Aqueous Self-Assembly of Block Copolymers to Form Manganese Oxide-Based Polymeric Vesicles for Tumor Microenvironment-Activated Drug Delivery
Corresponding Author: Xubo Zhao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 124
Abstract
Molecular self-assembly is crucially fundamental to nature. However, the aqueous self-assembly of polymers is still a challenge. To achieve self-assembly of block copolymers [(polyacrylic acid–block–polyethylene glycol–block–polyacrylic acid (PAA68–b–PEG86–b–PAA68)] in an aqueous phase, manganese oxide (MnO2) is first generated to drive phase separation of the PAA block to form the PAA68–b–PEG86–b–PAA68/MnO2 polymeric assembly that exhibits a stable structure in a physiological medium. The polymeric assembly exhibits vesicular morphology with a diameter of approximately 30 nm and high doxorubicin (DOX) loading capacity of approximately 94%. The transformation from MnO2 to Mn2+ caused by endogenous glutathione (GSH) facilitates the disassembly of PAA68–b–PEG86–b–PAA68/MnO2 to enable its drug delivery at the tumor sites. The toxicity of DOX-loaded PAA68–b–PEG86–b–PAA68/MnO2 to tumor cells has been verified in vitro and in vivo. Notably, drug-loaded polymeric vesicles have been demonstrated, especially in in vivo studies, to overcome the cardiotoxicity of DOX. We expect this work to encourage the potential application of polymer self-assembly.
Highlights:
1 The formation of manganese oxide induces self-assembly of block copolymers to form polymeric vesicles.
2 The polymeric vesicles possessed strong stability and high drug loading capacity.
3 The drug-loaded polymeric vesicles have been demonstrated, especially in in vivo studies, to exhibit a higher efficacy of tumor suppression without known cardiotoxicity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Laurent, G. Blin, F. Chatelain, V. Vanneaux, A. Fuchs, J. Larghero, M. Thery, Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng. 1(12), 939–956 (2017). https://doi.org/10.1038/s41551-017-0166-x
- O.A. Bell, G.L. Wu, J.S. Haataja, F. Brommel, N. Fey et al., Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowires. J. Am. Chem. Soc. 137(45), 14288–14294 (2015). https://doi.org/10.1021/jacs.5b06892
- T.-Y. Dora Tang, C.R. Che Hak, A.J. Thompson, M.K. Kuimova, D.S. Williams, A.W. Perriman, S. Mann, Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6(6), 527–533 (2014). https://doi.org/10.1038/nchem.1921
- M. Karimi, P.S. Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, M.R. Hamblin, Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139(13), 4584–4610 (2017). https://doi.org/10.1021/jacs.6b08313
- S.J. Newman, Note on colloidal dispersions from block copolymers. Appl. Polym. Sci. 6(21), S15–S16 (1962). https://doi.org/10.1002/app.1962.070062121
- S. Krause, Dilute solution properties of a styrene-methyl methacrylate block copolymer. J. Phys. Chem. 68(7), 1948–1955 (1964). https://doi.org/10.1021/j100789a046
- N.J. Warren, S.P. Armes, Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136(29), 10174–10185 (2014). https://doi.org/10.1021/ja502843f
- H. Cabral, K. Miyata, K. Osada, K. Kataoka, Block copolymer micelles in nanomedicine applications. Chem. Rev. 118(14), 6844–6892 (2018). https://doi.org/10.1021/acs.chemrev.8b00199
- B.M. Discher, Y.-Y. Won, D.S. Ege, J.C.-M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417), 1143–1146 (1999). https://doi.org/10.1126/science.284.5417.1143
- D.E. Discher, A. Eisenberg, Polymer vesicles. Science 297(5583), 967–973 (2002). https://doi.org/10.1126/science.1074972
- K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, R. Zboril, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589
- A. Kakkar, G. Traverso, O.C. Farokhzad, R. Weissleder, R. Langer, Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1(8), 0063 (2017). https://doi.org/10.1038/s41570-017-0063
