Hierarchical Interconnected NiMoN with Large Specific Surface Area and High Mechanical Strength for Efficient and Stable Alkaline Water/Seawater Hydrogen Evolution
Corresponding Author: Zhifeng Ren
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 157
Abstract
NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm−2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm−2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm−2 over 70 h in 1 M KOH seawater.
Highlights:
1 A hierarchical interconnected NiMoN (HW-NiMoN-2h) was successfully prepared based on a rational combination of hydrothermal and water bath processes.
2 HW-NiMoN-2h exhibited high hydrogen evolution reaction (HER) activity due to its large specific surface area and good stability due to its enhanced mechanical strength.
3 In 1 M KOH seawater, HW-NiMoN-2h delivered current density of 1 A cm−2 for HER at an overpotential of 130 mV and showed excellent stability over 70 h at 1 A cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- J. Whitehead, P. Newman, J. Whitehead, K.L. Lim, Striking the right balance: Understanding the strategic applications of hydrogen in transitioning to a net zero emissions economy. Sustain. Earth Rev. 6, 1 (2023). https://doi.org/10.1186/s42055-022-00049-w
- B. Yang, R. Zhang, Z. Shao, C. Zhang, The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness. Int. J. Hydrog. Energy 48, 13767 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.204
- M.F. Lagadec, A. Grimaud, Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19(11), 1140–1150 (2020). https://doi.org/10.1038/s41563-020-0788-3
- Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021). https://doi.org/10.1002/adma.202007100
- Q. Zhou, L. Liao, H. Zhou, D. Li, D. Tang et al., Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Mater. Today Phys. 26, 100727 (2022). https://doi.org/10.1016/j.mtphys.2022.100727
- R. Santhosh Kumar, S.C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim et al., Anion dependency of spinel type cobalt catalysts for efficient overall water splitting in an acid medium. Chem. Eng. J. 451, 138471 (2023). https://doi.org/10.1016/j.cej.2022.138471
- N. Dubouis, A. Grimaud, The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 10(40), 9165–9181 (2019). https://doi.org/10.1039/c9sc03831k
- W. Luo, Y. Wang, C. Cheng, Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater. Today Phys. 15, 100274 (2020). https://doi.org/10.1016/j.mtphys.2020.100274
- H. Jin, J. Joo, N.K. Chaudhari, S.I. Choi, K. Lee, Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions. ChemElectroChem 6(13), 3244–3253 (2019). https://doi.org/10.1002/celc.201900507
- H. Wu, Y. Wang, Z. Shi, X. Wang, J. Yang et al., Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. J. Mater. Chem. A 10(25), 13170–13189 (2022). https://doi.org/10.1039/d1ta10324e
- Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57(26), 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
- X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec et al., Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 36, 125–138 (2020). https://doi.org/10.1016/j.mattod.2019.12.003
- L. Wu, F. Zhang, S. Song, M. Ning, Q. Zhu et al., Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanop-structured ni-mon catalyst with fast water-dissociation kinetics. Adv. Mater. 34(21), 2201774 (2022). https://doi.org/10.1002/adma.202201774
- D.S. Baek, G.Y. Jung, B. Seo, J.C. Kim, H.W. Lee et al., Ordered mesoporous metastable α-MOC1−x with enhanced water dissociation capability for boosting alkaline hydrogen evolution activity. Adv. Funct. Mater. 29(28), 1901217 (2019). https://doi.org/10.1002/adfm.201901217
- J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy: a review. Processes 8(2), 248 (2020). https://doi.org/10.3390/pr8020248
- H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4(3), 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
- L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10(1), 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- B. Zhang, L. Zhang, Q. Tan, J. Wang, J. Liu et al., Simultaneous interfacial chemistry and inner helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 13(9), 3007–3013 (2020). https://doi.org/10.1039/d0ee02020f
- Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/d1ee01487k
- B. Mayerhöfer, F.D. Speck, M. Hegelheimer, M. Bierling, D. Abbas et al., Electrochemical- and mechanical stability of catalyst layers in anion exchange membrane water electrolysis. Int. J. Hydrog. Energy 47(7), 4304–4314 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.083
- S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16(3), 307–325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015
- S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan et al., Nitrogen-doped graphene encapsulated fecomos nanops as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Appl. Catal. B-Environ. 279, 119381 (2020). https://doi.org/10.1016/j.apcatb.2020.119381
- M. Peng, D. Shi, Y. Sun, J. Cheng, B. Zhao et al., 3D printed mechanically robust graphene/cnt electrodes for highly efficient overall water splitting. Adv. Mater. 32(23), 1908201 (2020). https://doi.org/10.1002/adma.201908201
