Recent Advances in Spectrally Selective Daytime Radiative Cooling Materials
Corresponding Author: Xiao‑Qiao Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 264
Abstract
Daytime radiative cooling is an eco-friendly and passive cooling technology that operates without external energy input. Materials designed for this purpose are engineered to possess high reflectivity in the solar spectrum and high emissivity within the atmospheric transmission window. Unlike broadband-emissive daytime radiative cooling materials, spectrally selective daytime radiative cooling (SSDRC) materials exhibit predominant mid-infrared emission in the atmospheric transmission window. This selective mid-infrared emission suppresses thermal radiation absorption beyond the atmospheric transmission window range, thereby improving the net cooling power of daytime radiative cooling. This review elucidates the fundamental characteristics of SSDRC materials, including their molecular structures, micro- and nanostructures, optical properties, and thermodynamic principles. It also provides a comprehensive overview of the design and fabrication of SSDRC materials in three typical forms, i.e., fibrous materials, membranes, and particle coatings, highlighting their respective cooling mechanisms and performance. Furthermore, the practical applications of SSDRC in personal thermal management, outdoor building cooling, and energy harvesting are summarized. Finally, the challenges and prospects are discussed to guide researchers in advancing SSDRC materials.
Highlights:
1 This review comprehensively presents recent advancements in spectrally selective daytime radiative cooling (SSDRC) materials, focusing on their fundamental characteristics, primarily concerning their structures and properties.
2 The fabrication principles and corresponding operational mechanisms of several typical SSDRC materials are systematically introduced.
3 Based on the latest research, this review highlights the innovative applications in personal thermal management, outdoor building cooling, and energy harvesting, while also discussing the challenges and prospects for the future development of daytime radiative cooling.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.D. Matthews, S. Wynes, Current global efforts are insufficient to limit warming to 1.5 °C. Science 376(6600), 1404–1409 (2022). https://doi.org/10.1126/science.abo3378
- S. So, J. Yun, B. Ko, D. Lee, M. Kim et al., Radiative cooling for energy sustainability: from fundamentals to fabrication methods toward commercialization. Adv. Sci. 11(2), 2305067 (2024). https://doi.org/10.1002/advs.202305067
- M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
- Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020). https://doi.org/10.1002/admt.201901007
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- P. Das, S. Rudra, K.C. Maurya, B. Saha, Ultra-emissive MgO-PVDF polymer nanocomposite paint for passive daytime radiative cooling. Adv. Mater. Technol. 8(24), 2301174 (2023). https://doi.org/10.1002/admt.202301174
- N. Cheng, D. Miao, C. Wang, Y. Lin, A.A. Babar et al., Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem. Eng. J. 460, 141581 (2023). https://doi.org/10.1016/j.cej.2023.141581
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
- Z. Ding, H. Li, X. Li, X. Fan, J. Jaramillo-Fernandez et al., Designer SiO2 metasurfaces for efficient passive radiative cooling. Adv. Mater. Interfaces 11(3), 2300603 (2024). https://doi.org/10.1002/admi.202300603
- C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
- Q. Zhang, T. Wang, R. Du, J. Zheng, H. Wei et al., Highly stable polyimide composite nanofiber membranes with spectrally selective for passive daytime radiative cooling. ACS Appl. Mater. Interfaces 16(30), 40069–40076 (2024). https://doi.org/10.1021/acsami.4c09549
- K. Yao, H. Ma, M. Huang, H. Zhao, J. Zhao et al., Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling. ACS Appl. Nano Mater. 2(9), 5512–5519 (2019). https://doi.org/10.1021/acsanm.9b01097
- L. Du, R. Li, W. Chen, Colored textiles based on noniridescent structural color of ZnS@SiO2 colloidal crystals for daytime passive radiative cooling. Chem. Eng. J. 475, 146431 (2023). https://doi.org/10.1016/j.cej.2023.146431
- J. Zhao, F. Nan, L. Zhou, H. Huang, G. Zhou et al., Free-standing, colored, polymer film with composite opal photonic crystal structure for efficient passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 251, 112136 (2023). https://doi.org/10.1016/j.solmat.2022.112136
- X. Hou, K. Zhang, X. Lai, L. Hu, F. Vogelbacher et al., Brilliant colorful daytime radiative cooling coating mimicking scarab beetle. Matter 8(1), 101898 (2025). https://doi.org/10.1016/j.matt.2024.10.016
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- Y. Jin, Y. Jeong, K. Yu, Infrared-reflective transparent hyperbolic metamaterials for use in radiative cooling windows. Adv. Funct. Mater. 33(1), 2207940 (2023). https://doi.org/10.1002/adfm.202207940
- H. Yin, C. Fan, Ultra-broadband thermal emitter for daytime radiative cooling with metal-insulator-metal metamaterials. Chin. Phys. Lett. 40(7), 077801 (2023). https://doi.org/10.1088/0256-307x/40/7/077801
- H. Fan, K. Wang, Y. Ding, Y. Qiang, Z. Yang et al., Core–shell composite nanofibers with high temperature resistance, hydrophobicity and breathability for efficient daytime passive radiative cooling. Adv. Mater. 36(40), 2406987 (2024). https://doi.org/10.1002/adma.202406987
- W. Jing, S. Zhang, W. Zhang, Z. Chen, C. Zhang et al., Scalable and flexible electrospun film for daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13, 29558–29566 (2021). https://doi.org/10.1021/acsami.1c05364
- H. Guo, B. Ma, J. Yu, X. Wang, Y. Si, Photonic metafabric with biomimetic triangular light track for passive radiative cooling. Adv. Fiber Mater. 7(1), 106–116 (2025). https://doi.org/10.1007/s42765-024-00467-9
- X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
- R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
- B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
- W. Gao, Y. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19(18), e2206145 (2023). https://doi.org/10.1002/smll.202206145
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
- J. Song, Q. Shen, H. Shao, X. Deng, Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 11(10), e2305664 (2024). https://doi.org/10.1002/advs.202305664
- M. Chen, D. Pang, X. Chen, H. Yan, Y. Yang, Passive daytime radiative cooling: fundamentals, material designs, and applications. EcoMat 4(1), e12153 (2022). https://doi.org/10.1002/eom2.12153
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
- F. Xie, W. Jin, J.R. Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386(6723), 788–794 (2024). https://doi.org/10.1126/science.adn2524
- S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- X. Yang, S. Yao, X. Tan, Y. Tu, J. Geng et al., A flexibly hierarchical porous polydimethylsiloxane film for Passive daytime radiative cooling. Mater. Lett. 331, 133512 (2023). https://doi.org/10.1016/j.matlet.2022.133512
- K. Wang, G. Luo, X. Guo, S. Li, Z. Liu et al., Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film. Sol. Energy 225, 245–251 (2021). https://doi.org/10.1016/j.solener.2021.07.025
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Daytime radiative cooling with silica fiber network. Sol. Energy Mater. Sol. Cells 206, 110320 (2020). https://doi.org/10.1016/j.solmat.2019.110320
- X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
- K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
- M. Yang, Y. Hu, X. Wang, H. Chen, J. Yu et al., Chaotropic effect-boosted thermogalvanic ionogel thermocells for all-weather power generation. Adv. Mater. 36(16), e2312249 (2024). https://doi.org/10.1002/adma.202312249
- S. Lv, M. Feng, Z. Qian, Y. Guo, Y. Wu et al., Collecting bidirectional flow energy through a photovoltaic thermoelectric radiative cooling hybrid system to maximize the utilization of electricity from the Sun and outer space. J. Mater. Chem. A 12(36), 24391–24400 (2024). https://doi.org/10.1039/D4TA04807E
- Y.D. Zhao, W. Jiang, S. Zhuo, B. Wu, P. Luo et al., Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. Sci. Adv. 9(50), eadh8917 (2023). https://doi.org/10.1126/sciadv.adh8917
- Y. Peng, J. Dong, Y. Zhang, Y. Zhang, J. Long et al., Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles. Nano Energy 120, 109143 (2024). https://doi.org/10.1016/j.nanoen.2023.109143
- J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- J. Xu, X. Huo, T. Yan, P. Wang, Z. Bai et al., All-in-one hybrid atmospheric water harvesting for all-day water production by natural sunlight and radiative cooling. Energy Environ. Sci. 17(14), 4988–5001 (2024). https://doi.org/10.1039/D3EE04363K
- J.-Z. Liu, W. Jiang, S. Zhuo, Y. Rong, Y.-Y. Li et al., Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 11(1), eadr2158 (2025). https://doi.org/10.1126/sciadv.adr2158
- S. So, Y. Yang, S. Son, D. Lee, D. Chae et al., Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics 11(9), 2107–2115 (2021). https://doi.org/10.1515/nanoph-2021-0436
- S. Fan, A. Raman, Metamaterials for radiative sky cooling. Natl. Sci. Rev. 5(2), 132–133 (2018). https://doi.org/10.1093/nsr/nwy012