- E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
- D.Q. Chen, G.Q. Zhang, R.M. Li, M.R. Guan, X.Y. Wang et al., Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel Release. J. Am. Chem. Soc. 140(24), 7373–7376 (2018). https://doi.org/10.1021/jacs.7b12025
- E. Ruoslahti, Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 110, 3–12 (2017). https://doi.org/10.1016/j.addr.2016.03.008
- H.Q. Zheng, Y.N. Zhang, L.F. Liu, W. Wan, P. Guo, A.M. Nyström, X.D. Zou, One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
- P. Grossen, D. Witzigmann, S. Sieber, J. Huwyler, PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J. Controlled Release 260, 46–60 (2017). https://doi.org/10.1016/j.jconrel.2017.05.028
- X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. ACS Appl. Mater. Interfaces 7(1), 166–174 (2015). https://doi.org/10.1021/am505531e
- X.B. Zhao, M.Z. Qi, S. Liang, K. Tian, T.T. Zhou, X. Jia, J.G. Li, P. Liu, Synthesis of photo- and pH dual-sensitive amphiphilic copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and its micellization as leakage free drug delivery system for UV-triggered intracellular delivery of doxorubicin. ACS Appl. Mater. Interfaces 8(34), 22127–22134 (2016). https://doi.org/10.1021/acsami.6b08935
- W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun. 40(2), 1800279 (2018). https://doi.org/10.1002/marc.201800279
- Y.T. Xiao, J. Liu, M.Y. Guo, H.G. Zhou, J. Jin et al., Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale 10(26), 12639–12649 (2018). https://doi.org/10.1039/c8nr02700e
- D.C. Niu, Y.S. Li, J.L. Shi, Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem. Soc. Rev. 46(3), 569–585 (2017). https://doi.org/10.1039/c6cs00495d
- Y.L. Miao, Y.D. Qiu, W.J. Yang, Y.Q. Guo, H.W. Hou, Z.Y. Liu, X.B. Zhao, Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery. Colloids Surf. B 169, 313–320 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.026
- S.Y. Lee, H. Lee, I. In, S.Y. Park, pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. Eur. Polym. J. 57, 1–10 (2014). https://doi.org/10.1016/j.eurpolymj.2014.04.020
- H. Zhang, J.B. Fei, X.H. Yan, A.H. Wang, J.B. Li, Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv. Funct. Mater. 25(8), 1193–1204 (2015). https://doi.org/10.1002/adfm.201403119
- B. Louage, Q.L. Zhang, N. Vanparijs, L. Voorhaar, S.V. Casteele et al., Degradable ketal-based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation. Biomacromolecules 16(1), 336–350 (2015). https://doi.org/10.1021/bm5015409
- W.S. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
- M. Qiu, J. Ouyang, H.L. Sun, F.H. Meng, R. Cheng et al., Biodegradable micelles based on poly(ethylene glycol)-b-polylipopeptide copolymer: a robust and versatile nanoplatform for anticancer drug delivery. ACS Appl. Mater. Interfaces. 9(33), 27587–27595 (2017). https://doi.org/10.1021/acsami.7b10533
- J.X. Ding, L.H. Chen, C.S. Xiao, L. Chen, X.L. Zhuang, X.S. Chen, Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem. Commun. 50(77), 11274–11290 (2014). https://doi.org/10.1039/c4cc03153a
- K.K. Bawa, J.K. Oh, Stimulus-responsive degradable polylactide-based block copolymer nanoassemblies for controlled/enhanced drug delivery. Mol. Pharm. 14(8), 2460–2474 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00284
- G. Saravanakumar, H. Park, J. Kim, D. Park, S. Pramanick, D.H. Kim, W.J. Kim, Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific β-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release. Biomacromolecules 19(6), 2202–2213 (2018). https://doi.org/10.1021/acs.biomac.8b00290
- B. Du, X.Y. Ding, H. Wang, Q. Du, T.G. Xu, J.S. Huang, J. Zhou, G.Y. Cheng, Development of an interactive tumor vascular suppression strategy to inhibit multidrug resistance and metastasis with pH/H2O2 responsive and oxygen-producing nanohybrids. J. Mater. Chem. B 7(31), 4784–4793 (2019). https://doi.org/10.1039/C9TB00546C
