A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures
Corresponding Author: Zhiwu Han
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 26
Abstract
Flexible strain sensors are promising in sensing minuscule mechanical signals, and thereby widely used in various advanced fields. However, the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge. Herein, inspired by the hysteresis strategy of the scorpion slit receptor, a bio-inspired flexible strain sensor (BFSS) with parallel through-slit arrays is designed and fabricated. Specifically, BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer. Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials, BFSS can achieve both hypersensitivity and highly selective frequency response. Remarkably, the BFSS exhibits a high gage factor of 657.36, and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration. Moreover, the BFSS possesses a wide frequency detection range (103 Hz) and stable durability (1000 cycles). It can sense and recognize vibration signals with different characteristics, including the frequency, amplitude, and waveform. This work, which turns the hysteresis effect into a "treasure," can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.
Highlights:
1 A bio-inspired flexible strain sensor with hypersensitivity and highly selective frequency response is prepared by styrene–isoprene–styrene combined with monolayer graphene.
2 Benefiting from the structural design inspired by nature and hysteresis of viscoelastic materials, bio-inspired structures, and original materials' properties complement each other.
3 The frequency recognition resolution of bio-inspired flexible strain sensor reaches 0.2 Hz, making it ideal for human–computer interaction and mechanical equipment health inspection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1016/j.coco.2021.100733
- Y. Zhao, W. Gao, K. Dai, S. Wang, Z. Yuan et al., Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv. Mater. 33(45), 2102332 (2021). https://doi.org/10.3390/mi12060695
- D. Yu, Z. Zheng, J. Liu, H. Xiao, H. Geng et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1002/pat.5493
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum Dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2022). https://doi.org/10.1126/sciadv.abg8459
- S. Gong, L.W. Yap, Y. Zhu, B. Zhu, Y. Wang et al., A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design. Adv. Funct. Mater. 30(25), 1910717 (2020). https://doi.org/10.1002/adfm.201910717
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1021/acsami.8b14365
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1016/j.compscitech.2020.108215
- G. Zhu, P. Ren, J. Hu, J. Yang, Y. Jia et al., Flexible and anisotropic strain sensors with the asymmetrical cross-conducting network for versatile bio-mechanical signal recognition. ACS Appl. Mater. Interfaces 13(37), 44925–44934 (2021). https://doi.org/10.1021/acsami.1c13079
- S. Han, M. Naqi, S. Kim, Kim, J. Kim, S. Kim, All-day wearable health monitoring system. EcoMat. 4(4), e12198 (2022). https://doi.org/10.1002/eom2.12198
- R. Lin, H.-J. Kim, S. Achavananthadith, Z. Xiong, J. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13(1), 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1021/acsami.2c19278
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1002/adfm.201910809
- G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao et al., Self-powered soft robot in the Mariana Trench. Nature 591(7848), 66–71 (2021). https://doi.org/10.1038/s41586-020-03153-z
- C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- Z. Zhu, R. Li, T. Pan, Imperceptible Epidermal-Iontronic Interface for Wearable Sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
- K.-Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016). https://doi.org/10.1016/j.nanoen.2016.02.012
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6153), 952–957 (2013). https://doi.org/10.1126/science.1234855
- C. Dong, A. Leber, T. Das Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
- K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
- X. Li, Y.J. Fan, H.Y. Li, J.W. Cao, Y.C. Xiao et al., Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 14(8), 9605–9612 (2020). https://doi.org/10.1021/acsnano.9b10230
- O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
- N. Luo, Y. Huang, J. Liu, S.-C. Chen, C.P. Wong et al., Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 29(40), 1702675 (2017). https://doi.org/10.1002/adma.201702675