- A. Kong, B. Cai, P. Shi, X.-C. Yuan, Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt. Express 27(21), 30102–30115 (2019). https://doi.org/10.1364/OE.27.030102
- W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- W.J.M. Kort-Kamp, S. Kramadhati, A.K. Azad, M.T. Reiten, D.A.R. Dalvit, Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5(11), 4554–4560 (2018). https://doi.org/10.1021/acsphotonics.8b01026
- D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9(1), 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
- R. Kumar, M. Kumar, J.S. Chohan, S. Kumar, Overview on metamaterial: history, types and applications. Mater. Today Proc. 56, 3016–3024 (2022). https://doi.org/10.1016/j.matpr.2021.11.423
- M. Wegener, Metamaterials beyond optics. Science 342(6161), 939–940 (2013). https://doi.org/10.1126/science.1246545
- N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11(11), 917–924 (2012). https://doi.org/10.1038/nmat3431
- C. Qian, I. Kaminer, H. Chen, A guidance to intelligent metamaterials and metamaterials intelligence. Nat. Commun. 16(1), 1154 (2025). https://doi.org/10.1038/s41467-025-56122-3
- J. Mandal, Y. Yang, N. Yu, A.P. Raman, Paints as a scalable and effective radiative cooling technology for buildings. Joule 4(7), 1350–1356 (2020). https://doi.org/10.1016/j.joule.2020.04.010
- H. Zhong, P. Zhang, Y. Li, X. Yang, Y. Zhao et al., Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl. Mater. Interfaces 12(46), 51409–51417 (2020). https://doi.org/10.1021/acsami.0c14075
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- J. Zhai, N.-X. Zhang, F. Li, C. Liu, G.-X. Li et al., Fabrication of colloidal photonic crystal supraps via atomization drying for efficient passive cooling. J. Mater. Chem. C 13(7), 3475–3481 (2025). https://doi.org/10.1039/D4TC04838E
- A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
- J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
- M. Alberghini, S. Hong, L.M. Lozano, V. Korolovych, Y. Huang et al., Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 4(8), 715–724 (2021). https://doi.org/10.1038/s41893-021-00688-5
- A. Saparullah, R.I. Purwanto, E.K. Wisnuwijaya, W.S.B. Sari, Dwandaru, Non-contact temperature measurement based on Wien’s displacement law using a single webcam in the infrared spectrum region. Phys. Educ. 55(2), 025017 (2020). https://doi.org/10.1088/1361-6552/ab69b7
- S. Dang, W. Yang, J. Zhang, Q. Zhan, H. Ye, Simultaneous thermal camouflage and radiative cooling for ultrahigh-temperature objects using inversely designed hierarchical metamaterial. Nanophotonics 13(20), 3835–3846 (2024). https://doi.org/10.1515/nanoph-2024-0193
- M. Kim, D. Lee, S. Son, Y. Yang, H. Lee et al., Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 9(13), 2002226 (2021). https://doi.org/10.1002/adom.202002226
- D. Chae, M. Kim, P.H. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(7), 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
- W. Li, H. Zhan, N. Huang, Y. Ying, J. Yu et al., Scalable and flexible multi-layer prismatic photonic metamaterial film for efficient daytime radiative cooling. Small Meth. 8(7), 2301258 (2024). https://doi.org/10.1002/smtd.202301258
- C. Cai, X. Wu, F. Cheng, C. Ding, Z. Wei et al., Cellulose metamaterials with hetero-profiled topology via structure rearrangement during ball milling for daytime radiative cooling. Adv. Funct. Mater. 34(40), 2405903 (2024). https://doi.org/10.1002/adfm.202405903
- J. Yun, D. Chae, S. So, H. Lim, J. Noh et al., Optimally designed multimaterial microp–polymer composite paints for passive daytime radiative cooling. ACS Photonics 10(8), 2608–2617 (2023). https://doi.org/10.1021/acsphotonics.3c00339
- M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
- J. Liu, H. Tang, C. Jiang, S. Wu, L. Ye et al., Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 32(44), 2206962 (2022). https://doi.org/10.1002/adfm.202206962
- A.-Q. Xie, Q. Li, Y. Xi, L. Zhu, S. Chen, Assembly of crack-free photonic crystals: fundamentals, emerging strategies, and perspectives. Acc. Mater. Res. 4(5), 403–415 (2023). https://doi.org/10.1021/accountsmr.2c00236
- C. Liu, A.-Q. Xie, G.-X. Li, Q. Li, C.-F. Wang et al., Carbon dot-functionalized colloidal ps for patterning and controllable layer-structured photonic crystals construction. ACS Appl. Polym. Mater. 3(12), 6130–6137 (2021). https://doi.org/10.1021/acsapm.1c00984
- D. Liu, Y. Xu, Y. Xuan, Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Appl. Opt. 59(23), 6861–6867 (2020). https://doi.org/10.1364/AO.392310
- M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light. Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
- X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
- K.R. Pyun, S. Jeong, M.J. Yoo, S.H. Choi, G. Baik et al., Tunable radiative cooling by mechanochromic electrospun micro-nanofiber matrix. Small 20(20), e2308572 (2024). https://doi.org/10.1002/smll.202308572
- S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), 2107938 (2022). https://doi.org/10.1002/adma.202107938
- T. Lu, J. Cui, Q. Qu, Y. Wang, J. Zhang et al., Multistructured electrospun nanofibers for air filtration: a review. ACS Appl. Mater. Interfaces 13(20), 23293–23313 (2021). https://doi.org/10.1021/acsami.1c06520
- X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2(1), 20210029 (2022). https://doi.org/10.1002/EXP.20210029
- G.-X. Li, T. Dong, L. Zhu, T. Cui, S. Chen, Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chem. Eng. J. 453, 139763 (2023). https://doi.org/10.1016/j.cej.2022.139763
- W. Jiang, J.-Z. Liu, Z. Wang, H. Wang, X. Liu et al., Scalable self-cooling textile enabled by hierarchical nanofiber structures with thermoelectric properties. Device 3(1), 100564 (2025). https://doi.org/10.1016/j.device.2024.100564
- C. Jia, L. Li, J. Song, Z. Li, H. Wu, Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc. Mater. Res. 2(6), 432–446 (2021). https://doi.org/10.1021/accountsmr.1c00040
- R.T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, K. Kern, Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 8(4), 1187–1191 (2008). https://doi.org/10.1021/nl080124q
- C. Chen, X. Jia, X. Li, M. Shi, J. Hu et al., Scalable wet-spinning of wearable chitosan-silica textile for all-day radiative cooling. Chem. Eng. J. 475, 146307 (2023). https://doi.org/10.1016/j.cej.2023.146307
- X.-Y. Du, Q. Li, G. Wu, S. Chen, Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv. Mater. 31(52), e1903733 (2019). https://doi.org/10.1002/adma.201903733
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- Y. Feng, Y. Guo, X. Li, L. Zhang, J. Yan, Continuous rapid fabrication of ceramic fiber sponge aerogels with high thermomechanical properties via a green and low-cost electrospinning technique. ACS Nano 18(29), 19054–19063 (2024). https://doi.org/10.1021/acsnano.4c03303
- M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
- T. Li, H. Sun, M. Yang, C. Zhang, S. Lv et al., All-Ceramic, compressible and scalable nanofibrous aerogels for subambient daytime radiative cooling. Chem. Eng. J. 452, 139518 (2023). https://doi.org/10.1016/j.cej.2022.139518
- X. Li, L. Pattelli, Z. Ding, M. Chen, T. Zhao et al., A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling. Adv. Funct. Mater. 34(23), 2315315 (2024). https://doi.org/10.1002/adfm.202315315
- Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
- Y. Gong, Y. Ma, J. Xing, X. Wang, M. Liu et al., High-performance nanomembranes integrating radiative cooling and alternating current luminescence for smart wearable. Chem. Eng. J. 505, 159214 (2025). https://doi.org/10.1016/j.cej.2025.159214
- L.-C. Hu, C.-H. Xue, B.-Y. Liu, X.-J. Guo, J.-H. Wang et al., Scalable superhydrophobic flexible nanofiber film for passive daytime radiative cooling. ACS Appl. Polym. Mater. 4(5), 3343–3351 (2022). https://doi.org/10.1021/acsapm.1c01907
- K. Li, M. Li, C. Lin, G. Liu, Y. Li et al., A Janus textile capable of radiative subambient cooling and warming for multi-scenario personal thermal management. Small 19(19), 2206149 (2023). https://doi.org/10.1002/smll.202206149
- H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
- B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
- Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
- X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
- L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
- X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
- J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17(1), 14 (2024). https://doi.org/10.1007/s40820-024-01510-5
- K. Li, C. Lin, G. Liu, G. Wang, W. Ma et al., Stepless IR chromism in Ti3C2tx MXene tuned by interlayer water molecules. Adv. Mater. 36(7), e2308189 (2024). https://doi.org/10.1002/adma.202308189
- D. Hong, Y.J. Lee, O.S. Jeon, I.-S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
- Z. Yang, J. Zhang, Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13(36), 43387–43395 (2021). https://doi.org/10.1021/acsami.1c12267
- C. Cai, W. Chen, Z. Wei, C. Ding, B. Sun et al., Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy 114, 108625 (2023). https://doi.org/10.1016/j.nanoen.2023.108625
- T. Lauster, A. Mauel, K. Herrmann, V. Veitengruber, Q. Song et al., From chitosan to chitin: bio-inspired thin films for passive daytime radiative cooling. Adv. Sci. 10(11), 2206616 (2023). https://doi.org/10.1002/advs.202206616
