Origin of Luminescent Centers and Edge States in Low-Dimensional Lead Halide Perovskites: Controversies, Challenges and Instructive Approaches
Corresponding Author: Viktor G. Hadjiev
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 26
Abstract
With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects, the defect-tolerant electronic and optical properties of lead halide perovskites have made them appealing materials for high-efficiency, low-cost, solar cells and light-emitting devices. As such, recent observations of apparently deep-level and highly luminescent states in low-dimensional perovskites have attracted enormous attention as well as intensive debates. The observed green emission in 2D CsPb2Br5 and 0D Cs4PbBr6 poses an enigma over whether it is originated from intrinsic point defects or simply from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise transparent wide band gap semiconductors. The nature of deep-level edge emission in 2D Ruddlesden–Popper perovskites is also not well understood. In this mini review, the experimental evidences that support the opposing interpretations are analyzed, and challenges and root causes for the controversy are discussed. Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic point defects in lead halide perovskites are also noted. Selected experimental approaches are suggested to better correlate property with structure of a material and help resolve the controversies. Understanding and identification of the origin of luminescent centers will help design and engineer perovskites for wide device applications.
Highlights:
1 Controversial luminescent centers and edge states in low-dimensional perovskites were summarized.
2 Evaluated experimental evidences and discussed the root cause for challenges and controversies.
3 New experimental techniques were suggested to resolve the controversies and identify the nature of luminescent centers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.X. Zhao, K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016). https://doi.org/10.1039/c4cs00458b
- J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
- J.W. Xiao, L. Liu, D.L. Zhang, N. De Marco, J.W. Lee, O. Lin, Q. Chen, Y. Yang, The emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 7, 1700491 (2017). https://doi.org/10.1002/aenm.201700491
- H.M. Zhu, Y.P. Fu, F. Meng, X.X. Wu, Z.Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). https://doi.org/10.1038/nmat4271
- J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
- H.R. Lin, C.K. Zhou, Y. Tian, T. Siegrist, B.W. Ma, Low-dimensional organometal halide perovskites. ACS Energy Lett. 3, 54–62 (2018). https://doi.org/10.1021/acsenergylett.7600926
- D. Han, C.M. Dai, S.Y. Chen, Calculation studies on point defects in perovskite solar cells. J. Semicond. 38, 011006 (2017). https://doi.org/10.1088/1674-4926/38/1/011006
- S. Gonzalez-Carrero, R.E. Galian, J. Perez-Prieto, Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 32, 709–720 (2015). https://doi.org/10.1002/ppsc.201400214
- K. Hong, Q.V. Le, S.Y. Kim, H.W. Jang, Low-dimensional halide perovskites: review and issues. J. Mater. Chem. C 6, 2189–2209 (2018). https://doi.org/10.1039/c7tc05658c
- J.C. Blancon, H. Tsai, W. Nie, C.C. Stoumpos, L. Pedesseau et al., Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1291 (2017). https://doi.org/10.1126/science.aal4211
- M.I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A.A. Zhumekenov et al., Pure Cs4PbBr6: highly luminescent zero dimensional perovskite solids. ACS Energy Lett. 1, 840–845 (2016). https://doi.org/10.1021/acsenergylett.6b00396
- I. Dursun, M.D. Bastiani, B. Turedi, B. Alamer, A. Shkurenko et al., CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10, 3746–3749 (2017). https://doi.org/10.1002/cssc.201701131