- X. Yang, R. Guo, R. Cai, W. Shi, W. Liu et al., Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans. 51(12), 4590–4607 (2022). https://doi.org/10.1039/d2dt00037g
- D. Wang, D. Astruc, Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114(14), 6949–6985 (2014). https://doi.org/10.1021/cr500134h
- F. Guan, C.F. Guo, Flexible, high-strength, and porous nano-nano composites based on bacterial cellulose for wearable electronics: a review. Soft Sci. 1(3), 16 (2022). https://doi.org/10.20517/ss.2021.19
- Q. Zhang, Y. Shi, Z. Zhao, A brief review of mechanical designs for additive manufactured soft materials. Soft Sci. 2, 2 (2022). https://doi.org/10.20517/ss.2021.22
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- L. Jiang, L. Yuan, W. Wang, Q. Zhang, Soft materials for wearable supercapacitors. Soft Sci. 1, 5 (2021). https://doi.org/10.20517/ss.2021.07
- M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang et al., Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 15(9), 3945–3957 (2022). https://doi.org/10.1039/d2ee01094a
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance nimoo4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014). https://doi.org/10.1016/j.nanoen.2014.06.002
- S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W.D. Lou, Controlled growth of nimoo4nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015). https://doi.org/10.1002/aenm.201401172
- B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan et al., Bimetallic nimon nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting. Chemsuschem 11(18), 3198–3207 (2018). https://doi.org/10.1002/cssc.201801337
- S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O.J. Kwon et al., Ultrafine Pt nanops stabilized by MOS(2)/n-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Appl. Mater. Interfaces 11(13), 12504–12515 (2019). https://doi.org/10.1021/acsami.9b00192
- M. Łukaszewski, Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int. J. Electrochem. Sci. 11, 4442–4469 (2016). https://doi.org/10.20964/2016.06.71
- L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2p-Fe2p as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2020). https://doi.org/10.1002/adfm.202006484
- L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang et al., Hydrogen generation from seawater electrolysis over a sandwich-like nicon|nixp|nicon microsheet array catalyst. ACS Energy Lett. 5(8), 2681–2689 (2020). https://doi.org/10.1021/acsenergylett.0c01244
- T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015). https://doi.org/10.1038/srep13801
- A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 44(36), 19484–19518 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.183
- P. Chen, X. Hu, High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 10(39), 2002285 (2020). https://doi.org/10.1002/aenm.202002285
- Z. Wang, J. Chen, E. Song, N. Wang, J. Dong et al., Manipulation on active electronic states of metastable phase beta-nimoo(4) for large current density hydrogen evolution. Nat. Commun. 12(1), 5960 (2021). https://doi.org/10.1038/s41467-021-26256-1
- J. Zhang, S. Guo, B. Xiao, Z. Lin, L. Yan et al., Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting. Chem. Eng. J. 416, 129127 (2021). https://doi.org/10.1016/j.cej.2021.129127
- P. Zhai, Y. Zhang, Y. Wu, J. Gao, B. Zhang et al., Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 11(1), 5462 (2020). https://doi.org/10.1038/s41467-020-19214-w
- C. Huang, L. Yu, W. Zhang, Q. Xiao, J. Zhou et al., N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B-Environ. 276, 119137 (2020). https://doi.org/10.1016/j.apcatb.2020.119137
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous nicomoo nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- F. Zhang, Y. Liu, L. Wu, M. Ning, S. Song et al., Efficient alkaline seawater oxidation by a three-dimensional core-shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 27, 100841 (2022). https://doi.org/10.1016/j.mtphys.2022.100841
- Z. Li, X. Kong, Y. Jiang, X. Lu, X. Gao et al., Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer. Soft Sci. (2021). https://doi.org/10.20517/ss.2021.06
- W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5(5), 367–377 (2020). https://doi.org/10.1038/s41560-020-0550-8
- S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4(4), 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
- F. Zhang, L. Yu, L. Wu, D. Luo, Z. Ren, Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 3(6), 485–498 (2021). https://doi.org/10.1016/j.trechm.2021.03.003
- S.C. Karthikeyan, R. Santhosh Kumar, S. Ramakrishnan, S. Prabhakaran, A.R. Kim et al., Efficient alkaline water/seawater electrolysis by development of ultra-low IRO2 nanops decorated on hierarchical MnO2/RGO nanostructure. ACS Sustain. Chem. Eng. 10(46), 15068–15081 (2022). https://doi.org/10.1021/acssuschemeng.2c04074
- J.T. Bender, A.S. Petersen, F.C. Østergaard, M.A. Wood, S.M.J. Heffernan et al., Understanding cation effects on the hydrogen evolution reaction. ACS Energy Lett. 8(1), 657–665 (2022). https://doi.org/10.1021/acsenergylett.2c02500
- A.H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong et al., The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5(10), 923–933 (2022). https://doi.org/10.1038/s41929-022-00851-x