- J. He, Q. Zhang, Y. Zhou, Y. Chen, H. Ge et al., Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling. ACS Nano 18(17), 11120–11129 (2024). https://doi.org/10.1021/acsnano.3c12244
- Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
- S. Zhang, Z. Liu, W. Zhang, B. Zhao, Z. Wu et al., Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy 123, 109393 (2024). https://doi.org/10.1016/j.nanoen.2024.109393
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- B.-Y. Liu, C.-H. Xue, H.-M. Zhong, X.-J. Guo, H.-D. Wang et al., Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9(43), 24276–24282 (2021). https://doi.org/10.1039/d1ta07953k
- D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou et al., Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter 15(21), 4294–4300 (2019). https://doi.org/10.1039/C9SM00566H
- X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
- Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang et al., Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2(2), 022004 (2020). https://doi.org/10.1088/2631-7990/ab8d9a
- Q. Sun, Z. Xue, Y. Chen, R. Xia, J. Wang et al., Modulation of the thermal transport of micro-structured materials from 3D printing. Int. J. Extreme Manuf. 4(1), 015001 (2022). https://doi.org/10.1088/2631-7990/ac38b9
- Y. Duan, W. Xie, Z. Yin, Y. Huang, Multi-material 3D nanoprinting for structures to functional micro/nanosystems. Int. J. Extrem. Manuf. 6(6), 063001 (2024). https://doi.org/10.1088/2631-7990/ad671f
- Z. An, S. Xu, P. Zhang, M.-W. Moon, P.J. Yoo, Highly efficient and sustainable photocatalytic Fenton reactions utilizing catalyst-embedded inverse-opal structured membranes. Sep. Purif. Technol. 354, 129288 (2025). https://doi.org/10.1016/j.seppur.2024.129288
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- X. Yao, L. Huang, Y. Chen, Y. Hu, K. Sagoe-Crentsil et al., Nanophotonic porous structures for passive daytime radiative cooling. Mater. Des. 245, 113256 (2024). https://doi.org/10.1016/j.matdes.2024.113256
- A.S. Farooq, X. Song, D. Wei, L. Liu, P. Zhang, A bioinspired hierarchical gradient structure to maximize resilience and enhanced cooling performance in polymeric radiative cooling coatings. Mater. Today Energy 45, 101666 (2024). https://doi.org/10.1016/j.mtener.2024.101666
- Y. Liu, A. Caratenuto, F. Chen, Y. Zheng, Controllable-gradient-porous cooling materials driven by multistage solvent displacement method. Chem. Eng. J. 488, 150657 (2024). https://doi.org/10.1016/j.cej.2024.150657
- J. Liu, Y. Wei, Y. Zhong, L. Zhang, B. Wang et al., Hierarchical gradient structural porous metamaterial with selective spectral response for daytime passive radiative cooling. Adv. Funct. Mater. 34(45), 2406393 (2024). https://doi.org/10.1002/adfm.202406393
- C.-H. Wang, M.-X. Liu, Z.-Y. Jiang, TiO2 p agglomeration impacts on radiative cooling films with a thickness of 50 μm. Appl. Phys. Lett. 121(20), 202204 (2022). https://doi.org/10.1063/5.0121980
- H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao et al., Double-layer nanop-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 168, 78–84 (2017). https://doi.org/10.1016/j.solmat.2017.04.020
- J. Zhao, Q. Meng, Y. Li, Z. Yang, J. Li, Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 15(40), 47286–47293 (2023). https://doi.org/10.1021/acsami.3c10772
- Y. Li, Y. Song, H. Zu, F. Zhang, H. Yang et al., Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation. Exploration 4(3), 20230085 (2024). https://doi.org/10.1002/EXP.20230085
- M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
- Y. Du, W. Wang, J. Mei, L. Zhang, Silica-bridged inorganic-organic hybrid membrane for efficient daytime radiative cooling. Chem. Eng. J. 485, 149976 (2024). https://doi.org/10.1016/j.cej.2024.149976
- D.V. Lam, D.T. Dung, U.N.T. Nguyen, H.S. Kang, B.-S. Bae et al., Metal-organic frameworks as a thermal emitter for high-performance passive radiative cooling. Small Meth. 9(3), 2401141 (2025). https://doi.org/10.1002/smtd.202401141
- X. Hu, Y. Zhang, J. Zhang, H. Yang, F. Wang et al., Sonochemically-coated transparent wood with ZnO: passive radiative cooling materials for energy saving applications. Renew. Energy 193, 398–406 (2022). https://doi.org/10.1016/j.renene.2022.05.008
- Z. Huang, X. Ruan, Nanop embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009
- M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
- T. Du, J. Niu, L. Wang, J. Bai, S. Wang et al., Daytime radiative cooling coating based on the Y2O3/TiO2 microp-embedded PDMS polymer on energy-saving buildings. ACS Appl. Mater. Interfaces 14(45), 51351–51360 (2022). https://doi.org/10.1021/acsami.2c15854
- X.-Q. Yu, J. Wu, J.-W. Wang, N.-X. Zhang, R.-K. Qing et al., Facile access to high solid content monodispersed microspheres via dual-component surfactants regulation toward high-performance colloidal photonic crystals. Adv. Mater. 36(24), 2312879 (2024). https://doi.org/10.1002/adma.202312879
- H. Yuan, C. Yang, X. Zheng, W. Mu, Z. Wang et al., Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Opt. Express 26(21), 27885–27893 (2018). https://doi.org/10.1364/OE.26.027885
- J. Yun, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3(2), 12 (2023). https://doi.org/10.20517/ss.2023.04
- L. Fei, W. Yu, J. Tan, Y. Yin, C. Wang, High solar energy absorption and human body radiation reflection Janus textile for personal thermal management. Adv. Fiber Mater. 5(3), 955–967 (2023). https://doi.org/10.1007/s42765-023-00264-w
- P. Yang, Y. Ju, J. He, Z. Xia, L. Chen et al., Advanced Janus membrane with directional sweat transport and integrated passive cooling for personal thermal and moisture management. Adv. Fiber Mater. 6(6), 1765–1776 (2024). https://doi.org/10.1007/s42765-024-00444-2
- A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. 61(40), e202208592 (2022). https://doi.org/10.1002/anie.202208592
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15(1), 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- P. Zhang, Y. Hao, H. Shi, J. Lu, Y. Liu et al., Highly thermally conductive and structurally ultra-stable graphitic films with seamless heterointerfaces for extreme thermal management. Nano-Micro Lett. 16(1), 58 (2023). https://doi.org/10.1007/s40820-023-01277-1
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- S. Bae, M. Kim, G. Kang, H.-S. Lee, I.S. Kim et al., Efficient full-color daytime radiative cooling with diffuse-reflection-dominant cholesteric liquid crystals. Chem. Eng. J. 483, 149245 (2024). https://doi.org/10.1016/j.cej.2024.149245
- N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
- W. Xi, Y. Liu, W. Zhao, R. Hu, X. Luo, Colored radiative cooling: How to balance color display and radiative cooling performance. Int. J. Therm. Sci. 170, 107172 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.107172
- S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
- W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton et al., Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
- J. Cao, H. Xu, X. Li, Y. Gu, Colored daytime radiative cooling textiles supported by semiconductor quantum dots. ACS Appl. Mater. Interfaces 15(15), 19480–19489 (2023). https://doi.org/10.1021/acsami.3c02418
- N. Guo, R. Yang, M. Chen, H. Yan, W. Chen, Self-adaptive colored radiative cooling by tuning visible spectra. Sol. RRL 7(21), 2300512 (2023). https://doi.org/10.1002/solr.202300512
- T. Yu, R. Liu, Z. Yang, S. Yang, Z. Ye et al., Color design for daytime radiative cooling: fundamentals and approaches. Appl. Energy 377, 124436 (2025). https://doi.org/10.1016/j.apenergy.2024.124436
- L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6), 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
- H. Keawmuang, T. Badloe, C. Lee, J. Park, J. Rho, Inverse design of colored daytime radiative coolers using deep neural networks. Sol. Energy Mater. Sol. Cells 271, 112848 (2024). https://doi.org/10.1016/j.solmat.2024.112848
- Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
- G. Manoli, S. Fatichi, M. Schläpfer, K. Yu, T.W. Crowther et al., Magnitude of urban heat islands largely explained by climate and population. Nature 573(7772), 55–60 (2019). https://doi.org/10.1038/s41586-019-1512-9
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15(1), 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15(1), 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
- L. Huang, D. Tang, Z. Yang, Flexible electronic materials and devices toward portable immunoassays. FlexMat 1(1), 59–78 (2024). https://doi.org/10.1002/flm2.12
- C. Fan, Z. Long, Y. Zhang, A. Mensah, H. He et al., Robust integration of energy harvesting with daytime radiative cooling enables wearing thermal comfort self-powered electronic devices. Nano Energy 116, 108842 (2023). https://doi.org/10.1016/j.nanoen.2023.108842
- M.H. Kang, G.J. Lee, J.H. Lee, M.S. Kim, Z. Yan et al., Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci. 8(10), 2004885 (2021). https://doi.org/10.1002/advs.202004885
- H. Kim, Y.J. Yoo, J.H. Yun, S.-Y. Heo, Y.M. Song et al., Outdoor worker stress monitoring electronics with nanofabric radiative cooler-based thermal management. Adv. Healthc. Mater. 12(28), 2301104 (2023). https://doi.org/10.1002/adhm.202301104