- Z. Zhang, Y. Zhu, W. Wang, W. Zheng, R. Lin, F. Huang, Growth, characterization and optoelectronic applications of pure-phase large-area CsPb2Br5 flake single crystals. J. Mater. Chem. C 6, 446–451 (2018). https://doi.org/10.1039/c7tc04834c
- J. Li, H.J. Zhang, S. Wang, D.B. Long, M.K. Li et al., Synthesis of all-inorganic CsPb2Br5 perovskite and determination of its luminescence mechanism. RSC Adv. 7, 54002–54007 (2017). https://doi.org/10.1039/c7ra10693a
- Q.A. Akkerman, A.L. Abdelhady, L. Manna, Zero-dimensional cesium lead halides: history, properties, and challenges. J. Phys. Chem. Lett. 9, 2326–2337 (2018). https://doi.org/10.1021/acs.jpclett.8b00572
- D. Han, H.L. Shi, W.M. Ming, C.K. Zhou, B.W. Ma et al., Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J. Mater. Chem. C 6, 6398–6405 (2018). https://doi.org/10.1039/c8tc01291a
- X.Z. Min, P.C. Zhu, S. Gu, J. Zhu, Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond. 38, 011004 (2017). https://doi.org/10.1088/1674-4926/38/1/011004
- R. Guo, Z.A. Zhu, A. Boulesbaa, F. Hao, A. Puretzky et al., Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals. Small Methods 1, 1700245 (2017). https://doi.org/10.1002/smtd.201700245
- K.H. Wang, L. Wu, L. Li, H.B. Yao, H.S. Qian, S.H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55, 8328–8332 (2016). https://doi.org/10.1002/anie.201602787
- B. Turedi, K.J. Lee, I. Dursun, B. Alamer, Z.N. Wu et al., Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 122, 14128–14134 (2018). https://doi.org/10.1021/acs.jpcc.8b01343
- X.L. Zhang, B. Xu, J.B. Zhang, Y. Gao, Y.J. Zheng, K. Wang, X.W. Sun, All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3–CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016). https://doi.org/10.1002/adfm.201600958
- G.P. Li, H. Wang, Z.F. Zhu, Y.J. Chang, T. Zhang, Z.H. Song, Y. Jiang, Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 52, 11296–11299 (2016). https://doi.org/10.1039/c6cc05877a
- Y. Wang, C. Wang, X. Su, V.G. Hadjiev, H.A.C. Benavides et al., Bright luminescent surface states on the edges of wide-bandgap two-dimensional lead halide perovskite. arXiv: 180311490 (2018)
- K.J.L.B. Turedi, I. Dursun, B. Alamer, Z. Wu, E. Alarousu et al., Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 122, 14128–14134 (2018). https://doi.org/10.1021/acs.jpcc.8b01343
- S. Seth, A. Samanta, Photoluminescence of zero-dimensional perovskites and perovskite-related materials. J. Phys. Chem. Lett. 9, 176–183 (2018). https://doi.org/10.1021/acs.jpclett.7b02931
- J. Yin, H. Yang, K. Song, A.M. El-Zohry, Y. Han, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Point defects and green emission in zero-dimensional perovskites. J. Phys. Chem. Lett. 9, 5490–5495 (2018). https://doi.org/10.1021/acs.jpclett.8b02477
- J.Z. Song, J.H. Li, X.M. Li, L.M. Xu, Y.H. Dong, H.B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162 (2015). https://doi.org/10.1002/adma.201502567
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- H.C. Wang, S.Y. Lin, A.C. Tang, B.P. Singh, H.C. Tong et al., Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 55, 7924–7929 (2016). https://doi.org/10.1002/anie.201603698
- Z.K. Liu, Y. Bekenstein, X.C. Ye, S.C. Nguyen, J. Swabeck et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139, 5309–5312 (2017). https://doi.org/10.1021/jacs.7b01409
- C. de Weerd, J.H. Lin, L. Gomez, Y. Fujiwara, K. Suenaga, T. Gregorkiewicz, Hybridization of single nanocrystals of Cs4PbBr6 and CsPbBr3. J. Phys. Chem. C 121, 19490–19496 (2017). https://doi.org/10.1021/acs.jpcc.7b05752
- L. Yang, D.M. Li, C. Wang, W. Yao, H. Wang, K.X. Huang, Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. J. Nanopart. Res. 19, 258 (2017). https://doi.org/10.1007/s11051-017-3959-7
