- M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler et al., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Mater. 53(2), 289–296 (2005). https://doi.org/10.1016/j.actamat.2004.09.022
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1998). https://doi.org/10.1038/354056a0
- S.C. Tjong, Carbon Nanotube Reinforced Composites, Metal and Ceramic Matrices (Wiley, Hoboken, 2009), pp. 61–64. https://doi.org/10.1002/9783527626991
- I.J. Shon, K.I. Na, B.R. Kim, I.Y. Ko, J.M. Doh et al., Mechanical properties and consolidation of nanostructured WC–CNT composites by high frequency induction heated sintering. Rev. Adv. Mater. Sci. 28, 9–12 (2011)
- T. Bai, Fabrication and properties of WC–Al2O3 cemented carbide reinforced by single-walled carbon nanotubes. Appl. Mech. Mater. 404, 91–94 (2013). https://doi.org/10.4028/www.scientific.net/AMM.404.91
- T. Bai, T. Xie, Fabrication and mechanical properties of WC–Al2O3 cemented carbide reinforced by CNTs. Mater. Chem. Phys. 201, 113–119 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.018
- T. Bai, T. Xie, Influence of TiO2 contents and sintering temperature on the microstructure and mechanical properties of WC–Al2O3 cemented carbide reinforced by multi-wall carbon nanotubes. J. Alloy. Compd. 745, 562–568 (2018). https://doi.org/10.1016/j.jallcom.2018.02.233
- J.H. Jang, I.H. Oh, J.W. Lim, H.K. Park, Fabrication and mechanical properties of binderless-WC and WC–CNT hard materials by pulsed current activated sintering method. J. Ceram. Process. Res. 18(7), 477–482 (2017)
- T. Cao, X. Li, J. Li, M. Zhang, H. Qiu, Effect of sintering temperature on phase constitution and mechanical properties of WC–1.0wt% carbon nanotube composites. Ceram. Int. 44(1), 164–169 (2018). https://doi.org/10.1016/j.ceramint.2017.09.154
- K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
- A.K. Geim, Graphene, status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- O. Tapasztó, L. Tapasztó, M. Markó, F. Kern, R. Gadow et al., Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340–343 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
- S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney et al., Graphene-based composite materials. Nature 442(7100), 282–286 (2006). https://doi.org/10.1038/nature04969
- A. Nieto, D. Lahiri, A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50(11), 4068–4077 (2012). https://doi.org/10.1016/j.carbon.2012.04.054
- A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites, a review. Int. Mater. Rev. 62(5), 241–302 (2017). https://doi.org/10.1080/09506608.2016.1219481
- I. Ahmad, M. Islam, T. Subhani, Y.Q. Zhou, Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology 27(42), 425704 (2016). https://doi.org/10.1088/0957-4484/27/42/425704
- L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011). https://doi.org/10.1021/nn200319d
- M.S. Asl, M.G. Kakroudi, Characterization of hot-pressed graphene reinforced ZrB2–SiC composite. Mater. Sci. Eng., A 625, 385–392 (2015). https://doi.org/10.1016/j.msea.2014.12.028
- J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32(16), 4185–4193 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.007
- A. Nieto, D. Lahiri, A. Agarwal, Graphene nano platelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng., A 582, 338–346 (2013). https://doi.org/10.1016/j.msea.2013.06.006
- J.L. Sun, J. Zhao, M.J. Chen, Y.H. Zhou, X.Y. Ni et al., Multilayer graphene reinforced functionally graded tungsten carbide nano-composites. Mater. Des. 134, 171–180 (2017). https://doi.org/10.1016/j.matdes.2017.08.041
- W. Tang, L. Zhang, J.F. Zhu, Y. Chen, W. Tian et al., Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system. Int. J. Refract. Met. Hard Mater. 64, 90–97 (2017). https://doi.org/10.1016/j.ijrmhm.2017.01.010
- J. Poetschke, V. Richter, A. Michaelis, Influence of small additions of MeC on properties of binderless tungsten carbide, in Euro PM 2014 International Conference and Exhibition, Salzburg, Austria, September 2014
- M. Dopita, C.R. Sriram, D. Chmelik, A. Salomon, H.J. Seifert, Spark plasma sintering of nanocrystalline binderless WC hard metals, in Proceedings of Conference Nanocon 2010, Olomouc, Czech Republic. October 2010
- H.C. Kim, J.K. Yoon, J.M. Doh, I.Y. Koa, I.J. Shon, Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide. Mater. Sci. Eng., A 435, 717–724 (2006). https://doi.org/10.1016/j.msea.2006.07.127
- H. Kim, D. Kim, I. Ko, I.J. Shon, Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process. Res. 8(2), 91 (2007)
- H. Engqvist, G.A. Botton, N. Axén et al., Microstructure and abrasive wear of binderless carbides. J. Am. Ceram. Soc. 83(10), 2491–2496 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01580.x
- J. Poetschke, V. Richter, R. Holke, Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 31, 218–223 (2012). https://doi.org/10.1016/j.ijrmhm.2011.11.006