- S.K. Jeon, J.T. Kim, M.S. Kim, I.S. Kim, S.J. Park et al., Scalable, patternable glass-infiltrated ceramic radiative coolers for energy-saving architectural applications. Adv. Sci. 10(27), e2302701 (2023). https://doi.org/10.1002/advs.202302701
- Y. Fu, L. Chen, Y. Guo, Y. Shi, Y. Liu et al., Pyramid textured photonic films with high-refractive index fillers for efficient radiative cooling. Adv. Sci. 11(39), 2404900 (2024). https://doi.org/10.1002/advs.202404900
- P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
- Z. Yang, Z. Yang, Z. Zhang, X. Wang, Z. Chen et al., Daytime radiative cooling coating for cooling energy efficiency of conventional air conditioners. Appl. Therm. Eng. 261, 125060 (2025). https://doi.org/10.1016/j.applthermaleng.2024.125060
- X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
- X. Yan, M. Yang, W. Duan, H. Cui, P-solid transition architecture for efficient passive building cooling. ACS Nano 18(40), 27752–27763 (2024). https://doi.org/10.1021/acsnano.4c10659
- S. Feng, L. Yao, M. Feng, H. Cai, X. He et al., Sustainable regeneration of waste polystyrene foam as cooling coating: Building cooling energy saving, CO2 emission reduction and cost-benefit prospective. J. Clean. Prod. 434, 140361 (2024). https://doi.org/10.1016/j.jclepro.2023.140361
- X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119(17), e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
- S. Wang, Y. Wu, M. Pu, M. Xu, R. Zhang et al., A versatile strategy for concurrent passive daytime radiative cooling and sustainable energy harvesting. Small 20(6), 2305706 (2024). https://doi.org/10.1002/smll.202305706
- C. Chen, B. Zhao, R. Wang, Z. He, J.-L. Wang et al., Janus helical ribbon structure of ordered nanowire films for flexible solar thermoelectric devices. Adv. Mater. 34(44), 2206364 (2022). https://doi.org/10.1002/adma.202206364
- A. Zhang, S. Yuan, Y. Du, W. Dou, W. Cai et al., A flat radiative cooling thermoelectric generator for high performance power generation. Energy 290, 130138 (2024). https://doi.org/10.1016/j.energy.2023.130138
- Q. Xuan, N. Yang, M. Kai, C. Wang, B. Jiang et al., Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings. Energy 304, 132178 (2024). https://doi.org/10.1016/j.energy.2024.132178
- M. Hong, S. Sun, W. Lyu, M. Li, W. Liu et al., Advances in printing techniques for thermoelectric materials and devices. Soft Sci. 3(3), 29 (2023). https://doi.org/10.20517/ss.2023.20
- G. Lee, H. Kang, J. Yun, D. Chae, M. Jeong et al., Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces. Nat. Commun. 15(1), 6537 (2024). https://doi.org/10.1038/s41467-024-50872-2
- C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15(1), 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
- X. Yue, H. Wu, T. Zhang, D. Yang, F. Qiu, Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 245, 123287 (2022). https://doi.org/10.1016/j.energy.2022.123287
- X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9(20), 2201190 (2022). https://doi.org/10.1002/advs.202201190
- P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
- W. Wang, H. Xing, X. Shu, X. Zhao, X. Yan et al., Cooling colors below ambient temperature. Optica 10(8), 1059 (2023). https://doi.org/10.1364/optica.487561
- B. Xie, Y. Liu, W. Xi, R. Hu, Colored radiative cooling: progress and prospects. Mater. Today Energy 34, 101302 (2023). https://doi.org/10.1016/j.mtener.2023.101302
- G.J. Lee, Y.J. Kim, H.M. Kim, Y.J. Yoo, Y.M. Song, Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 6(22), 1800707 (2018). https://doi.org/10.1002/adom.201800707
- W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9(1), 4240 (2018). https://doi.org/10.1038/s41467-018-06535-0
- M. Chen, D. Pang, H. Yan, Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 216, 119125 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119125
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- R. Li, W. Wang, Y. Shi, C.-T. Wang, P. Wang, Advanced material design and engineering for water-based evaporative cooling. Adv. Mater. 36(12), e2209460 (2024). https://doi.org/10.1002/adma.202209460
- J. Tang, Z. Song, X. Lu, N. Li, L. Yang et al., Achieving excellent thermal transfer in highly light absorbing conical aerogel for simultaneous passive cooling and solar steam generation. Chem. Eng. J. 429, 132089 (2022). https://doi.org/10.1016/j.cej.2021.132089
- M. Wu, R. Li, Y. Shi, M. Altunkaya, S. Aleid et al., Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting. Mater. Horiz. 8(5), 1518–1527 (2021). https://doi.org/10.1039/d0mh02051f
- F. Ni, P. Xiao, C. Zhang, W. Zhou, D. Liu et al., Atmospheric hygroscopic ionogels with dynamically stable cooling interfaces enable a durable thermoelectric performance enhancement. Adv. Mater. 33(49), 2103937 (2021). https://doi.org/10.1002/adma.202103937
- S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
- R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
- R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3(8), 636–643 (2020). https://doi.org/10.1038/s41893-020-0535-4
- K. Yang, Y. Shi, M. Wu, W. Wang, Y. Jin et al., Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8(4), 1887–1895 (2020). https://doi.org/10.1039/C9TA11721K
- S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
- J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
- O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci et al., Graphene-based adaptive thermal camouflage. Nano Lett. 18(7), 4541–4548 (2018). https://doi.org/10.1021/acs.nanolett.8b01746
- X. Zhang, Y. Tian, W. Li, S. Dou, L. Wang et al., Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol. Energy Mater. Sol. Cells 200, 109916 (2019). https://doi.org/10.1016/j.solmat.2019.109916
- J. Park, J.-H. Kang, X. Liu, S.J. Maddox, K. Tang et al., Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 4(12), eaat3163 (2018). https://doi.org/10.1126/sciadv.aat3163
- Y. Huang, S.V. Boriskina, G. Chen, Electrically tunable near-field radiative heat transfer via ferroelectric materials. Appl. Phys. Lett. 105(24), 244102 (2014). https://doi.org/10.1063/1.4904456
- M. Kim, D. Lee, Y. Yang, J. Rho, Switchable diurnal radiative cooling by doped VO2. Opto Electron. Adv. 4(5), 200006 (2021). https://doi.org/10.29026/oea.2021.200006
- B. Li, C. Valenzuela, Y. Liu, X. Zhang, Y. Yang et al., Free-standing bacterial cellulose-templated radiative cooling liquid crystal films with self-adaptive solar transmittance modulation. Adv. Funct. Mater. 34(37), 2402124 (2024). https://doi.org/10.1002/adfm.202402124
- C. Zou, G. Ren, M.M. Hossain, S. Nirantar, W. Withayachumnankul et al., Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5(20), 1700460 (2017). https://doi.org/10.1002/adom.201700460
- S. Ao, B. Li, X. Hu, X. Su, F. Sun, Molecular-engineered wool for sustainable all-weather radiative cooling textiles. Adv. Sustain. Syst. 8(10), 2400179 (2024). https://doi.org/10.1002/adsu.202400179
- J. Jaramillo-Fernandez, H. Yang, L. Schertel, G.L. Whitworth, P.D. Garcia et al., Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9(8), e2104758 (2022). https://doi.org/10.1002/advs.202104758
- Y. Tian, H. Shao, X. Liu, F. Chen, Y. Li et al., Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 13(19), 22521–22530 (2021). https://doi.org/10.1021/acsami.1c04046
- Y. Xu, X. Zhang, Y. Li, Y. Zhang, T. Zhao et al., Radiative cooling face mask based on mixed micro- and nanofibrous fabric. Chem. Eng. J. 481, 148722 (2024). https://doi.org/10.1016/j.cej.2024.148722
- L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
- K. Lin, L. Chao, T.C. Ho, C. Lin, S. Chen et al., A flexible and scalable solution for daytime passive radiative cooling using polymer sheets. Energy Build. 252, 111400 (2021). https://doi.org/10.1016/j.enbuild.2021.111400
- M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
- G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou et al., A visibly transparent radiative cooling film with self-cleaning function produced by solution processing. J. Mater. Sci. Technol. 90, 76–84 (2021). https://doi.org/10.1016/j.jmst.2021.01.092
- B. Ko, J. Noh, D. Chae, C. Lee, H. Lim et al., Neutral-colored transparent radiative cooler by tailoring solar absorption with punctured Bragg reflectors. Adv. Funct. Mater. 34(52), 2410613 (2024). https://doi.org/10.1002/adfm.202410613
- D. Lee, M. Go, S. Son, M. Kim, T. Badloe et al., Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). https://doi.org/10.1016/j.nanoen.2020.105426
- D. Chae, S. Son, H. Lim, P.H. Jung, J. Ha et al., Scalable and paint-format microp–polymer composite enabling high-performance daytime radiative cooling. Mater. Today Phys. 18, 100389 (2021). https://doi.org/10.1016/j.mtphys.2021.100389
- J. Huang, M. Li, D. Fan, Core-shell ps for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 25, 101209 (2021). https://doi.org/10.1016/j.apmt.2021.101209
- Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
- L. Carlosena, Á. Andueza, L. Torres, O. Irulegi, R.J. Hernández-Minguillón et al., Experimental development and testing of low-cost scalable radiative cooling materials for building applications. Sol. Energy Mater. Sol. Cells 230, 111209 (2021). https://doi.org/10.1016/j.solmat.2021.111209
- S. Son, S. Jeon, D. Chae, S.Y. Lee, Y. Liu et al., Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