- F. Iyikanat, E. Sari, H. Sahin, Thinning CsPb2Br5 perovskite down to monolayers: Cs-dependent stability. Phys. Rev. B 96, 155442 (2017). https://doi.org/10.1103/PhysRevB.96.155442
- J.W. Xu, W.X. Huang, P.Y. Li, D.R. Onken, C.C. Dun et al., Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength, and application in light-emitting. Adv. Mater. 29, 1703703 (2017). https://doi.org/10.1002/adma.1703703
- Y. Bekenstein, B.A. Koscher, S.W. Eaton, P.D. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015). https://doi.org/10.1021/jacs.5b11199
- D.D. Zhang, S.W. Eaton, Y. Yu, L.T. Dou, P.D. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015). https://doi.org/10.1021/jacs.5b05404
- C.K. Zhou, Y. Tian, M.C. Wang, A. Rose, T. Besara et al., Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56, 9018–9022 (2017). https://doi.org/10.1002/anie.201702825
- H.L.C. Zhou, Q. He, L. Xu, M. Worku, M. Chaaban et al., Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R137, 38–65 (2019). https://doi.org/10.1016/j.mser.2018.12.001
- P. Zhang, G.D. Zhang, L. Liu, D.X. Ju, L.Z. Zhang, K. Cheng, X.T. Tao, Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal. J. Phys. Chem. Lett. 9, 5040–5046 (2018). https://doi.org/10.1021/acs.jpclett.8b01945
- M.Z. Zhang, Z.P. Zheng, Q.Y. Fu, P.J. Guo, S. Zhang et al., Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra. J. Phys. Chem. C 122, 10309–10315 (2018). https://doi.org/10.1021/acs.jpcc.8b01532
- M. Rodova, J. Brozek, K. Knizek, K. Nitsch, Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003). https://doi.org/10.1023/a:1022836800820
- F.J. Ye, W.Q. Yang, D.Y. Luo, R. Zhu, Q.H. Gong, Applications of cesium in the perovskite solar cells. J. Semicond. 38, 011003 (2017). https://doi.org/10.1088/1674-4926/38/1/011003
- Q.S. Sun, C.L. Ni, Y.C. Yu, S. Attique, S.Y. Wei et al., Design principle of all-inorganic halide perovskite-related nanocrystals. J. Mater. Chem. C 6, 12484–12492 (2018). https://doi.org/10.1039/c8tc04254c
- Z.J. Zhang, Y.M. Zhu, W.L. Wang, W. Zheng, R.C. Lin et al., Aqueous solution growth of millimeter-sized nongreen-luminescent wide bandgap Cs4PbBr6 bulk crystal. Cryst. Growth Des. 18, 6393–6398 (2018). https://doi.org/10.1021/acs.cgd.8b00817
- W. Shen, L.F. Ruan, Z.T. Shen, Z.T. Deng, Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 54, 2804–2807 (2018). https://doi.org/10.1039/c8cc00139a
- M. Cola, V. Massarot, R. Riccardi, C. Sinistri, Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study. Zeitschrift für Naturforschung A A 26(8), 1328–1332 (1971). https://doi.org/10.1515/zna-1971-0812
- X.S. Tang, Z.P. Hu, W. Yuan, W. Hu, H.B. Shao et al., Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 5, 1600788 (2017). https://doi.org/10.1002/adom.201600788
- L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, Alkyl-thiol ligands induced shape and crystalline phase controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017). https://doi.org/10.1021/acs.jpclett.7b01657
- P.Z. Li, C.B. Hu, L. Zhou, J.T. Jiang, Y.Z. Cheng, M.L. He, X.J. Liang, W.D. Xiang, Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses. Mater. Lett. 209, 483–485 (2017). https://doi.org/10.1016/j.matlet.2017.08.079
- C.J. Qin, T. Matsushima, A.S.D. Sandanayaka, Y. Tsuchiya, C. Adachi, Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes. J. Phys. Chem. Lett. 8, 5415–5421 (2017). https://doi.org/10.1021/acs.jpclett.7b02371
- J.F. Lv, L.L. Fang, J.Q. Shen, Synthesis of highly luminescent CsPb2Br5 nanoplatelets and their application for light-emitting diodes. Mater. Lett. 211, 199–202 (2018). https://doi.org/10.1016/j.matlet.2017.09.106
- C. Han, C.L. Li, Z.G. Zang, M. Wang, K. Sun, X.S. Tang, J.H. Du, Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Res. 5, 473–480 (2017). https://doi.org/10.1364/prj.5.000473