- X.Y. Ren, Z.J. Peng, Y. Peng, C.B. Wang, Z.Q. Fu et al., Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 308–314 (2013). https://doi.org/10.1016/j.ijrmhm.2013.05.002
- Y. Liu, Z. Wang, Q. Sun, B. Yin, J. Chen et al., Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800°C in vacuum and air environment. Int. J. Refract. Met. Hard Mater. 71, 160–166 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.024
- H. Engqvist, N. Axén, S. Hogmark, Resistance of a binderless cemented carbide to abrasion and particle erosion. Tribol. Lett. 4(3–4), 251–258 (1998). https://doi.org/10.1023/A:1019132011439
References
Z.Z. Fang, M.C. Koopman, H.T. Wang, Cemented tungsten carbide hardmetal—an introduction, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 123–138. https://doi.org/10.1016/B978-0-08-096527-7.00004-0
L. Prakash, Introduction to hardmetals—fundamentals and general applications of hardmetals, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 29–90. https://doi.org/10.1016/B978-0-08-096527-7.00002-7
R. Viswanadham, Science of Hard Materials (Springer, Berlin, 1983). https://doi.org/10.1007/978-1-4684-4319-6
A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Hardness and deformation of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 647–699. https://doi.org/10.1016/B978-0-08-096527-7.00009-X
A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Fracture and strength of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 301–343. https://doi.org/10.1016/B978-0-08-096527-7.00010-6
J.L. Sun, J. Zhao, F. Gong, X.Y. Ni, Z.L. Li, Development and application of WC-based alloys bonded with alternative binder phase. Crit. Rev. Solid. State. 44(3), 211–238 (2019). https://doi.org/10.1080/10408436.2018.1483320
A. Mukhopadhyay, B. Basu, Recent developments on WC-based bulk composites. J. Mater. Sci. 46(3), 571–589 (2011). https://doi.org/10.1007/s10853-010-5046-7
A. Krawitz, E. Drake, Residual stresses in cemented carbides—an overview. Int. J. Refract. Met. Hard Mater. 49, 27–35 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.018
A.D. Krawitz, E.F. Drake, Residual stresses, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 385–404. https://doi.org/10.1016/B978-0-08-096527-7.00013-1
D. Mari, A.D. Krawitz, J.W. Richardson, W. Benoit, Residual stress in WC–Co measured by neutron diffraction. Mater. Sci. Eng., A 209(1–2), 197–205 (1996). https://doi.org/10.1016/0921-5093(95)10147-0
H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, Integrated modelling of the global cobalt extraction, supply, price and depletion of extractable resources using the world6 model. BioPhys. Econ. Resour. Qual. 2(1), 4 (2017). https://doi.org/10.1007/s41247-017-0017-0
S. Bastian, W. Busch, D. Kühnel, A. Springer, T. Meißner et al., Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ. Health Perspect. 117(4), 530 (2009). https://doi.org/10.1289/ehp.0800121
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans 86, 1 (2006)
Y. Kanemitsu, T. Nishimura, H. Yoshino, K. Takao, Y. Masumoto, Effect of hot isostatic pressing on binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 1(2), 66–68 (1982)
M.F. Ashby, The CES EduPack Resource Booklet 2: Material and Process Selection Charts (Granta Design Limited, Cambridge, 2009)
K.M. Tsai, C.Y. Hsieh, H.H. Lu, Sintering of binderless tungsten carbide. Ceram. Int. 36(2), 689–692 (2010). https://doi.org/10.1016/j.ceramint.2009.10.017
J. Poetschke, V. Richter, T. Gestrich, Sintering behaviour of binderless tungsten carbide, in Euro PM2012 Congress and Exhibition, Basel, pp. 7–12, September 2012
D.J. Ma, Z.L. Kou, Y.J. Liu, Y.K. Wang, S.P. Gao et al., Sub-micron binderless tungsten carbide sintering behavior under high pressure and high temperature. Int. J. Refract. Met. Hard Mater. 54, 427–432 (2016). https://doi.org/10.1016/j.ijrmhm.2015.10.001
D. Demirskyi, A. Ragulya, D. Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram. Int. 37(2), 505–512 (2011). https://doi.org/10.1016/j.ceramint.2010.09.036
R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32(5), 787–792 (1961). https://doi.org/10.1063/1.1736107
R.L. Coble, Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32(5), 793–799 (1961). https://doi.org/10.1063/1.1736108
P. Boch, A. Leriche, Sintering and Microstructure of Ceramics, in Ceramic Materials: Processes, Properties, and Applicatons, ed. by P. Boch, J.C. Niepce (ISTE Ltd, New Porth Beach, 2007), pp. 55–94. https://doi.org/10.1002/9780470612415.ch3
C. Agte, R. Kohlermann, Hilfsmetallarme Hartmetallegierungen. Die Tech. 10, 686–689 (1957)
T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger, A.R. Rosen, Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide. Nanostruct. Mater. 11(1), 103–113 (1911). https://doi.org/10.1016/S0965-9773(99)00023-9
V. Richter, G. Boden, M. Nebelung, M. Ruthendorf, Manufacturing and properties of superhard materials with ceramic sintering aids. Presentation of the COST503-3rd Round Annual Meeting, Subgroup Hard Materials, Hannover (1994)