- S. Jeon, S. Son, S.Y. Lee, D. Chae, J.H. Bae et al., Multifunctional daytime radiative cooling devices with simultaneous light-emitting and radiative cooling functional layers. ACS Appl. Mater. Interfaces 12(49), 54763–54772 (2020). https://doi.org/10.1021/acsami.0c16241
- T.Y. Yoon, S. Son, S. Min, D. Chae, H.Y. Woo et al., Colloidal deposition of colored daytime radiative cooling films using nanop-based inks. Mater. Today Phys. 21, 100510 (2021). https://doi.org/10.1016/j.mtphys.2021.100510
- X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
- L. Xu, D.-W. Sun, Y. Tian, T. Fan, Z. Zhu, Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 457, 141231 (2023). https://doi.org/10.1016/j.cej.2022.141231
- J. Shang, J. Zhang, Y. Zhang, X. Zhang, Q. An, Highly potent transparent passive cooling coating via microphase-separated hydrogel combining radiative and evaporative cooling. Nano Lett. 24(23), 7055–7062 (2024). https://doi.org/10.1021/acs.nanolett.4c01621
- X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10(20), 11092–11100 (2022). https://doi.org/10.1039/D2TA01291J
- B. Zhao, X. Yue, Q. Tian, F. Qiu, Y. Li et al., Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 29(14), 7775–7787 (2022). https://doi.org/10.1007/s10570-022-04749-6
- J. Fei, D. Han, X. Zhang, K. Li, N. Lavielle et al., Ultrahigh passive cooling power in hydrogel with rationally designed optofluidic properties. Nano Lett. 24(2), 623–631 (2024). https://doi.org/10.1021/acs.nanolett.3c03694
- J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
- S. Ouyang, Q. Jiang, Y. Wan, X. Qu, Z. Yu et al., High thermal buffer and radiative cooling sodium alginate-based Janus aerogel enables multi-scenario thermal management for firefighting clothing. Int. J. Biol. Macromol. 275, 133533 (2024). https://doi.org/10.1016/j.ijbiomac.2024.133533
References
H.D. Matthews, S. Wynes, Current global efforts are insufficient to limit warming to 1.5 °C. Science 376(6600), 1404–1409 (2022). https://doi.org/10.1126/science.abo3378
S. So, J. Yun, B. Ko, D. Lee, M. Kim et al., Radiative cooling for energy sustainability: from fundamentals to fabrication methods toward commercialization. Adv. Sci. 11(2), 2305067 (2024). https://doi.org/10.1002/advs.202305067
M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020). https://doi.org/10.1002/admt.201901007
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
P. Das, S. Rudra, K.C. Maurya, B. Saha, Ultra-emissive MgO-PVDF polymer nanocomposite paint for passive daytime radiative cooling. Adv. Mater. Technol. 8(24), 2301174 (2023). https://doi.org/10.1002/admt.202301174
N. Cheng, D. Miao, C. Wang, Y. Lin, A.A. Babar et al., Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem. Eng. J. 460, 141581 (2023). https://doi.org/10.1016/j.cej.2023.141581
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
Z. Ding, H. Li, X. Li, X. Fan, J. Jaramillo-Fernandez et al., Designer SiO2 metasurfaces for efficient passive radiative cooling. Adv. Mater. Interfaces 11(3), 2300603 (2024). https://doi.org/10.1002/admi.202300603
C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
Q. Zhang, T. Wang, R. Du, J. Zheng, H. Wei et al., Highly stable polyimide composite nanofiber membranes with spectrally selective for passive daytime radiative cooling. ACS Appl. Mater. Interfaces 16(30), 40069–40076 (2024). https://doi.org/10.1021/acsami.4c09549
K. Yao, H. Ma, M. Huang, H. Zhao, J. Zhao et al., Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling. ACS Appl. Nano Mater. 2(9), 5512–5519 (2019). https://doi.org/10.1021/acsanm.9b01097
L. Du, R. Li, W. Chen, Colored textiles based on noniridescent structural color of ZnS@SiO2 colloidal crystals for daytime passive radiative cooling. Chem. Eng. J. 475, 146431 (2023). https://doi.org/10.1016/j.cej.2023.146431
J. Zhao, F. Nan, L. Zhou, H. Huang, G. Zhou et al., Free-standing, colored, polymer film with composite opal photonic crystal structure for efficient passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 251, 112136 (2023). https://doi.org/10.1016/j.solmat.2022.112136
X. Hou, K. Zhang, X. Lai, L. Hu, F. Vogelbacher et al., Brilliant colorful daytime radiative cooling coating mimicking scarab beetle. Matter 8(1), 101898 (2025). https://doi.org/10.1016/j.matt.2024.10.016
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
Y. Jin, Y. Jeong, K. Yu, Infrared-reflective transparent hyperbolic metamaterials for use in radiative cooling windows. Adv. Funct. Mater. 33(1), 2207940 (2023). https://doi.org/10.1002/adfm.202207940
H. Yin, C. Fan, Ultra-broadband thermal emitter for daytime radiative cooling with metal-insulator-metal metamaterials. Chin. Phys. Lett. 40(7), 077801 (2023). https://doi.org/10.1088/0256-307x/40/7/077801
H. Fan, K. Wang, Y. Ding, Y. Qiang, Z. Yang et al., Core–shell composite nanofibers with high temperature resistance, hydrophobicity and breathability for efficient daytime passive radiative cooling. Adv. Mater. 36(40), 2406987 (2024). https://doi.org/10.1002/adma.202406987
W. Jing, S. Zhang, W. Zhang, Z. Chen, C. Zhang et al., Scalable and flexible electrospun film for daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13, 29558–29566 (2021). https://doi.org/10.1021/acsami.1c05364
H. Guo, B. Ma, J. Yu, X. Wang, Y. Si, Photonic metafabric with biomimetic triangular light track for passive radiative cooling. Adv. Fiber Mater. 7(1), 106–116 (2025). https://doi.org/10.1007/s42765-024-00467-9
X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
W. Gao, Y. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19(18), e2206145 (2023). https://doi.org/10.1002/smll.202206145
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
J. Song, Q. Shen, H. Shao, X. Deng, Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 11(10), e2305664 (2024). https://doi.org/10.1002/advs.202305664
M. Chen, D. Pang, X. Chen, H. Yan, Y. Yang, Passive daytime radiative cooling: fundamentals, material designs, and applications. EcoMat 4(1), e12153 (2022). https://doi.org/10.1002/eom2.12153
X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
F. Xie, W. Jin, J.R. Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386(6723), 788–794 (2024). https://doi.org/10.1126/science.adn2524
S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
X. Yang, S. Yao, X. Tan, Y. Tu, J. Geng et al., A flexibly hierarchical porous polydimethylsiloxane film for Passive daytime radiative cooling. Mater. Lett. 331, 133512 (2023). https://doi.org/10.1016/j.matlet.2022.133512
K. Wang, G. Luo, X. Guo, S. Li, Z. Liu et al., Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film. Sol. Energy 225, 245–251 (2021). https://doi.org/10.1016/j.solener.2021.07.025
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Daytime radiative cooling with silica fiber network. Sol. Energy Mater. Sol. Cells 206, 110320 (2020). https://doi.org/10.1016/j.solmat.2019.110320
X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
M. Yang, Y. Hu, X. Wang, H. Chen, J. Yu et al., Chaotropic effect-boosted thermogalvanic ionogel thermocells for all-weather power generation. Adv. Mater. 36(16), e2312249 (2024). https://doi.org/10.1002/adma.202312249
S. Lv, M. Feng, Z. Qian, Y. Guo, Y. Wu et al., Collecting bidirectional flow energy through a photovoltaic thermoelectric radiative cooling hybrid system to maximize the utilization of electricity from the Sun and outer space. J. Mater. Chem. A 12(36), 24391–24400 (2024). https://doi.org/10.1039/D4TA04807E
Y.D. Zhao, W. Jiang, S. Zhuo, B. Wu, P. Luo et al., Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. Sci. Adv. 9(50), eadh8917 (2023). https://doi.org/10.1126/sciadv.adh8917
Y. Peng, J. Dong, Y. Zhang, Y. Zhang, J. Long et al., Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles. Nano Energy 120, 109143 (2024). https://doi.org/10.1016/j.nanoen.2023.109143
J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
J. Xu, X. Huo, T. Yan, P. Wang, Z. Bai et al., All-in-one hybrid atmospheric water harvesting for all-day water production by natural sunlight and radiative cooling. Energy Environ. Sci. 17(14), 4988–5001 (2024). https://doi.org/10.1039/D3EE04363K
J.-Z. Liu, W. Jiang, S. Zhuo, Y. Rong, Y.-Y. Li et al., Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 11(1), eadr2158 (2025). https://doi.org/10.1126/sciadv.adr2158
S. So, Y. Yang, S. Son, D. Lee, D. Chae et al., Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics 11(9), 2107–2115 (2021). https://doi.org/10.1515/nanoph-2021-0436
S. Fan, A. Raman, Metamaterials for radiative sky cooling. Natl. Sci. Rev. 5(2), 132–133 (2018). https://doi.org/10.1093/nsr/nwy012
A. Kong, B. Cai, P. Shi, X.-C. Yuan, Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt. Express 27(21), 30102–30115 (2019). https://doi.org/10.1364/OE.27.030102
W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
W.J.M. Kort-Kamp, S. Kramadhati, A.K. Azad, M.T. Reiten, D.A.R. Dalvit, Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5(11), 4554–4560 (2018). https://doi.org/10.1021/acsphotonics.8b01026
D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9(1), 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
R. Kumar, M. Kumar, J.S. Chohan, S. Kumar, Overview on metamaterial: history, types and applications. Mater. Today Proc. 56, 3016–3024 (2022). https://doi.org/10.1016/j.matpr.2021.11.423