- C.-B. Huang, S. Witomska, A. Aliprandi, M.-A. Stoeckel, M. Bonini et al., Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring. Adv. Mater. 31(1), 1804600 (2019). https://doi.org/10.1002/adma.201804600
- K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15(1), 88 (2023). https://doi.org/10.1038/ncomms4002
- C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Prog. Nano-Micro Lett. 14(1), 62 (2022). https://doi.org/10.1016/j.pmatsci.2019.100617
- T. Zhao, L. Yuan, T. Li, L. Chen, X. Li et al., Pollen-shaped hierarchical structure for pressure sensors with high sensitivity in an ultrabroad linear response range. ACS Appl. Mater. Inter. 12(49), 55362–55371 (2020). https://doi.org/10.1021/acsami.0c14314
- W. Luo, X. Hu, C. Wang, Q. Li, Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber. Int. J. Mech. Sci. 52(2), 168–174 (2010). https://doi.org/10.1016/j.ijmecsci.2009.09.001
- J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
- S. Lee, J. Kim, I. Yun, G.Y. Bae, D. Kim et al., An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 10, 2468 (2019). https://doi.org/10.1038/s41467-019-10465-w
- C. Ma, D. Xu, Y.-C. Huang, P. Wang, J. Huang et al., Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 14(10), 12866–12876 (2020). https://doi.org/10.1021/acsnano.0c03659
- C. Liang, J. Sun, Z. Liu, G. Tian, Y. Liu et al., Wide range strain distributions on the electrode for highly sensitive flexible tactile sensor with low hysteresis. ACS Appl. Mater. Inter. 15(12), 15096–15107 (2023). https://doi.org/10.1021/acsami.2c21241
- J. Oh, J. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
- X. Guo, D. Zhou, W. Hong, D. Wang, T. Liu et al., Biologically emulated flexible sensors with high sensitivity and low hysteresis: toward electronic skin to a sense of touch. Small 18(32), 2203044 (2022). https://doi.org/10.1002/smll.202203044
- J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
- J. Zou, X. Jing, Z. Chen, S. Wang, X. Hu et al., Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors. Adv. Funct. Mater. 33(15), 2213895 (2023). https://doi.org/10.1002/adfm.202213895
- X. Su, X. Wu, S. Chen, A.M. Nedumaran et al., A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
- L. Xu, S. Liu, L. Zhu, Y. Liu, N. Li et al., Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Int. J. Biol. Macromol. 236, 123956 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123956
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
- F. Yin, J. Yang, P. Ji, H. Peng, Y. Tang et al., Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 11(20), 18645–18653 (2019). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
- P.H. Brownell, J. Leo van Hemmen, Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am. Zool. 41(5), 1229–1240 (2001). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
- K. Wang, J. Zhang, H. Song, Y. Fang, X. Wang et al., Highly efficient mechanoelectrical energy conversion based on the near-tip stress field of an antifracture slit observed in scorpions. Adv. Funct. Mater. 29(22), 1807693 (2019). https://doi.org/10.1002/adfm.201807693
References
X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1016/j.coco.2021.100733
Y. Zhao, W. Gao, K. Dai, S. Wang, Z. Yuan et al., Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv. Mater. 33(45), 2102332 (2021). https://doi.org/10.3390/mi12060695
D. Yu, Z. Zheng, J. Liu, H. Xiao, H. Geng et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1002/pat.5493
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum Dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2022). https://doi.org/10.1126/sciadv.abg8459
S. Gong, L.W. Yap, Y. Zhu, B. Zhu, Y. Wang et al., A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design. Adv. Funct. Mater. 30(25), 1910717 (2020). https://doi.org/10.1002/adfm.201910717
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1021/acsami.8b14365
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1016/j.compscitech.2020.108215
G. Zhu, P. Ren, J. Hu, J. Yang, Y. Jia et al., Flexible and anisotropic strain sensors with the asymmetrical cross-conducting network for versatile bio-mechanical signal recognition. ACS Appl. Mater. Interfaces 13(37), 44925–44934 (2021). https://doi.org/10.1021/acsami.1c13079
S. Han, M. Naqi, S. Kim, Kim, J. Kim, S. Kim, All-day wearable health monitoring system. EcoMat. 4(4), e12198 (2022). https://doi.org/10.1002/eom2.12198