- X.D. Lin, Y. Fang, Z.H. Tao, X. Gao, T.L. Wang, M.Y. Zhao, S. Wang, Y.Q. Liu, Tumor-microenvironment-induced all-in-one nanoplatform for multimodal imaging-guided chemical and photothermal therapy of cancer. ACS Appl. Mater. Interfaces 11(28), 25043–25053 (2019). https://doi.org/10.1021/acsami.9b07643
- Y. Chen, D.L. Ye, M.Y. Wu, H.R. Chen, L.L. Zhang, J.L. Shi, L.Z. Wang, Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 26(41), 7019–7026 (2014). https://doi.org/10.1002/adma.201402572
- Y. Chen, H.R. Chen, J.L. Shi, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25(23), 3144–3176 (2013). https://doi.org/10.1002/adma.201205292
- X.B. Zhao, Y.D. Qiu, Y.L. Miao, Z.Y. Liu, W.J. Yang, H.W. Hou, Unconventional preparation of polymer/amorphous manganese oxide-based biodegradable nanohybrids for low premature release and acid/glutathione-activated magnetic resonance imaging. ACS Appl. Nano Mater. 1(6), 2621–2631 (2018). https://doi.org/10.1021/acsanm.8b00307
- X.B. Zhao, L. Liu, X.R. Li, J. Zeng, X. Jia, P. Liu, Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir 30(34), 10419–10429 (2014). https://doi.org/10.1021/la502952f
- Q. Chen, L.Z. Feng, J.J. Liu, W.W. Zhu, Z.L. Dong, Y.F. Wu, Z. Liu, Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
- H. Xia, J.K. Feng, H.L. Wang, M.O. Lai, L. Lu, MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195(13), 4410–4413 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.075
- Y.A. Mastrikov, E. Heifets, E.A. Kotomin, J. Maiera, Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603(2), 326–335 (2009). https://doi.org/10.1016/j.susc.2008.11.034
- S.L. Canning, G.N. Smith, S.P. Armes, A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49(6), 1985–2001 (2016). https://doi.org/10.1021/acs.macromol.5b02602
- L.L. Wang, C. Zeng, H. Xu, P.C. Yin, D.C. Chen et al., A highly soluble, crystalline covalent organic framework compatible with device implementation. Chem. Sci. 10(4), 1023–1028 (2019). https://doi.org/10.1039/C8SC04255A
- J.M. Harris, R.B. Chess, Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003). https://doi.org/10.1038/nrd1033
- Q. Liao, Q.L. Shao, H.Y. Wang, G. Qiu, X.H. Lu, Hydroxypropylcellulose templated synthesis of surfactant-free poly(acrylic acid) nanogels in aqueous media. Carbohydr. Polym. 87(4), 2648–2654 (2012). https://doi.org/10.1016/j.carbpol.2011.11.056
- W.J. Yang, X.B. Zhao, Glutathione-induced structural transform of double-cross-linked PEGylated nanogel for efficient intracellular anticancer drug delivery. Mol. Pharm. 16(6), 2826–2837 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00467
- A. Pugazhendhi, T.N.J.I. Edison, B.K. Velmurugan, J.A. Jacob, I. Karuppusamy, Toxicity of doxorubicin (dox) to different experimental organ systems. Life Sci. 200, 26–30 (2018). https://doi.org/10.1016/j.lfs.2018.03.023
References
J. Laurent, G. Blin, F. Chatelain, V. Vanneaux, A. Fuchs, J. Larghero, M. Thery, Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng. 1(12), 939–956 (2017). https://doi.org/10.1038/s41551-017-0166-x
O.A. Bell, G.L. Wu, J.S. Haataja, F. Brommel, N. Fey et al., Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowires. J. Am. Chem. Soc. 137(45), 14288–14294 (2015). https://doi.org/10.1021/jacs.5b06892
T.-Y. Dora Tang, C.R. Che Hak, A.J. Thompson, M.K. Kuimova, D.S. Williams, A.W. Perriman, S. Mann, Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6(6), 527–533 (2014). https://doi.org/10.1038/nchem.1921
M. Karimi, P.S. Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, M.R. Hamblin, Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139(13), 4584–4610 (2017). https://doi.org/10.1021/jacs.6b08313
S.J. Newman, Note on colloidal dispersions from block copolymers. Appl. Polym. Sci. 6(21), S15–S16 (1962). https://doi.org/10.1002/app.1962.070062121