M. Wegener, Metamaterials beyond optics. Science 342(6161), 939–940 (2013). https://doi.org/10.1126/science.1246545
N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11(11), 917–924 (2012). https://doi.org/10.1038/nmat3431
C. Qian, I. Kaminer, H. Chen, A guidance to intelligent metamaterials and metamaterials intelligence. Nat. Commun. 16(1), 1154 (2025). https://doi.org/10.1038/s41467-025-56122-3
J. Mandal, Y. Yang, N. Yu, A.P. Raman, Paints as a scalable and effective radiative cooling technology for buildings. Joule 4(7), 1350–1356 (2020). https://doi.org/10.1016/j.joule.2020.04.010
H. Zhong, P. Zhang, Y. Li, X. Yang, Y. Zhao et al., Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl. Mater. Interfaces 12(46), 51409–51417 (2020). https://doi.org/10.1021/acsami.0c14075
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
J. Zhai, N.-X. Zhang, F. Li, C. Liu, G.-X. Li et al., Fabrication of colloidal photonic crystal supraps via atomization drying for efficient passive cooling. J. Mater. Chem. C 13(7), 3475–3481 (2025). https://doi.org/10.1039/D4TC04838E
A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
M. Alberghini, S. Hong, L.M. Lozano, V. Korolovych, Y. Huang et al., Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 4(8), 715–724 (2021). https://doi.org/10.1038/s41893-021-00688-5
A. Saparullah, R.I. Purwanto, E.K. Wisnuwijaya, W.S.B. Sari, Dwandaru, Non-contact temperature measurement based on Wien’s displacement law using a single webcam in the infrared spectrum region. Phys. Educ. 55(2), 025017 (2020). https://doi.org/10.1088/1361-6552/ab69b7
S. Dang, W. Yang, J. Zhang, Q. Zhan, H. Ye, Simultaneous thermal camouflage and radiative cooling for ultrahigh-temperature objects using inversely designed hierarchical metamaterial. Nanophotonics 13(20), 3835–3846 (2024). https://doi.org/10.1515/nanoph-2024-0193
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee et al., Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 9(13), 2002226 (2021). https://doi.org/10.1002/adom.202002226
D. Chae, M. Kim, P.H. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(7), 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
W. Li, H. Zhan, N. Huang, Y. Ying, J. Yu et al., Scalable and flexible multi-layer prismatic photonic metamaterial film for efficient daytime radiative cooling. Small Meth. 8(7), 2301258 (2024). https://doi.org/10.1002/smtd.202301258
C. Cai, X. Wu, F. Cheng, C. Ding, Z. Wei et al., Cellulose metamaterials with hetero-profiled topology via structure rearrangement during ball milling for daytime radiative cooling. Adv. Funct. Mater. 34(40), 2405903 (2024). https://doi.org/10.1002/adfm.202405903
J. Yun, D. Chae, S. So, H. Lim, J. Noh et al., Optimally designed multimaterial microp–polymer composite paints for passive daytime radiative cooling. ACS Photonics 10(8), 2608–2617 (2023). https://doi.org/10.1021/acsphotonics.3c00339
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
J. Liu, H. Tang, C. Jiang, S. Wu, L. Ye et al., Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 32(44), 2206962 (2022). https://doi.org/10.1002/adfm.202206962
A.-Q. Xie, Q. Li, Y. Xi, L. Zhu, S. Chen, Assembly of crack-free photonic crystals: fundamentals, emerging strategies, and perspectives. Acc. Mater. Res. 4(5), 403–415 (2023). https://doi.org/10.1021/accountsmr.2c00236
C. Liu, A.-Q. Xie, G.-X. Li, Q. Li, C.-F. Wang et al., Carbon dot-functionalized colloidal ps for patterning and controllable layer-structured photonic crystals construction. ACS Appl. Polym. Mater. 3(12), 6130–6137 (2021). https://doi.org/10.1021/acsapm.1c00984
D. Liu, Y. Xu, Y. Xuan, Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Appl. Opt. 59(23), 6861–6867 (2020). https://doi.org/10.1364/AO.392310
M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light. Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
K.R. Pyun, S. Jeong, M.J. Yoo, S.H. Choi, G. Baik et al., Tunable radiative cooling by mechanochromic electrospun micro-nanofiber matrix. Small 20(20), e2308572 (2024). https://doi.org/10.1002/smll.202308572
S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), 2107938 (2022). https://doi.org/10.1002/adma.202107938
T. Lu, J. Cui, Q. Qu, Y. Wang, J. Zhang et al., Multistructured electrospun nanofibers for air filtration: a review. ACS Appl. Mater. Interfaces 13(20), 23293–23313 (2021). https://doi.org/10.1021/acsami.1c06520
X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2(1), 20210029 (2022). https://doi.org/10.1002/EXP.20210029
G.-X. Li, T. Dong, L. Zhu, T. Cui, S. Chen, Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chem. Eng. J. 453, 139763 (2023). https://doi.org/10.1016/j.cej.2022.139763
W. Jiang, J.-Z. Liu, Z. Wang, H. Wang, X. Liu et al., Scalable self-cooling textile enabled by hierarchical nanofiber structures with thermoelectric properties. Device 3(1), 100564 (2025). https://doi.org/10.1016/j.device.2024.100564
C. Jia, L. Li, J. Song, Z. Li, H. Wu, Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc. Mater. Res. 2(6), 432–446 (2021). https://doi.org/10.1021/accountsmr.1c00040
R.T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, K. Kern, Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 8(4), 1187–1191 (2008). https://doi.org/10.1021/nl080124q
C. Chen, X. Jia, X. Li, M. Shi, J. Hu et al., Scalable wet-spinning of wearable chitosan-silica textile for all-day radiative cooling. Chem. Eng. J. 475, 146307 (2023). https://doi.org/10.1016/j.cej.2023.146307
X.-Y. Du, Q. Li, G. Wu, S. Chen, Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv. Mater. 31(52), e1903733 (2019). https://doi.org/10.1002/adma.201903733
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
Y. Feng, Y. Guo, X. Li, L. Zhang, J. Yan, Continuous rapid fabrication of ceramic fiber sponge aerogels with high thermomechanical properties via a green and low-cost electrospinning technique. ACS Nano 18(29), 19054–19063 (2024). https://doi.org/10.1021/acsnano.4c03303
M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
T. Li, H. Sun, M. Yang, C. Zhang, S. Lv et al., All-Ceramic, compressible and scalable nanofibrous aerogels for subambient daytime radiative cooling. Chem. Eng. J. 452, 139518 (2023). https://doi.org/10.1016/j.cej.2022.139518
X. Li, L. Pattelli, Z. Ding, M. Chen, T. Zhao et al., A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling. Adv. Funct. Mater. 34(23), 2315315 (2024). https://doi.org/10.1002/adfm.202315315
Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
Y. Gong, Y. Ma, J. Xing, X. Wang, M. Liu et al., High-performance nanomembranes integrating radiative cooling and alternating current luminescence for smart wearable. Chem. Eng. J. 505, 159214 (2025). https://doi.org/10.1016/j.cej.2025.159214
L.-C. Hu, C.-H. Xue, B.-Y. Liu, X.-J. Guo, J.-H. Wang et al., Scalable superhydrophobic flexible nanofiber film for passive daytime radiative cooling. ACS Appl. Polym. Mater. 4(5), 3343–3351 (2022). https://doi.org/10.1021/acsapm.1c01907
K. Li, M. Li, C. Lin, G. Liu, Y. Li et al., A Janus textile capable of radiative subambient cooling and warming for multi-scenario personal thermal management. Small 19(19), 2206149 (2023). https://doi.org/10.1002/smll.202206149
H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17(1), 14 (2024). https://doi.org/10.1007/s40820-024-01510-5
K. Li, C. Lin, G. Liu, G. Wang, W. Ma et al., Stepless IR chromism in Ti3C2tx MXene tuned by interlayer water molecules. Adv. Mater. 36(7), e2308189 (2024). https://doi.org/10.1002/adma.202308189
D. Hong, Y.J. Lee, O.S. Jeon, I.-S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
Z. Yang, J. Zhang, Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13(36), 43387–43395 (2021). https://doi.org/10.1021/acsami.1c12267
C. Cai, W. Chen, Z. Wei, C. Ding, B. Sun et al., Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy 114, 108625 (2023). https://doi.org/10.1016/j.nanoen.2023.108625
T. Lauster, A. Mauel, K. Herrmann, V. Veitengruber, Q. Song et al., From chitosan to chitin: bio-inspired thin films for passive daytime radiative cooling. Adv. Sci. 10(11), 2206616 (2023). https://doi.org/10.1002/advs.202206616
J. He, Q. Zhang, Y. Zhou, Y. Chen, H. Ge et al., Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling. ACS Nano 18(17), 11120–11129 (2024). https://doi.org/10.1021/acsnano.3c12244
Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
S. Zhang, Z. Liu, W. Zhang, B. Zhao, Z. Wu et al., Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy 123, 109393 (2024). https://doi.org/10.1016/j.nanoen.2024.109393
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
B.-Y. Liu, C.-H. Xue, H.-M. Zhong, X.-J. Guo, H.-D. Wang et al., Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9(43), 24276–24282 (2021). https://doi.org/10.1039/d1ta07953k
D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou et al., Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter 15(21), 4294–4300 (2019). https://doi.org/10.1039/C9SM00566H
X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang et al., Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2(2), 022004 (2020). https://doi.org/10.1088/2631-7990/ab8d9a
Q. Sun, Z. Xue, Y. Chen, R. Xia, J. Wang et al., Modulation of the thermal transport of micro-structured materials from 3D printing. Int. J. Extreme Manuf. 4(1), 015001 (2022). https://doi.org/10.1088/2631-7990/ac38b9