- M. Ning, L. Wu, F. Zhang, D. Wang, S. Song et al., One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Mater. Today Phys. 19, 100419 (2021). https://doi.org/10.1016/j.mtphys.2021.100419
- F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9(9), 962–972 (2016). https://doi.org/10.1002/cssc.201501581
- S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D COOOH sheet-encapsulated Ni(2)P into tubular arrays realizing 1000 mA cm(-2)-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
- Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. 116(14), 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
References
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
J. Whitehead, P. Newman, J. Whitehead, K.L. Lim, Striking the right balance: Understanding the strategic applications of hydrogen in transitioning to a net zero emissions economy. Sustain. Earth Rev. 6, 1 (2023). https://doi.org/10.1186/s42055-022-00049-w
B. Yang, R. Zhang, Z. Shao, C. Zhang, The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness. Int. J. Hydrog. Energy 48, 13767 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.204
M.F. Lagadec, A. Grimaud, Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19(11), 1140–1150 (2020). https://doi.org/10.1038/s41563-020-0788-3
Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021). https://doi.org/10.1002/adma.202007100
Q. Zhou, L. Liao, H. Zhou, D. Li, D. Tang et al., Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Mater. Today Phys. 26, 100727 (2022). https://doi.org/10.1016/j.mtphys.2022.100727
R. Santhosh Kumar, S.C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim et al., Anion dependency of spinel type cobalt catalysts for efficient overall water splitting in an acid medium. Chem. Eng. J. 451, 138471 (2023). https://doi.org/10.1016/j.cej.2022.138471
N. Dubouis, A. Grimaud, The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 10(40), 9165–9181 (2019). https://doi.org/10.1039/c9sc03831k
W. Luo, Y. Wang, C. Cheng, Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater. Today Phys. 15, 100274 (2020). https://doi.org/10.1016/j.mtphys.2020.100274
H. Jin, J. Joo, N.K. Chaudhari, S.I. Choi, K. Lee, Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions. ChemElectroChem 6(13), 3244–3253 (2019). https://doi.org/10.1002/celc.201900507
H. Wu, Y. Wang, Z. Shi, X. Wang, J. Yang et al., Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. J. Mater. Chem. A 10(25), 13170–13189 (2022). https://doi.org/10.1039/d1ta10324e
Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57(26), 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec et al., Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 36, 125–138 (2020). https://doi.org/10.1016/j.mattod.2019.12.003
L. Wu, F. Zhang, S. Song, M. Ning, Q. Zhu et al., Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanop-structured ni-mon catalyst with fast water-dissociation kinetics. Adv. Mater. 34(21), 2201774 (2022). https://doi.org/10.1002/adma.202201774
D.S. Baek, G.Y. Jung, B. Seo, J.C. Kim, H.W. Lee et al., Ordered mesoporous metastable α-MOC1−x with enhanced water dissociation capability for boosting alkaline hydrogen evolution activity. Adv. Funct. Mater. 29(28), 1901217 (2019). https://doi.org/10.1002/adfm.201901217
J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy: a review. Processes 8(2), 248 (2020). https://doi.org/10.3390/pr8020248
H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4(3), 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10(1), 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
B. Zhang, L. Zhang, Q. Tan, J. Wang, J. Liu et al., Simultaneous interfacial chemistry and inner helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 13(9), 3007–3013 (2020). https://doi.org/10.1039/d0ee02020f
Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/d1ee01487k
B. Mayerhöfer, F.D. Speck, M. Hegelheimer, M. Bierling, D. Abbas et al., Electrochemical- and mechanical stability of catalyst layers in anion exchange membrane water electrolysis. Int. J. Hydrog. Energy 47(7), 4304–4314 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.083
S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16(3), 307–325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015
S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan et al., Nitrogen-doped graphene encapsulated fecomos nanops as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Appl. Catal. B-Environ. 279, 119381 (2020). https://doi.org/10.1016/j.apcatb.2020.119381
M. Peng, D. Shi, Y. Sun, J. Cheng, B. Zhao et al., 3D printed mechanically robust graphene/cnt electrodes for highly efficient overall water splitting. Adv. Mater. 32(23), 1908201 (2020). https://doi.org/10.1002/adma.201908201
X. Yang, R. Guo, R. Cai, W. Shi, W. Liu et al., Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans. 51(12), 4590–4607 (2022). https://doi.org/10.1039/d2dt00037g
D. Wang, D. Astruc, Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114(14), 6949–6985 (2014). https://doi.org/10.1021/cr500134h
F. Guan, C.F. Guo, Flexible, high-strength, and porous nano-nano composites based on bacterial cellulose for wearable electronics: a review. Soft Sci. 1(3), 16 (2022). https://doi.org/10.20517/ss.2021.19