V. Richter, Hard sintered materials made of nano-sized powders. Annual Report of Fraunhofer IKTS, pp. 44–45 (1995)
V. Richter, Manufacturing and properties of super-ultrafine hardmetals. Annual Report of Fraunhofer IKTS, pp. 46–47 (1997)
Editors of JOM, European powder metallurgy association awards innovation. J. Miner. Met. Mater. Soc. 53-3, 4–9 (2001)
V. Richter, M. Ruthendorf, Wasserstrahlschneidhochdruckdüse. DE Patent No. 10052021 (2000)
J. Gurland, A study of the effect of carbon content on the structure and properties of sintered WC–Co alloys. Trans. AIME 200(3), 285–290 (1954)
C.M. Fernandes, A.M.R. Senos, Cemented carbide phase diagrams: a review. Int. J. Refract. Met. Hard Mater. 29(4), 405–418 (2011). https://doi.org/10.1016/j.ijrmhm.2011.02.004
S.K. Li, J.Q. Li, Y. Li, F.S. Liu, W.Q. Ao, Dense pure binderless WC bulk material prepared by spark plasma sintering. Mater. Sci. Technol. 31(14), 1749–1756 (2015). https://doi.org/10.1179/1743284714Y.0000000753
A. Gubernat, P. Rutkowski, G. Grabowski, D. Zientara, Hot pressing of tungsten carbide with and without sintering additives. Int. J. Refract. Met. Hard Mater. 43, 193–199 (2014). https://doi.org/10.1016/j.ijrmhm.2013.12.002
A. Gubernat, L. Stobierski, Fractography of dense metal-like carbides sintered with carbon. Key Eng. Mater. 409, 287–290 (2009). https://doi.org/10.4028/www.scientific.net/KEM.409.287
J. Poetschke, V. Richter, T. Gestrich, A. Michaelis, Grain growth during sintering of tungsten carbide ceramics. Int. J. Refract. Met. Hard Mater. 43, 309–316 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.001
R.T. Fox, R. Nilsson, Binderless tungsten carbide carbon control with pressureless sintering. Int. J. Refract. Met. Hard Mater. 76, 82–89 (2018). https://doi.org/10.1016/j.ijrmhm.2018.05.020
A. Nino, K. Morimura, S. Sugiyama, H. Taimatsu, Effects of C and NbC additions on the microstructure and mechanical properties of binderless WC ceramics. Key Eng. Mater. 749, 205–210 (2017). https://doi.org/10.4028/www.scientific.net/KEM.749.205
A. Nino, K. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide. Mater. Trans. 53(8), 1475–1480 (2012). https://doi.org/10.2320/matertrans.M2012148
G.Z. Zhang, C. Wang, J.X. Zhang, M.L. Zhou, T.X. Zhou, Effects of mixed carbon content on spark plasma sintering of binder-free nanostructured WC cemented carbides. Rare Metals Cemented Carbides 33(2), 12–15 (2005)
L. Girardini, M. Zadra, F. Casari, A. Molinariet, SPS, binderless WC powders, and the problem of sub carbide. Metal Powder Rep. 63(4), 18–22 (2008). https://doi.org/10.1016/S0026-0657(09)70039-6
S.I. Cha, S.H. Hong, Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng., A 356(1–2), 381–389 (2003). https://doi.org/10.1016/S0921-5093(03)00151-5
J.F. Zhao, T. Holland, C. Unuvar, Z.A. Munir, Sparking plasma sintering of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater. 27(1), 130–139 (2009). https://doi.org/10.1016/j.ijrmhm.2008.06.004
K. Kornaus, M. Rączka, A. Gubernat, D. Zientara, Pressureless sintering of binderless tungsten carbide. J. Eur. Ceram. Soc. 37(15), 4567–4576 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.008
Z.Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53(6), 326–352 (2008). https://doi.org/10.1179/174328008X353538
J. Poetschke, V. Richter, A. Michaelis, Fundamentals of sintering nanoscaled binderless hardmetals. Int. J. Refract. Met. Hard Mater. 49, 124–132 (2015). https://doi.org/10.1016/j.ijrmhm.2014.04.022
M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41(3), 85–115 (1996). https://doi.org/10.1179/imr.1996.41.3.85
C.C. Koch, Nanostructured Materials: Processing, Properties and Applications (Noyes Publications, New York, 2002), pp. 173–217
A.N. Kumar, M. Watabe, K. Kurokawa, The sintering kinetics of ultrafine tungsten carbide powders. Ceram. Int. 37(7), 2643–2654 (2011). https://doi.org/10.1016/j.ceramint.2011.04.011
S. Berger, R. Porat, R. Rosen, Nanocrystalline materials: a study of WC-based hard metals. Prog. Mater Sci. 42(1–4), 311–320 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int. J. Refract. Met. Hard Mater. 27(2), 288–299 (2009). https://doi.org/10.1016/j.ijrmhm.2008.07.011
K. Brookes, Nano carbides make for low temperature sintering. Metal Powder Rep. 64(9), 26–32 (2009). https://doi.org/10.1016/S0026-0657(09)70217-6
M. Leiderman, O. Botstein, A. Rosen, Sintering microstructure and properties of sub-micron cemented carbide. Powder Metall. 40, 219 (1997). https://doi.org/10.1179/pom.1997.40.3.219
R. Porat, S. Berger, A. Rosen, Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides. Nanostruct. Mater. 7(4), 429–436 (1996). https://doi.org/10.1016/0965-9773(96)00014-1
H. Ogawa, Y. Kataoka, Observation of sintering of several cemented carbides by a new high-temperature sintering dilatometer. High Temp.-High Press. 13(5), 481–494 (1981)