S. Krause, Dilute solution properties of a styrene-methyl methacrylate block copolymer. J. Phys. Chem. 68(7), 1948–1955 (1964). https://doi.org/10.1021/j100789a046
N.J. Warren, S.P. Armes, Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136(29), 10174–10185 (2014). https://doi.org/10.1021/ja502843f
H. Cabral, K. Miyata, K. Osada, K. Kataoka, Block copolymer micelles in nanomedicine applications. Chem. Rev. 118(14), 6844–6892 (2018). https://doi.org/10.1021/acs.chemrev.8b00199
B.M. Discher, Y.-Y. Won, D.S. Ege, J.C.-M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417), 1143–1146 (1999). https://doi.org/10.1126/science.284.5417.1143
D.E. Discher, A. Eisenberg, Polymer vesicles. Science 297(5583), 967–973 (2002). https://doi.org/10.1126/science.1074972
K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, R. Zboril, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589
A. Kakkar, G. Traverso, O.C. Farokhzad, R. Weissleder, R. Langer, Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1(8), 0063 (2017). https://doi.org/10.1038/s41570-017-0063
E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
D.Q. Chen, G.Q. Zhang, R.M. Li, M.R. Guan, X.Y. Wang et al., Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel Release. J. Am. Chem. Soc. 140(24), 7373–7376 (2018). https://doi.org/10.1021/jacs.7b12025
E. Ruoslahti, Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 110, 3–12 (2017). https://doi.org/10.1016/j.addr.2016.03.008
H.Q. Zheng, Y.N. Zhang, L.F. Liu, W. Wan, P. Guo, A.M. Nyström, X.D. Zou, One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
P. Grossen, D. Witzigmann, S. Sieber, J. Huwyler, PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J. Controlled Release 260, 46–60 (2017). https://doi.org/10.1016/j.jconrel.2017.05.028
X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. ACS Appl. Mater. Interfaces 7(1), 166–174 (2015). https://doi.org/10.1021/am505531e
X.B. Zhao, M.Z. Qi, S. Liang, K. Tian, T.T. Zhou, X. Jia, J.G. Li, P. Liu, Synthesis of photo- and pH dual-sensitive amphiphilic copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and its micellization as leakage free drug delivery system for UV-triggered intracellular delivery of doxorubicin. ACS Appl. Mater. Interfaces 8(34), 22127–22134 (2016). https://doi.org/10.1021/acsami.6b08935
W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun. 40(2), 1800279 (2018). https://doi.org/10.1002/marc.201800279
Y.T. Xiao, J. Liu, M.Y. Guo, H.G. Zhou, J. Jin et al., Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale 10(26), 12639–12649 (2018). https://doi.org/10.1039/c8nr02700e
D.C. Niu, Y.S. Li, J.L. Shi, Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem. Soc. Rev. 46(3), 569–585 (2017). https://doi.org/10.1039/c6cs00495d
Y.L. Miao, Y.D. Qiu, W.J. Yang, Y.Q. Guo, H.W. Hou, Z.Y. Liu, X.B. Zhao, Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery. Colloids Surf. B 169, 313–320 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.026
S.Y. Lee, H. Lee, I. In, S.Y. Park, pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. Eur. Polym. J. 57, 1–10 (2014). https://doi.org/10.1016/j.eurpolymj.2014.04.020
H. Zhang, J.B. Fei, X.H. Yan, A.H. Wang, J.B. Li, Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv. Funct. Mater. 25(8), 1193–1204 (2015). https://doi.org/10.1002/adfm.201403119
B. Louage, Q.L. Zhang, N. Vanparijs, L. Voorhaar, S.V. Casteele et al., Degradable ketal-based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation. Biomacromolecules 16(1), 336–350 (2015). https://doi.org/10.1021/bm5015409
W.S. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
M. Qiu, J. Ouyang, H.L. Sun, F.H. Meng, R. Cheng et al., Biodegradable micelles based on poly(ethylene glycol)-b-polylipopeptide copolymer: a robust and versatile nanoplatform for anticancer drug delivery. ACS Appl. Mater. Interfaces. 9(33), 27587–27595 (2017). https://doi.org/10.1021/acsami.7b10533