R. Lin, H.-J. Kim, S. Achavananthadith, Z. Xiong, J. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13(1), 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1021/acsami.2c19278
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1002/adfm.201910809
G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao et al., Self-powered soft robot in the Mariana Trench. Nature 591(7848), 66–71 (2021). https://doi.org/10.1038/s41586-020-03153-z
C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
Z. Zhu, R. Li, T. Pan, Imperceptible Epidermal-Iontronic Interface for Wearable Sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
K.-Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016). https://doi.org/10.1016/j.nanoen.2016.02.012
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6153), 952–957 (2013). https://doi.org/10.1126/science.1234855
C. Dong, A. Leber, T. Das Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
X. Li, Y.J. Fan, H.Y. Li, J.W. Cao, Y.C. Xiao et al., Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 14(8), 9605–9612 (2020). https://doi.org/10.1021/acsnano.9b10230
O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
N. Luo, Y. Huang, J. Liu, S.-C. Chen, C.P. Wong et al., Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 29(40), 1702675 (2017). https://doi.org/10.1002/adma.201702675
C.-B. Huang, S. Witomska, A. Aliprandi, M.-A. Stoeckel, M. Bonini et al., Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring. Adv. Mater. 31(1), 1804600 (2019). https://doi.org/10.1002/adma.201804600
K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15(1), 88 (2023). https://doi.org/10.1038/ncomms4002
C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Prog. Nano-Micro Lett. 14(1), 62 (2022). https://doi.org/10.1016/j.pmatsci.2019.100617
T. Zhao, L. Yuan, T. Li, L. Chen, X. Li et al., Pollen-shaped hierarchical structure for pressure sensors with high sensitivity in an ultrabroad linear response range. ACS Appl. Mater. Inter. 12(49), 55362–55371 (2020). https://doi.org/10.1021/acsami.0c14314
W. Luo, X. Hu, C. Wang, Q. Li, Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber. Int. J. Mech. Sci. 52(2), 168–174 (2010). https://doi.org/10.1016/j.ijmecsci.2009.09.001
J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
S. Lee, J. Kim, I. Yun, G.Y. Bae, D. Kim et al., An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 10, 2468 (2019). https://doi.org/10.1038/s41467-019-10465-w
C. Ma, D. Xu, Y.-C. Huang, P. Wang, J. Huang et al., Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 14(10), 12866–12876 (2020). https://doi.org/10.1021/acsnano.0c03659
C. Liang, J. Sun, Z. Liu, G. Tian, Y. Liu et al., Wide range strain distributions on the electrode for highly sensitive flexible tactile sensor with low hysteresis. ACS Appl. Mater. Inter. 15(12), 15096–15107 (2023). https://doi.org/10.1021/acsami.2c21241
J. Oh, J. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
X. Guo, D. Zhou, W. Hong, D. Wang, T. Liu et al., Biologically emulated flexible sensors with high sensitivity and low hysteresis: toward electronic skin to a sense of touch. Small 18(32), 2203044 (2022). https://doi.org/10.1002/smll.202203044
J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
J. Zou, X. Jing, Z. Chen, S. Wang, X. Hu et al., Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors. Adv. Funct. Mater. 33(15), 2213895 (2023). https://doi.org/10.1002/adfm.202213895
X. Su, X. Wu, S. Chen, A.M. Nedumaran et al., A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
L. Xu, S. Liu, L. Zhu, Y. Liu, N. Li et al., Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Int. J. Biol. Macromol. 236, 123956 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123956
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
F. Yin, J. Yang, P. Ji, H. Peng, Y. Tang et al., Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 11(20), 18645–18653 (2019). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
P.H. Brownell, J. Leo van Hemmen, Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am. Zool. 41(5), 1229–1240 (2001). https://doi.org/10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2
K. Wang, J. Zhang, H. Song, Y. Fang, X. Wang et al., Highly efficient mechanoelectrical energy conversion based on the near-tip stress field of an antifracture slit observed in scorpions. Adv. Funct. Mater. 29(22), 1807693 (2019). https://doi.org/10.1002/adfm.201807693