G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering studies of nanocrystalline WC powder, in Proceedings of the 14th International Plansee Seminar, Metallwerk Plansee, Reutte, February 1997
H.C. Kim, I.J. Shon, J.E. Garay, Z.A. Munir, Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Int. J. Refract. Met. Hard Mater. 22(6), 257–264 (2004). https://doi.org/10.1016/j.ijrmhm.2004.08.003
V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J. Alloy. Compd. 708, 547–561 (2017). https://doi.org/10.1016/j.jallcom.2017.03.035
V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, N.V. Sakharov, M.S. Boldin et al., Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnol. Russ. 10(5–6), 434–448 (2015). https://doi.org/10.1134/S1995078015030040
B.W. Kwak, J.K. Yoon, I.J. Shon, Pulsed current activated rapid sintering of binderless nanostructured TiC and WC and their properties. J. Nanosci. Nanotechnol. 17(6), 4214–4217 (2017). https://doi.org/10.1166/jnn.2017.13388
I.J. Shon, Mechanical properties and rapid sintering of binderless nanostructured TiC and WC by high frequency induction heated sintering. J. Ceram. Process. Res. 17(7), 707–711 (2016)
I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties of nanostructured tungsten carbide and their rapid consolidation by pulsed current activated sintering. Phys. Scripta T139, 014043 (2010). https://doi.org/10.1088/0031-8949/2010/T139/014043
G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering study of nanocrystalline tungsten carbide powders. Nanostruct. Mater. 10(5), 795–804 (1998). https://doi.org/10.1016/S0965-9773(98)00116-0
X.Y. Ren, Z.J. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi et al., Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 48, 398–407 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.013
K. Biswas, A. Mukhopadhyay, B. Basu, K. Chattopadhyay, Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. J. Mater. Res. 22(6), 1491–1501 (2007). https://doi.org/10.1557/JMR.2007.0189
B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
R. Holm, Electric Contacts: Theory and Application (Springer, New York, 1967), p. 22. https://doi.org/10.1007/978-3-662-06688-1
G. Petzow, W.A. Kaysser, Sintering with additives, in Sintering Key Papers, ed. by S. Somiya, Y. Moriyoshi (Elsevier, London, 1990), pp. 615–638. https://doi.org/10.1007/978-94-009-0741-6_39
J.L. Sun, J. Zhao, M.J. Chen, X.C. Wang, X. Zhong et al., Determination of microstructure and mechanical properties of functionally graded WC–TiC–Al2O3–GNPs micro-nano composite tool materials via two-step sintering. Ceram. Int. 43(12), 9276–9284 (2017). https://doi.org/10.1016/j.ceramint.2017.04.086
Z. Qiao, J. Räthel, L.M. Berger, M. Herrmann, Investigation of binderless WC–TiC–Cr3C2 hard materials prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 38, 7–14 (2013). https://doi.org/10.1016/j.ijrmhm.2012.12.002
Z. Li, S. Cheng, C. Shu, N. Qing, C. Xin et al., Hot pressing densification and grain growth behavior of WC–TiC–TaC binderless carbide. Mater. Sci. Eng. Powder Metall. 16(5), 781–786 (2011)
A. Nino, Y. Izu, T. Sekine, S. Sugiyama, H. Taimatsu, Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int. J. Refract. Met. Hard Mater. 69, 259–265 (2017). https://doi.org/10.1016/j.ijrmhm.2017.09.002
A. Nino, N. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC–SiC–Mo2C hard ceramics. Int. J. Refract. Met. Hard Mater. 43, 150–156 (2014). https://doi.org/10.1016/j.ijrmhm.2013.11.016
A. Fazili, L. Nikzad, M.R. RahimiPour, M. Razavi, E. Salahi, Effect of Al2O3 ceramic binder on mechanical and microstructure properties of spark plasma sintered WC–Co cermets. Int. J. Refract. Met. Hard Mater. 69, 189–195 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.010
A. Vornberger, J. Pötschke, C. Berger, Manufacturing and properties of tungsten carbide-oxide composites. Key Eng. Mater. 742, 223–230 (2017). https://doi.org/10.4028/www.scientific.net/KEM.742.223
J. Wang, D. Zuo, L. Zhu, W.W. Li, Z.B. Tu et al., Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 71, 167–174 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.016
O.A. El-Kady, Effect of nano-yttria addition on the properties of WC/Co composites. Mater. Des. 52, 481–486 (2013). https://doi.org/10.1016/j.matdes.2013.05.034
X.Y. Ren, Z.J. Peng, C. Wang, H.Z. Miao, Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC–La2O3 composites. Ceram. Int. 41(10), 14811–14818 (2015). https://doi.org/10.1016/j.ceramint.2015.08.002
A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cerme—a review. Mater. Des. 67, 95–106 (2017). https://doi.org/10.1016/j.matdes.2014.10.081
H. Kim, D. Kim, I. Ko et al., Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process Res. 8(2), 91 (2007)