- P.Z. Li, Y.Z. Cheng, L. Zhou, X.Q. Yu, J.T. Jiang, M.L. He, X.J. Liang, W.D. Xiang, Photoluminescence properties and device application dots in glasses of CsPb2Br5 quantum dots in glasses. Mater. Res. Bull. 105, 63–67 (2018). https://doi.org/10.1016/j.materresbull.2018.04.028
- K.W. Wu, A. Bera, C. Ma, Y.M. Du, Y. Yang, L. Li, T. Wu, Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014). https://doi.org/10.1039/c4cp03573a
- L.F. Ruan, J. Lin, W. Shen, Z.T. Deng, Ligand-mediated synthesis of compositionally related cesium lead halide CsPb2X5 nanowires with improved stability. Nanoscale 10, 7658–7665 (2018). https://doi.org/10.1039/c8nr00883c
- F. Palazon, S. Dogan, S. Marras, F. Locardi, I. Nelli et al., From CsPbBr3 nano-inks to sintered CsPbBr3–CsPb2Br5 films via thermal annealing: implications on optoelectronic properties. J. Phys. Chem. C 121, 11956–11961 (2017). https://doi.org/10.1021/acs.jpcc.7b03389
- B. Qiao, P.J. Song, J.Y. Cao, S.L. Zhao, Z.H. Shen et al., Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals. Nanotechnology 28, 445602 (2017). https://doi.org/10.1088/1361-6528/aa892e
- S.K. Balakrishnan, P.V. Kamat, Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 30, 74–78 (2017). https://doi.org/10.1021/acs.chemmater.7b04142
- C.K. Zhou, Y. Tian, Z. Yuan, H.R. Lin, B.H. Chen et al., Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Appl. Mater. Interfaces 9, 44579–44583 (2017). https://doi.org/10.1021/acsami.7b12862
- C.K. Zhou, H.R. Lin, Y. Tian, Z. Yuan, R. Clark et al., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018). https://doi.org/10.1039/c7sc04539e
- J. Yin, P. Maity, M. De Bastiani, I. Dursun, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Molecular behavior of zero-dimensional perovskites. Sci. Adv. 3, e1701793 (2017). https://doi.org/10.1126/sciadv.1701793
- J. Yin, Y.H. Zhang, A. Bruno, C. Soci, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Lett. 2, 2805–2811 (2017). https://doi.org/10.1021/acsenergylett.7b01026
- M. De Bastiani, I. Dursun, Y.H. Zhang, B.A. Alshankiti, X.H. Miao et al., Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals. Chem. Mater. 29, 7108–7113 (2017). https://doi.org/10.1021/acs.chemmater.7b02415
- J. Almutlaq, J. Yin, O.F. Mohammed, O.M. Bakr, The benefit and challenges of zero-dimensional perovskites. J. Phys. Chem. Lett. 9, 4131–4138 (2018). https://doi.org/10.1021/acs.jpclett.8b00532
- Y. Zhang, L. Sinatra, E. Alarousu, J. Yin, A.M. El-Zohry, O.M. Bakr, O.F. Mohammed, Ligand-free nanocrystals of highly emissive Cs4PbBr6 perovskite. J. Phys. Chem. C 122, 6493–6498 (2018). https://doi.org/10.1021/acs.jpcc.8b01735
- J.H. Cha, J.H. Han, W. Yin, C. Park, Y. Park et al., Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8, 565–570 (2017). https://doi.org/10.1021/acs.jpclett.6b02763
- D.Q. Chen, Z.Y. Wan, X. Chen, Y.J. Yuan, J.S. Zhong, Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 4, 10646–10653 (2016). https://doi.org/10.1039/c6tc04036e
- S. Seth, A. Samanta, Fluorescent phase-pure zero-dimensional perovskite-related Cs4PbBr6 microdisks: synthesis and single-particle imaging study. J. Phys. Chem. Lett. 8, 4461–4467 (2017). https://doi.org/10.1021/acs.jpclett.7b02100
- Z.J. Zhang, W. Zheng, R.C. Lin, F. Huang, One-step on-chip synthesis of highly-luminescent Cs4PbBr6 microcrystal. Mater. Lett. 232, 118–121 (2018). https://doi.org/10.1016/j.matlet.2018.08.083
- W.K. Wang, D.F. Wang, F. Fang, S. Wang, G.H. Xu, T.J. Zhang, CsPbBr3/Cs4PbBr6 nanocomposites: formation mechanism, large-scale and green synthesis, and application in white light-emitting diodes. Cryst. Growth Des. 18, 6133–6141 (2018). https://doi.org/10.1021/acs.cgd.8b01013
- Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17, 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
- X.M. Chen, F. Zhang, Y. Ge, L.F. Shi, S. Huang et al., Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 28, 1706567 (2018). https://doi.org/10.1002/adfm.201706567