Y. Duan, W. Xie, Z. Yin, Y. Huang, Multi-material 3D nanoprinting for structures to functional micro/nanosystems. Int. J. Extrem. Manuf. 6(6), 063001 (2024). https://doi.org/10.1088/2631-7990/ad671f
Z. An, S. Xu, P. Zhang, M.-W. Moon, P.J. Yoo, Highly efficient and sustainable photocatalytic Fenton reactions utilizing catalyst-embedded inverse-opal structured membranes. Sep. Purif. Technol. 354, 129288 (2025). https://doi.org/10.1016/j.seppur.2024.129288
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
X. Yao, L. Huang, Y. Chen, Y. Hu, K. Sagoe-Crentsil et al., Nanophotonic porous structures for passive daytime radiative cooling. Mater. Des. 245, 113256 (2024). https://doi.org/10.1016/j.matdes.2024.113256
A.S. Farooq, X. Song, D. Wei, L. Liu, P. Zhang, A bioinspired hierarchical gradient structure to maximize resilience and enhanced cooling performance in polymeric radiative cooling coatings. Mater. Today Energy 45, 101666 (2024). https://doi.org/10.1016/j.mtener.2024.101666
Y. Liu, A. Caratenuto, F. Chen, Y. Zheng, Controllable-gradient-porous cooling materials driven by multistage solvent displacement method. Chem. Eng. J. 488, 150657 (2024). https://doi.org/10.1016/j.cej.2024.150657
J. Liu, Y. Wei, Y. Zhong, L. Zhang, B. Wang et al., Hierarchical gradient structural porous metamaterial with selective spectral response for daytime passive radiative cooling. Adv. Funct. Mater. 34(45), 2406393 (2024). https://doi.org/10.1002/adfm.202406393
C.-H. Wang, M.-X. Liu, Z.-Y. Jiang, TiO2 p agglomeration impacts on radiative cooling films with a thickness of 50 μm. Appl. Phys. Lett. 121(20), 202204 (2022). https://doi.org/10.1063/5.0121980
H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao et al., Double-layer nanop-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 168, 78–84 (2017). https://doi.org/10.1016/j.solmat.2017.04.020
J. Zhao, Q. Meng, Y. Li, Z. Yang, J. Li, Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 15(40), 47286–47293 (2023). https://doi.org/10.1021/acsami.3c10772
Y. Li, Y. Song, H. Zu, F. Zhang, H. Yang et al., Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation. Exploration 4(3), 20230085 (2024). https://doi.org/10.1002/EXP.20230085
M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
Y. Du, W. Wang, J. Mei, L. Zhang, Silica-bridged inorganic-organic hybrid membrane for efficient daytime radiative cooling. Chem. Eng. J. 485, 149976 (2024). https://doi.org/10.1016/j.cej.2024.149976
D.V. Lam, D.T. Dung, U.N.T. Nguyen, H.S. Kang, B.-S. Bae et al., Metal-organic frameworks as a thermal emitter for high-performance passive radiative cooling. Small Meth. 9(3), 2401141 (2025). https://doi.org/10.1002/smtd.202401141
X. Hu, Y. Zhang, J. Zhang, H. Yang, F. Wang et al., Sonochemically-coated transparent wood with ZnO: passive radiative cooling materials for energy saving applications. Renew. Energy 193, 398–406 (2022). https://doi.org/10.1016/j.renene.2022.05.008
Z. Huang, X. Ruan, Nanop embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009
M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
T. Du, J. Niu, L. Wang, J. Bai, S. Wang et al., Daytime radiative cooling coating based on the Y2O3/TiO2 microp-embedded PDMS polymer on energy-saving buildings. ACS Appl. Mater. Interfaces 14(45), 51351–51360 (2022). https://doi.org/10.1021/acsami.2c15854
X.-Q. Yu, J. Wu, J.-W. Wang, N.-X. Zhang, R.-K. Qing et al., Facile access to high solid content monodispersed microspheres via dual-component surfactants regulation toward high-performance colloidal photonic crystals. Adv. Mater. 36(24), 2312879 (2024). https://doi.org/10.1002/adma.202312879
H. Yuan, C. Yang, X. Zheng, W. Mu, Z. Wang et al., Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Opt. Express 26(21), 27885–27893 (2018). https://doi.org/10.1364/OE.26.027885
J. Yun, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3(2), 12 (2023). https://doi.org/10.20517/ss.2023.04
L. Fei, W. Yu, J. Tan, Y. Yin, C. Wang, High solar energy absorption and human body radiation reflection Janus textile for personal thermal management. Adv. Fiber Mater. 5(3), 955–967 (2023). https://doi.org/10.1007/s42765-023-00264-w
P. Yang, Y. Ju, J. He, Z. Xia, L. Chen et al., Advanced Janus membrane with directional sweat transport and integrated passive cooling for personal thermal and moisture management. Adv. Fiber Mater. 6(6), 1765–1776 (2024). https://doi.org/10.1007/s42765-024-00444-2
A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. 61(40), e202208592 (2022). https://doi.org/10.1002/anie.202208592
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15(1), 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
P. Zhang, Y. Hao, H. Shi, J. Lu, Y. Liu et al., Highly thermally conductive and structurally ultra-stable graphitic films with seamless heterointerfaces for extreme thermal management. Nano-Micro Lett. 16(1), 58 (2023). https://doi.org/10.1007/s40820-023-01277-1
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
S. Bae, M. Kim, G. Kang, H.-S. Lee, I.S. Kim et al., Efficient full-color daytime radiative cooling with diffuse-reflection-dominant cholesteric liquid crystals. Chem. Eng. J. 483, 149245 (2024). https://doi.org/10.1016/j.cej.2024.149245
N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
W. Xi, Y. Liu, W. Zhao, R. Hu, X. Luo, Colored radiative cooling: How to balance color display and radiative cooling performance. Int. J. Therm. Sci. 170, 107172 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.107172
S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton et al., Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
J. Cao, H. Xu, X. Li, Y. Gu, Colored daytime radiative cooling textiles supported by semiconductor quantum dots. ACS Appl. Mater. Interfaces 15(15), 19480–19489 (2023). https://doi.org/10.1021/acsami.3c02418
N. Guo, R. Yang, M. Chen, H. Yan, W. Chen, Self-adaptive colored radiative cooling by tuning visible spectra. Sol. RRL 7(21), 2300512 (2023). https://doi.org/10.1002/solr.202300512
T. Yu, R. Liu, Z. Yang, S. Yang, Z. Ye et al., Color design for daytime radiative cooling: fundamentals and approaches. Appl. Energy 377, 124436 (2025). https://doi.org/10.1016/j.apenergy.2024.124436
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6), 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
H. Keawmuang, T. Badloe, C. Lee, J. Park, J. Rho, Inverse design of colored daytime radiative coolers using deep neural networks. Sol. Energy Mater. Sol. Cells 271, 112848 (2024). https://doi.org/10.1016/j.solmat.2024.112848
Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
G. Manoli, S. Fatichi, M. Schläpfer, K. Yu, T.W. Crowther et al., Magnitude of urban heat islands largely explained by climate and population. Nature 573(7772), 55–60 (2019). https://doi.org/10.1038/s41586-019-1512-9
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15(1), 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15(1), 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
L. Huang, D. Tang, Z. Yang, Flexible electronic materials and devices toward portable immunoassays. FlexMat 1(1), 59–78 (2024). https://doi.org/10.1002/flm2.12
C. Fan, Z. Long, Y. Zhang, A. Mensah, H. He et al., Robust integration of energy harvesting with daytime radiative cooling enables wearing thermal comfort self-powered electronic devices. Nano Energy 116, 108842 (2023). https://doi.org/10.1016/j.nanoen.2023.108842
M.H. Kang, G.J. Lee, J.H. Lee, M.S. Kim, Z. Yan et al., Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci. 8(10), 2004885 (2021). https://doi.org/10.1002/advs.202004885
H. Kim, Y.J. Yoo, J.H. Yun, S.-Y. Heo, Y.M. Song et al., Outdoor worker stress monitoring electronics with nanofabric radiative cooler-based thermal management. Adv. Healthc. Mater. 12(28), 2301104 (2023). https://doi.org/10.1002/adhm.202301104
S.K. Jeon, J.T. Kim, M.S. Kim, I.S. Kim, S.J. Park et al., Scalable, patternable glass-infiltrated ceramic radiative coolers for energy-saving architectural applications. Adv. Sci. 10(27), e2302701 (2023). https://doi.org/10.1002/advs.202302701
Y. Fu, L. Chen, Y. Guo, Y. Shi, Y. Liu et al., Pyramid textured photonic films with high-refractive index fillers for efficient radiative cooling. Adv. Sci. 11(39), 2404900 (2024). https://doi.org/10.1002/advs.202404900
P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
Z. Yang, Z. Yang, Z. Zhang, X. Wang, Z. Chen et al., Daytime radiative cooling coating for cooling energy efficiency of conventional air conditioners. Appl. Therm. Eng. 261, 125060 (2025). https://doi.org/10.1016/j.applthermaleng.2024.125060
X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
X. Yan, M. Yang, W. Duan, H. Cui, P-solid transition architecture for efficient passive building cooling. ACS Nano 18(40), 27752–27763 (2024). https://doi.org/10.1021/acsnano.4c10659
S. Feng, L. Yao, M. Feng, H. Cai, X. He et al., Sustainable regeneration of waste polystyrene foam as cooling coating: Building cooling energy saving, CO2 emission reduction and cost-benefit prospective. J. Clean. Prod. 434, 140361 (2024). https://doi.org/10.1016/j.jclepro.2023.140361
X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119(17), e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