Q. Zhang, Y. Shi, Z. Zhao, A brief review of mechanical designs for additive manufactured soft materials. Soft Sci. 2, 2 (2022). https://doi.org/10.20517/ss.2021.22
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
L. Jiang, L. Yuan, W. Wang, Q. Zhang, Soft materials for wearable supercapacitors. Soft Sci. 1, 5 (2021). https://doi.org/10.20517/ss.2021.07
M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang et al., Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 15(9), 3945–3957 (2022). https://doi.org/10.1039/d2ee01094a
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance nimoo4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014). https://doi.org/10.1016/j.nanoen.2014.06.002
S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W.D. Lou, Controlled growth of nimoo4nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015). https://doi.org/10.1002/aenm.201401172
B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan et al., Bimetallic nimon nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting. Chemsuschem 11(18), 3198–3207 (2018). https://doi.org/10.1002/cssc.201801337
S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O.J. Kwon et al., Ultrafine Pt nanops stabilized by MOS(2)/n-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Appl. Mater. Interfaces 11(13), 12504–12515 (2019). https://doi.org/10.1021/acsami.9b00192
M. Łukaszewski, Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int. J. Electrochem. Sci. 11, 4442–4469 (2016). https://doi.org/10.20964/2016.06.71
L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2p-Fe2p as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2020). https://doi.org/10.1002/adfm.202006484
L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang et al., Hydrogen generation from seawater electrolysis over a sandwich-like nicon|nixp|nicon microsheet array catalyst. ACS Energy Lett. 5(8), 2681–2689 (2020). https://doi.org/10.1021/acsenergylett.0c01244
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015). https://doi.org/10.1038/srep13801
A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 44(36), 19484–19518 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.183
P. Chen, X. Hu, High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 10(39), 2002285 (2020). https://doi.org/10.1002/aenm.202002285
Z. Wang, J. Chen, E. Song, N. Wang, J. Dong et al., Manipulation on active electronic states of metastable phase beta-nimoo(4) for large current density hydrogen evolution. Nat. Commun. 12(1), 5960 (2021). https://doi.org/10.1038/s41467-021-26256-1
J. Zhang, S. Guo, B. Xiao, Z. Lin, L. Yan et al., Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting. Chem. Eng. J. 416, 129127 (2021). https://doi.org/10.1016/j.cej.2021.129127
P. Zhai, Y. Zhang, Y. Wu, J. Gao, B. Zhang et al., Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 11(1), 5462 (2020). https://doi.org/10.1038/s41467-020-19214-w
C. Huang, L. Yu, W. Zhang, Q. Xiao, J. Zhou et al., N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B-Environ. 276, 119137 (2020). https://doi.org/10.1016/j.apcatb.2020.119137
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous nicomoo nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
F. Zhang, Y. Liu, L. Wu, M. Ning, S. Song et al., Efficient alkaline seawater oxidation by a three-dimensional core-shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 27, 100841 (2022). https://doi.org/10.1016/j.mtphys.2022.100841
Z. Li, X. Kong, Y. Jiang, X. Lu, X. Gao et al., Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer. Soft Sci. (2021). https://doi.org/10.20517/ss.2021.06
W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5(5), 367–377 (2020). https://doi.org/10.1038/s41560-020-0550-8
S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4(4), 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
F. Zhang, L. Yu, L. Wu, D. Luo, Z. Ren, Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 3(6), 485–498 (2021). https://doi.org/10.1016/j.trechm.2021.03.003
S.C. Karthikeyan, R. Santhosh Kumar, S. Ramakrishnan, S. Prabhakaran, A.R. Kim et al., Efficient alkaline water/seawater electrolysis by development of ultra-low IRO2 nanops decorated on hierarchical MnO2/RGO nanostructure. ACS Sustain. Chem. Eng. 10(46), 15068–15081 (2022). https://doi.org/10.1021/acssuschemeng.2c04074
J.T. Bender, A.S. Petersen, F.C. Østergaard, M.A. Wood, S.M.J. Heffernan et al., Understanding cation effects on the hydrogen evolution reaction. ACS Energy Lett. 8(1), 657–665 (2022). https://doi.org/10.1021/acsenergylett.2c02500
A.H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong et al., The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5(10), 923–933 (2022). https://doi.org/10.1038/s41929-022-00851-x
M. Ning, L. Wu, F. Zhang, D. Wang, S. Song et al., One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Mater. Today Phys. 19, 100419 (2021). https://doi.org/10.1016/j.mtphys.2021.100419
F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9(9), 962–972 (2016). https://doi.org/10.1002/cssc.201501581
S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D COOOH sheet-encapsulated Ni(2)P into tubular arrays realizing 1000 mA cm(-2)-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. 116(14), 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116