S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi, Properties of ultra-fine grain binderless cemented carbide ‘RCCFN’. Int. J. Refract. Met. Hard Mater. 13(5), 305–312 (1995). https://doi.org/10.1016/0263-4368(95)92676-B
H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, I.J. Shon, Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int. J. Refract. Met. Hard Mater. 26(1), 48–54 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.006
J.J. Gao, L.K. Jiang, J.P. Song, G.X. Liang, J. Ang et al., Effects of TiC content on microstructure and mechanical property of WC–TiC–TaC cemented carbides. J. Inorg. Mater. 32(8), 891–896 (2017). https://doi.org/10.15541/jim20160633
H. Engqvist, G.A. Botton, N. Axe, S. Hogmark, A study of grain boundaries in a binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 16(4–6), 309–313 (1998). https://doi.org/10.1016/S0263-4368(98)00034-1
S.G. Huang, K. Vanmeensel, B. Vander, J. Vleugels, Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater. 26(1), 41–47 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.002
H.C. Kim, H.K. Park, I.K. Jeong, I.Y. Ko, I.J. Shon, Sintering of binderless WC–Mo2C hard materials by rapid sintering process. Ceram. Int. 34(6), 1419–1423 (2008). https://doi.org/10.1016/j.ceramint.2007.03.029
H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Microstructure and mechanical properties of WC–SiC composites. Mater. Trans. 52(8), 1641–1645 (2011). https://doi.org/10.2320/matertrans.M2011045
S. Sugiyama, D. Kudo, H. Taimatsu, Preparation of WC–SiC whisker composites by hot pressing and their mechanical properties. Mater. Trans. 49(7), 1644–1649 (2008). https://doi.org/10.2320/matertrans.MRA2008019
A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Effect of Mo2C addition on the microstructures and mechanical properties of WC–SiC ceramics. Int. J. Refract. Met. Hard Mater. 64, 35–39 (2017). https://doi.org/10.1016/j.ijrmhm.2016.12.018
A. Nino, T. Sekine, K. Sugawara, S. Sugiyama, H. Taimatsu, Effect of added Cr3C2 on the microstructure and mechanical properties of WC–SiC ceramics. Key Eng. Mater. 656, 33 (2015). https://doi.org/10.4028/www.scientific.net/KEM.656-657.33
O.L. Ighodaro, O.I. Okoli, Fracture toughness enhancement for alumina systems, a review. Int. J. Appl. Ceram. Technol. 5(3), 313–323 (2008). https://doi.org/10.1111/j.1744-7402.2008.02224.x
W.H. Chen, H.T. Lin, P.K. Nayak, J.L. Huang, Material properties of tungsten carbide–alumina composites fabricated by spark plasma sintering. Ceram. Int. 40(9), 15007–15012 (2014). https://doi.org/10.1016/j.ceramint.2014.06.102
W. Dong, S. Zhu, Y. Wang, T. Bai, Influence of VC and Cr3C2 as grain growth inhibitors on WC–Al2O3 composites prepared by hot press sintering. Int. J. Refract. Met. Hard Mater. 45, 223–229 (2014). https://doi.org/10.1016/j.ijrmhm.2014.04.011
W. Dong, S. Zhu, T. Bai, Y. Luo, Influence of Al2O3 whisker concentration on mechanical properties of WC–Al2O3 whisker composite. Ceram. Int. 41(10), 13685–13691 (2015). https://doi.org/10.1016/j.ceramint.2015.07.167
H. Qu, S. Zhu, Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceram. Int. 39(5), 5415–5425 (2013). https://doi.org/10.1016/j.ceramint.2012.12.049
W.H. Chen, H.T. Lin, P.K. Nayak, M.P. Chang, J.L. Huang et al., Sintering behavior and mechanical properties of WC–Al2O3 composites prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 48, 414–417 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.016
W.W. Dong, S.G. Zhu, C.X. Ouyang, The effect of VC on the sintering ability and microstructure of WC–Al2O3 composites. Appl. Mech. Mater. 490, 43–48 (2014). https://doi.org/10.4028/www.scientific.net/AMM.490-491.43
S.G. Zhu, H.X. Qu, C.X. Ouyang, Hot pressing of tungsten carbide ceramic matrix composites, in Advances in Ceramic Matrix Composites, ed. by I.M. Low (Woodhead Publishing, Cambridge, 2014), pp. 203–229. https://doi.org/10.1016/B978-0-08-102166-8.00009-8
D. Zheng, X. Li, X. Ai, C. Yang, Y. Li, Bulk WC–Al2O3 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 30(1), 51–56 (2012). https://doi.org/10.1016/j.ijrmhm.2011.07.003
S.J. Oh, B.S. Kim, J.K. Yoon, K.T. Hong, I.J. Shon, Enhanced mechanical properties and consolidation of the ultra-fine WC–Al2O3 composites using pulsed current activated heating. Ceram. Int. 42(7), 9304–9310 (2016). https://doi.org/10.1016/j.ceramint.2016.02.113
H. Qu, S. Zhu, Q. Li, C. Quyang, Microstructure and mechanical properties of hot-pressing sintered WC–x vol.% Al2O3 composites. Mater. Sci. Eng., A 543, 96–103 (2012). https://doi.org/10.1016/j.msea.2012.02.053
S.J. Oh, B.S. Kim, I.J. Shon, Mechanical properties and rapid consolidation of nanostructured WC and WC–Al2O3 composites by high-frequency induction-heated sintering. Int. J. Refract. Met. Hard Mater. 58, 189–195 (2016). https://doi.org/10.1016/j.ijrmhm.2016.04.016
W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng, P.S. Kuo, Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 22(16), 2827–2833 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering. J. Alloy. Compd. 572, 62–67 (2013). https://doi.org/10.1016/j.jallcom.2013.03.259