S. Wang, Y. Wu, M. Pu, M. Xu, R. Zhang et al., A versatile strategy for concurrent passive daytime radiative cooling and sustainable energy harvesting. Small 20(6), 2305706 (2024). https://doi.org/10.1002/smll.202305706
C. Chen, B. Zhao, R. Wang, Z. He, J.-L. Wang et al., Janus helical ribbon structure of ordered nanowire films for flexible solar thermoelectric devices. Adv. Mater. 34(44), 2206364 (2022). https://doi.org/10.1002/adma.202206364
A. Zhang, S. Yuan, Y. Du, W. Dou, W. Cai et al., A flat radiative cooling thermoelectric generator for high performance power generation. Energy 290, 130138 (2024). https://doi.org/10.1016/j.energy.2023.130138
Q. Xuan, N. Yang, M. Kai, C. Wang, B. Jiang et al., Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings. Energy 304, 132178 (2024). https://doi.org/10.1016/j.energy.2024.132178
M. Hong, S. Sun, W. Lyu, M. Li, W. Liu et al., Advances in printing techniques for thermoelectric materials and devices. Soft Sci. 3(3), 29 (2023). https://doi.org/10.20517/ss.2023.20
G. Lee, H. Kang, J. Yun, D. Chae, M. Jeong et al., Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces. Nat. Commun. 15(1), 6537 (2024). https://doi.org/10.1038/s41467-024-50872-2
C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15(1), 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
X. Yue, H. Wu, T. Zhang, D. Yang, F. Qiu, Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 245, 123287 (2022). https://doi.org/10.1016/j.energy.2022.123287
X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9(20), 2201190 (2022). https://doi.org/10.1002/advs.202201190
P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
W. Wang, H. Xing, X. Shu, X. Zhao, X. Yan et al., Cooling colors below ambient temperature. Optica 10(8), 1059 (2023). https://doi.org/10.1364/optica.487561
B. Xie, Y. Liu, W. Xi, R. Hu, Colored radiative cooling: progress and prospects. Mater. Today Energy 34, 101302 (2023). https://doi.org/10.1016/j.mtener.2023.101302
G.J. Lee, Y.J. Kim, H.M. Kim, Y.J. Yoo, Y.M. Song, Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 6(22), 1800707 (2018). https://doi.org/10.1002/adom.201800707
W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9(1), 4240 (2018). https://doi.org/10.1038/s41467-018-06535-0
M. Chen, D. Pang, H. Yan, Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 216, 119125 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119125
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
R. Li, W. Wang, Y. Shi, C.-T. Wang, P. Wang, Advanced material design and engineering for water-based evaporative cooling. Adv. Mater. 36(12), e2209460 (2024). https://doi.org/10.1002/adma.202209460
J. Tang, Z. Song, X. Lu, N. Li, L. Yang et al., Achieving excellent thermal transfer in highly light absorbing conical aerogel for simultaneous passive cooling and solar steam generation. Chem. Eng. J. 429, 132089 (2022). https://doi.org/10.1016/j.cej.2021.132089
M. Wu, R. Li, Y. Shi, M. Altunkaya, S. Aleid et al., Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting. Mater. Horiz. 8(5), 1518–1527 (2021). https://doi.org/10.1039/d0mh02051f
F. Ni, P. Xiao, C. Zhang, W. Zhou, D. Liu et al., Atmospheric hygroscopic ionogels with dynamically stable cooling interfaces enable a durable thermoelectric performance enhancement. Adv. Mater. 33(49), 2103937 (2021). https://doi.org/10.1002/adma.202103937
S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3(8), 636–643 (2020). https://doi.org/10.1038/s41893-020-0535-4
K. Yang, Y. Shi, M. Wu, W. Wang, Y. Jin et al., Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8(4), 1887–1895 (2020). https://doi.org/10.1039/C9TA11721K
S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci et al., Graphene-based adaptive thermal camouflage. Nano Lett. 18(7), 4541–4548 (2018). https://doi.org/10.1021/acs.nanolett.8b01746
X. Zhang, Y. Tian, W. Li, S. Dou, L. Wang et al., Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol. Energy Mater. Sol. Cells 200, 109916 (2019). https://doi.org/10.1016/j.solmat.2019.109916
J. Park, J.-H. Kang, X. Liu, S.J. Maddox, K. Tang et al., Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 4(12), eaat3163 (2018). https://doi.org/10.1126/sciadv.aat3163
Y. Huang, S.V. Boriskina, G. Chen, Electrically tunable near-field radiative heat transfer via ferroelectric materials. Appl. Phys. Lett. 105(24), 244102 (2014). https://doi.org/10.1063/1.4904456
M. Kim, D. Lee, Y. Yang, J. Rho, Switchable diurnal radiative cooling by doped VO2. Opto Electron. Adv. 4(5), 200006 (2021). https://doi.org/10.29026/oea.2021.200006
B. Li, C. Valenzuela, Y. Liu, X. Zhang, Y. Yang et al., Free-standing bacterial cellulose-templated radiative cooling liquid crystal films with self-adaptive solar transmittance modulation. Adv. Funct. Mater. 34(37), 2402124 (2024). https://doi.org/10.1002/adfm.202402124
C. Zou, G. Ren, M.M. Hossain, S. Nirantar, W. Withayachumnankul et al., Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5(20), 1700460 (2017). https://doi.org/10.1002/adom.201700460
S. Ao, B. Li, X. Hu, X. Su, F. Sun, Molecular-engineered wool for sustainable all-weather radiative cooling textiles. Adv. Sustain. Syst. 8(10), 2400179 (2024). https://doi.org/10.1002/adsu.202400179
J. Jaramillo-Fernandez, H. Yang, L. Schertel, G.L. Whitworth, P.D. Garcia et al., Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9(8), e2104758 (2022). https://doi.org/10.1002/advs.202104758
Y. Tian, H. Shao, X. Liu, F. Chen, Y. Li et al., Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 13(19), 22521–22530 (2021). https://doi.org/10.1021/acsami.1c04046
Y. Xu, X. Zhang, Y. Li, Y. Zhang, T. Zhao et al., Radiative cooling face mask based on mixed micro- and nanofibrous fabric. Chem. Eng. J. 481, 148722 (2024). https://doi.org/10.1016/j.cej.2024.148722
L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
K. Lin, L. Chao, T.C. Ho, C. Lin, S. Chen et al., A flexible and scalable solution for daytime passive radiative cooling using polymer sheets. Energy Build. 252, 111400 (2021). https://doi.org/10.1016/j.enbuild.2021.111400
M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou et al., A visibly transparent radiative cooling film with self-cleaning function produced by solution processing. J. Mater. Sci. Technol. 90, 76–84 (2021). https://doi.org/10.1016/j.jmst.2021.01.092
B. Ko, J. Noh, D. Chae, C. Lee, H. Lim et al., Neutral-colored transparent radiative cooler by tailoring solar absorption with punctured Bragg reflectors. Adv. Funct. Mater. 34(52), 2410613 (2024). https://doi.org/10.1002/adfm.202410613
D. Lee, M. Go, S. Son, M. Kim, T. Badloe et al., Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). https://doi.org/10.1016/j.nanoen.2020.105426
D. Chae, S. Son, H. Lim, P.H. Jung, J. Ha et al., Scalable and paint-format microp–polymer composite enabling high-performance daytime radiative cooling. Mater. Today Phys. 18, 100389 (2021). https://doi.org/10.1016/j.mtphys.2021.100389
J. Huang, M. Li, D. Fan, Core-shell ps for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 25, 101209 (2021). https://doi.org/10.1016/j.apmt.2021.101209
Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
L. Carlosena, Á. Andueza, L. Torres, O. Irulegi, R.J. Hernández-Minguillón et al., Experimental development and testing of low-cost scalable radiative cooling materials for building applications. Sol. Energy Mater. Sol. Cells 230, 111209 (2021). https://doi.org/10.1016/j.solmat.2021.111209
S. Son, S. Jeon, D. Chae, S.Y. Lee, Y. Liu et al., Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
S. Jeon, S. Son, S.Y. Lee, D. Chae, J.H. Bae et al., Multifunctional daytime radiative cooling devices with simultaneous light-emitting and radiative cooling functional layers. ACS Appl. Mater. Interfaces 12(49), 54763–54772 (2020). https://doi.org/10.1021/acsami.0c16241
T.Y. Yoon, S. Son, S. Min, D. Chae, H.Y. Woo et al., Colloidal deposition of colored daytime radiative cooling films using nanop-based inks. Mater. Today Phys. 21, 100510 (2021). https://doi.org/10.1016/j.mtphys.2021.100510
X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
L. Xu, D.-W. Sun, Y. Tian, T. Fan, Z. Zhu, Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 457, 141231 (2023). https://doi.org/10.1016/j.cej.2022.141231
J. Shang, J. Zhang, Y. Zhang, X. Zhang, Q. An, Highly potent transparent passive cooling coating via microphase-separated hydrogel combining radiative and evaporative cooling. Nano Lett. 24(23), 7055–7062 (2024). https://doi.org/10.1021/acs.nanolett.4c01621
X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10(20), 11092–11100 (2022). https://doi.org/10.1039/D2TA01291J
B. Zhao, X. Yue, Q. Tian, F. Qiu, Y. Li et al., Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 29(14), 7775–7787 (2022). https://doi.org/10.1007/s10570-022-04749-6
J. Fei, D. Han, X. Zhang, K. Li, N. Lavielle et al., Ultrahigh passive cooling power in hydrogel with rationally designed optofluidic properties. Nano Lett. 24(2), 623–631 (2024). https://doi.org/10.1021/acs.nanolett.3c03694
J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
S. Ouyang, Q. Jiang, Y. Wan, X. Qu, Z. Yu et al., High thermal buffer and radiative cooling sodium alginate-based Janus aerogel enables multi-scenario thermal management for firefighting clothing. Int. J. Biol. Macromol. 275, 133533 (2024). https://doi.org/10.1016/j.ijbiomac.2024.133533