J.X. Ding, L.H. Chen, C.S. Xiao, L. Chen, X.L. Zhuang, X.S. Chen, Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem. Commun. 50(77), 11274–11290 (2014). https://doi.org/10.1039/c4cc03153a
K.K. Bawa, J.K. Oh, Stimulus-responsive degradable polylactide-based block copolymer nanoassemblies for controlled/enhanced drug delivery. Mol. Pharm. 14(8), 2460–2474 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00284
G. Saravanakumar, H. Park, J. Kim, D. Park, S. Pramanick, D.H. Kim, W.J. Kim, Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific β-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release. Biomacromolecules 19(6), 2202–2213 (2018). https://doi.org/10.1021/acs.biomac.8b00290
B. Du, X.Y. Ding, H. Wang, Q. Du, T.G. Xu, J.S. Huang, J. Zhou, G.Y. Cheng, Development of an interactive tumor vascular suppression strategy to inhibit multidrug resistance and metastasis with pH/H2O2 responsive and oxygen-producing nanohybrids. J. Mater. Chem. B 7(31), 4784–4793 (2019). https://doi.org/10.1039/C9TB00546C
X.D. Lin, Y. Fang, Z.H. Tao, X. Gao, T.L. Wang, M.Y. Zhao, S. Wang, Y.Q. Liu, Tumor-microenvironment-induced all-in-one nanoplatform for multimodal imaging-guided chemical and photothermal therapy of cancer. ACS Appl. Mater. Interfaces 11(28), 25043–25053 (2019). https://doi.org/10.1021/acsami.9b07643
Y. Chen, D.L. Ye, M.Y. Wu, H.R. Chen, L.L. Zhang, J.L. Shi, L.Z. Wang, Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 26(41), 7019–7026 (2014). https://doi.org/10.1002/adma.201402572
Y. Chen, H.R. Chen, J.L. Shi, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25(23), 3144–3176 (2013). https://doi.org/10.1002/adma.201205292
X.B. Zhao, Y.D. Qiu, Y.L. Miao, Z.Y. Liu, W.J. Yang, H.W. Hou, Unconventional preparation of polymer/amorphous manganese oxide-based biodegradable nanohybrids for low premature release and acid/glutathione-activated magnetic resonance imaging. ACS Appl. Nano Mater. 1(6), 2621–2631 (2018). https://doi.org/10.1021/acsanm.8b00307
X.B. Zhao, L. Liu, X.R. Li, J. Zeng, X. Jia, P. Liu, Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir 30(34), 10419–10429 (2014). https://doi.org/10.1021/la502952f
Q. Chen, L.Z. Feng, J.J. Liu, W.W. Zhu, Z.L. Dong, Y.F. Wu, Z. Liu, Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
H. Xia, J.K. Feng, H.L. Wang, M.O. Lai, L. Lu, MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195(13), 4410–4413 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.075
Y.A. Mastrikov, E. Heifets, E.A. Kotomin, J. Maiera, Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603(2), 326–335 (2009). https://doi.org/10.1016/j.susc.2008.11.034
S.L. Canning, G.N. Smith, S.P. Armes, A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49(6), 1985–2001 (2016). https://doi.org/10.1021/acs.macromol.5b02602
L.L. Wang, C. Zeng, H. Xu, P.C. Yin, D.C. Chen et al., A highly soluble, crystalline covalent organic framework compatible with device implementation. Chem. Sci. 10(4), 1023–1028 (2019). https://doi.org/10.1039/C8SC04255A
J.M. Harris, R.B. Chess, Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003). https://doi.org/10.1038/nrd1033
Q. Liao, Q.L. Shao, H.Y. Wang, G. Qiu, X.H. Lu, Hydroxypropylcellulose templated synthesis of surfactant-free poly(acrylic acid) nanogels in aqueous media. Carbohydr. Polym. 87(4), 2648–2654 (2012). https://doi.org/10.1016/j.carbpol.2011.11.056
W.J. Yang, X.B. Zhao, Glutathione-induced structural transform of double-cross-linked PEGylated nanogel for efficient intracellular anticancer drug delivery. Mol. Pharm. 16(6), 2826–2837 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00467
A. Pugazhendhi, T.N.J.I. Edison, B.K. Velmurugan, J.A. Jacob, I. Karuppusamy, Toxicity of doxorubicin (dox) to different experimental organ systems. Life Sci. 200, 26–30 (2018). https://doi.org/10.1016/j.lfs.2018.03.023