F.Z. Yang, J. Zhao, X. Ai, Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC–ZrO2–VC ceramic composites. J. Mater. Process. Technol. 209(9), 4531–4536 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.027
T. Venkateswaran, D. Sarkar, B. Basu, WC–ZrO2 composites, processing and unlubricated tribological properties. Wear 260(1–2), 1–9 (2006). https://doi.org/10.1016/j.wear.2004.11.005
T. Venkateswaran, D. Sarkar, B. Basu, Tribological properties of WC–ZrO2 nanocomposites. J. Am. Ceram. Soc. 88(3), 691–697 (2005). https://doi.org/10.1111/j.1551-2916.2005.00129.x
B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
O. Malek, B. Lauwers, Y. Perez, P.D. Baets, J. Vleugels, Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc. 29(16), 3371–3378 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.07.013
A. Nasser, M.A. Kassem, A. Elsayed, M.A. Gepreel, A.A. Moniem, Influence of grain refinement on microstructure and mechanical properties of tungsten carbide/zirconia nanocomposites. J. Mater. Eng. Perform. 25(11), 5065–5075 (2016). https://doi.org/10.1007/s11665-016-2341-8
B. Basu, T. Venkateswaran, D. Sarkar, Pressureless sintering and tribological properties of WC–ZrO2 composites. J. Eur. Ceram. Soc. 25(9), 1603–1610 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.05.021
A. Mukhopadhyay, B. Basu, Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites, a review. Int. Mater. Rev. 52(5), 257–288 (2007). https://doi.org/10.1179/174328007X160281
Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials, a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006). https://doi.org/10.1007/s10853-006-6555-2
K. Inoue, US Patent, No 3 241 956 (1966)
M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183–188 (2000). https://doi.org/10.1016/S0921-5093(00)00773-5
R.S. Mishra, S.H. Risbud, A.K. Mukherjee, Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder. J. Mater. Res. 13(1), 86–89 (1998). https://doi.org/10.1557/JMR.1998.0013
K.A. Khalil, Advanced sintering of nano-ceramic materials, in Ceramic Materials-Progress in Modern Ceramics, ed. by S. Feng (InTech, Shanghai, 2012), pp. 65–82
M. Suárez, J.L. Fernández, R. Menéndez, R. Torrecillas, H.U. Kessel et al., Challenges and opportunities for spark plasma sintering, a key technology for a new generation of materials, in Sintering Applications, ed. by B. Ertuğ (InTech, Turkey, 2013), pp. 319–342. https://doi.org/10.5772/53706
B. Huang, L.D. Chen, S.Q. Bai, Bulk ultrafine binderless WC prepared by spark plasma sintering. Scr. Mater. 54(3), 441–445 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.014
S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Mater. Sci. Eng., A 351(1–2), 31–38 (2003). https://doi.org/10.1016/S0921-5093(02)00605-6
Y. Wang, D. Zhu, X. Jiang, P. Sun, Binderless sub-micron WC consolidated by hot pressing and treated by hot isostatic pressing. J. Ceram. Soc. Jpn. 122(1425), 329–335 (2014). https://doi.org/10.2109/jcersj2.122.329
K.M. Tsai, The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 29(2), 188–201 (2011). https://doi.org/10.1016/j.ijrmhm.2010.10.006
J. Zhang, G. Zhang, S. Zhao, X. Song, Binder-free WC bulk synthesized by spark plasma sintering. J. Alloy. Compd. 479(1–2), 427–431 (2009). https://doi.org/10.1016/j.jallcom.2008.12.151
S.K. Sun, Y.M. Kan, G.J. Zhang, Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J. Am. Ceram. Soc. 94(10), 3230–3233 (2011). https://doi.org/10.1111/j.1551-2916.2011.04813.x
M. Dopita, A. Salomon, D. Chmelik, B. Reichel, Field assisted sintering technique compaction of ultrafine-grained binderless WC hard metals. Acta Phys. Pol., A 122(3), 639 (2012). https://doi.org/10.12693/APhysPolA.122.639
H.T. Kim, J.S. Kim, Y.S. Kwon, Mechanical properties of binderless tungsten carbide by spark plasma sintering, in Proceedings of the 9th Russian-Korean International Symposium on Science and Technology, KORUS (2005)
X. Liu, L. Tao, H. Shao, Z. Guo, J. Luo et al., Consolidation and properties of ultrafine binderless cemented carbide by spark plasma sintering. Rare Met. 27(3), 320–323 (2008). https://doi.org/10.1016/S1001-0521(08)60137-0
X. Xia, X. Li, J. Li, D. Zheng, Microstructure and characterization of WC–2.8 wt% Al2O3–6.8 wt%ZrO2 composites produced by spark plasma sintering. Ceram. Int. 42(12), 14182–14188 (2016). https://doi.org/10.1016/j.ceramint.2016.06.044
H.C. Kim, I.J. Shon, I.K. Jeong, I.Y. Ko, J.K. Yoon et al., Rapid sintering of ultrafine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met. Mater. Int. 13(1), 39–45 (2007). https://doi.org/10.1007/BF03027821
I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties and rapid consolidation of ultra-hard tungsten carbide. J. Alloy. Compd. 489(1), L4–L8 (2010). https://doi.org/10.1016/j.jallcom.2009.09.040
H. Awaji, S.M. Choi, E. Yagi, Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech. Mater. 34(7), 411–422 (2002). https://doi.org/10.1016/S0167-6636(02)00129-1
M. Taya, S. Hayashi, A.S. Kobayashi, H.S. Yoon, Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73(5), 1382–1391 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05209.x
B. Budiansky, J.C. Amazigo, A.G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36, 167–187 (1988). https://doi.org/10.1016/S0022-5096(98)90003-5
M.S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature. J. Alloy. Compd. 296(1–2), 175–182 (2000). https://doi.org/10.1016/S0925-8388(99)00508-3
J. Ma, S. Zhu, C. Ouyang, Two-step hot-pressing sintering of nanocomposite WC–MgO compacts. J. Eur. Ceram. Soc. 31(10), 1927–1935 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.001
C. Ouyang, S. Zhu, H. Qu, VC and Cr3C2 doped WC–MgO compacts prepared by hot-pressing sintering. Mater. Des. 40, 550–555 (2012). https://doi.org/10.1016/j.matdes.2012.04.030
M. Radajewski, C. Schimpf, L. Krüger, Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J. Eur. Ceram. Soc. 37(5), 2031–2037 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.005
J.L. Sun, J. Zhao, X.Y. Ni, F. Gong et al., Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering. J. Eur. Ceram. Soc. 38(9), 3096–3103 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.037
J.L. Sun, J. Zhao, M.J. Chen, X.Y. Ni, Z.L. Li et al., Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC–TiC–Al2O3 micro-nano composite tool materials via two-step sintering. J. Alloys Compd. 709, 197–205 (2017). https://doi.org/10.1016/j.jallcom.2017.03.137
P.M. Kelly, L.F. Rose, The martensitic transformation in ceramics-its role in transformation toughening. Prog. Mater Sci. 47(5), 463–557 (2002). https://doi.org/10.1016/S0079-6425(00)00005-0
R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 50(4), 239–256 (2005). https://doi.org/10.1179/174328005X41113
P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74(2), 255–269 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
A. Mukhopadhyay, D. Chakravarty, B. Basu, Spark plasma-sintered WC–ZrO2–Co nanocomposites with high fracture toughness and strength. J. Am. Ceram. Soc. 93(6), 1754–1763 (2010). https://doi.org/10.1111/j.1551-2916.2010.03685.x
J. Wang, R. Stevens, Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24(10), 3421–3440 (1989). https://doi.org/10.1007/BF02385721
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, Zirconia-toughened WC with/without VC and Cr3C2. Ceram. Int. 40(1), 2011–2016 (2014). https://doi.org/10.1016/j.ceramint.2013.07.111
M. Bengisu, O.T. Inal, Whisker toughening of ceramics, toughening mechanisms, fabrication, and composite properties. Annu. Rev. Mater. Sci. 24(1), 83–124 (1994). https://doi.org/10.1146/annurev.ms.24.080194.000503
M. Bengisu, O.T. Inal, O. Tosyali, On whisker toughening in ceramic materials. Acta Metall. Mater. 39(11), 2509–2517 (1991). https://doi.org/10.1016/0956-7151(91)90066-A
P.F. Becher, C.H. Hsueh, P. Angelini et al., Toughening behavior in whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc. 71(12), 1050–1061 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05791.x
X.B. Li, C.M. Ke, N. Li, Progress in ceramic matrix composite by SiC whisker toughening. Mater. Rev. 21(8), 394–397 (2007)
Y.J. Chao, J. Liu, Study of WC ceramic tool material by SiC whisker toughening. Rare Metals Cemented Carbides 33(4), 13–16 (2005)
H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering. Mater. Sci. Eng., A 561, 445–451 (2013). https://doi.org/10.1016/j.msea.2012.10.059
Y. Li, D. Zheng, X. Li, S. Qu, C. Yang, Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 540–546 (2013). https://doi.org/10.1016/j.ijrmhm.2013.07.004
Y. Li, X. Li, D. Zheng, S. Qu, C. Yang, et al., Tungsten carbide composite material comprising aluminium oxide particles and silicon nitride whiskers and preparation process thereof. WO, WO/2013/020317 (2013)
R. Lakshminarayanan, D.K. Shetty, R.A. Cutler, Toughening of layered ceramic composites with residual surface compression. J. Am. Ceram. Soc. 79(1), 79–87 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb07883.x
G. Blugan, R. Dobedoe, M. Lugovy, S. Koebel, J. Kuebler, Si3N4–TiN based micro-laminates with rising R-curve behavior. Compos. Part B 37(6), 459–465 (2006). https://doi.org/10.1016/j.compositesb.2006.02.013
M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler et al., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Mater. 53(2), 289–296 (2005). https://doi.org/10.1016/j.actamat.2004.09.022
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1998). https://doi.org/10.1038/354056a0
S.C. Tjong, Carbon Nanotube Reinforced Composites, Metal and Ceramic Matrices (Wiley, Hoboken, 2009), pp. 61–64. https://doi.org/10.1002/9783527626991
I.J. Shon, K.I. Na, B.R. Kim, I.Y. Ko, J.M. Doh et al., Mechanical properties and consolidation of nanostructured WC–CNT composites by high frequency induction heated sintering. Rev. Adv. Mater. Sci. 28, 9–12 (2011)
T. Bai, Fabrication and properties of WC–Al2O3 cemented carbide reinforced by single-walled carbon nanotubes. Appl. Mech. Mater. 404, 91–94 (2013). https://doi.org/10.4028/www.scientific.net/AMM.404.91
T. Bai, T. Xie, Fabrication and mechanical properties of WC–Al2O3 cemented carbide reinforced by CNTs. Mater. Chem. Phys. 201, 113–119 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.018
T. Bai, T. Xie, Influence of TiO2 contents and sintering temperature on the microstructure and mechanical properties of WC–Al2O3 cemented carbide reinforced by multi-wall carbon nanotubes. J. Alloy. Compd. 745, 562–568 (2018). https://doi.org/10.1016/j.jallcom.2018.02.233
J.H. Jang, I.H. Oh, J.W. Lim, H.K. Park, Fabrication and mechanical properties of binderless-WC and WC–CNT hard materials by pulsed current activated sintering method. J. Ceram. Process. Res. 18(7), 477–482 (2017)
T. Cao, X. Li, J. Li, M. Zhang, H. Qiu, Effect of sintering temperature on phase constitution and mechanical properties of WC–1.0wt% carbon nanotube composites. Ceram. Int. 44(1), 164–169 (2018). https://doi.org/10.1016/j.ceramint.2017.09.154
K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
A.K. Geim, Graphene, status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
O. Tapasztó, L. Tapasztó, M. Markó, F. Kern, R. Gadow et al., Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340–343 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney et al., Graphene-based composite materials. Nature 442(7100), 282–286 (2006). https://doi.org/10.1038/nature04969
A. Nieto, D. Lahiri, A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50(11), 4068–4077 (2012). https://doi.org/10.1016/j.carbon.2012.04.054
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites, a review. Int. Mater. Rev. 62(5), 241–302 (2017). https://doi.org/10.1080/09506608.2016.1219481
I. Ahmad, M. Islam, T. Subhani, Y.Q. Zhou, Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology 27(42), 425704 (2016). https://doi.org/10.1088/0957-4484/27/42/425704
L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011). https://doi.org/10.1021/nn200319d
M.S. Asl, M.G. Kakroudi, Characterization of hot-pressed graphene reinforced ZrB2–SiC composite. Mater. Sci. Eng., A 625, 385–392 (2015). https://doi.org/10.1016/j.msea.2014.12.028
J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32(16), 4185–4193 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.007
A. Nieto, D. Lahiri, A. Agarwal, Graphene nano platelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng., A 582, 338–346 (2013). https://doi.org/10.1016/j.msea.2013.06.006
J.L. Sun, J. Zhao, M.J. Chen, Y.H. Zhou, X.Y. Ni et al., Multilayer graphene reinforced functionally graded tungsten carbide nano-composites. Mater. Des. 134, 171–180 (2017). https://doi.org/10.1016/j.matdes.2017.08.041
W. Tang, L. Zhang, J.F. Zhu, Y. Chen, W. Tian et al., Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system. Int. J. Refract. Met. Hard Mater. 64, 90–97 (2017). https://doi.org/10.1016/j.ijrmhm.2017.01.010
J. Poetschke, V. Richter, A. Michaelis, Influence of small additions of MeC on properties of binderless tungsten carbide, in Euro PM 2014 International Conference and Exhibition, Salzburg, Austria, September 2014
M. Dopita, C.R. Sriram, D. Chmelik, A. Salomon, H.J. Seifert, Spark plasma sintering of nanocrystalline binderless WC hard metals, in Proceedings of Conference Nanocon 2010, Olomouc, Czech Republic. October 2010
H.C. Kim, J.K. Yoon, J.M. Doh, I.Y. Koa, I.J. Shon, Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide. Mater. Sci. Eng., A 435, 717–724 (2006). https://doi.org/10.1016/j.msea.2006.07.127
H. Kim, D. Kim, I. Ko, I.J. Shon, Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process. Res. 8(2), 91 (2007)
H. Engqvist, G.A. Botton, N. Axén et al., Microstructure and abrasive wear of binderless carbides. J. Am. Ceram. Soc. 83(10), 2491–2496 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01580.x
J. Poetschke, V. Richter, R. Holke, Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 31, 218–223 (2012). https://doi.org/10.1016/j.ijrmhm.2011.11.006
X.Y. Ren, Z.J. Peng, Y. Peng, C.B. Wang, Z.Q. Fu et al., Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 308–314 (2013). https://doi.org/10.1016/j.ijrmhm.2013.05.002
Y. Liu, Z. Wang, Q. Sun, B. Yin, J. Chen et al., Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800°C in vacuum and air environment. Int. J. Refract. Met. Hard Mater. 71, 160–166 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.024
H. Engqvist, N. Axén, S. Hogmark, Resistance of a binderless cemented carbide to abrasion and particle erosion. Tribol. Lett. 4(3–4), 251–258 (1998). https://doi.org/10.1023/A:1019132011439