- M. Kepenekian, B. Traore, J.C. Blancon, L. Pedesseau, H. Tsai et al., Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett. 18, 5603–5609 (2018). https://doi.org/10.1021/acs.nanolett.8b02078
- K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L.Q. Chu et al., Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908 (2018). https://doi.org/10.1038/s41563-018-0164-8
- E. Shi, S. Deng, B. Yuan, Y. Gao, Akriti et al., Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b07631
- M.H. Du, Density functional calculations of native defects in CH3NH3Pbl3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015). https://doi.org/10.1021/acs.jpclett.5b00199
- E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013). https://doi.org/10.1021/jp4048659
- S.B. Zhang, S.H. Wei, Nitrogen solubility and induced defect complexes in epitaxial GaAs: N. Phys. Rev. Lett. 86, 1789–1792 (2001). https://doi.org/10.1103/PhysRevLett.86.1789
- S.H. Wei, S.B. Zhang, Chemical trends of defect formation and doping limit in II–VI semiconductors: the case of CdTe. Phys. Rev. B 66, 155211 (2002). https://doi.org/10.1103/PhysRevB.66.155211
- J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060
- J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005). https://doi.org/10.1063/1.2085170
- C.W.M. Castleton, A. Hoglund, S. Mirbt, Density functional theory calculations of defect energies using supercells. Model. Simul. Mater. Sci. Eng. 17, 084003 (2009). https://doi.org/10.1088/0965-0393/17/8/084003
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014). https://doi.org/10.1103/RevModPhys.86.253
- M.C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno, Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 139, 12201–12208 (2017). https://doi.org/10.1021/jacs.7b05683
- V.G. Hadjiev, C. Wang, Y. Wang, X. Su, H.A. Calderon et al., Phonon fingerprints of CsPb2Br5. J. Phys.: Condes. Matter 30, 405703 (2018). https://doi.org/10.1088/1361-648X/aadeb4
- J.M. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Martensson, J. Tragardh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8, 836–841 (2008). https://doi.org/10.1021/nl072921e
- Z. Zhu, V.G. Hadjiev, Y.G. Rong, R. Guo, B. Cao et al., Interaction of organic cation with water molecule in perovskite MAPbI3: from dynamic orientational disorder to hydrogen bonding. Chem. Mater. 28, 7385–7393 (2016). https://doi.org/10.1021/acs.chemmater.6b02883
- A. Dazzi, C.B. Prater, AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
- G. Kolhatkar, J. Plathier, A. Ruediger, Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy—a review. J. Mater. Chem. C 6, 1307–1319 (2018). https://doi.org/10.1039/c7tc05688e
References
Y.X. Zhao, K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016). https://doi.org/10.1039/c4cs00458b
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
J.W. Xiao, L. Liu, D.L. Zhang, N. De Marco, J.W. Lee, O. Lin, Q. Chen, Y. Yang, The emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 7, 1700491 (2017). https://doi.org/10.1002/aenm.201700491
H.M. Zhu, Y.P. Fu, F. Meng, X.X. Wu, Z.Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). https://doi.org/10.1038/nmat4271
J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
H.R. Lin, C.K. Zhou, Y. Tian, T. Siegrist, B.W. Ma, Low-dimensional organometal halide perovskites. ACS Energy Lett. 3, 54–62 (2018). https://doi.org/10.1021/acsenergylett.7600926
D. Han, C.M. Dai, S.Y. Chen, Calculation studies on point defects in perovskite solar cells. J. Semicond. 38, 011006 (2017). https://doi.org/10.1088/1674-4926/38/1/011006
S. Gonzalez-Carrero, R.E. Galian, J. Perez-Prieto, Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part. Part. Syst. Charact. 32, 709–720 (2015). https://doi.org/10.1002/ppsc.201400214
K. Hong, Q.V. Le, S.Y. Kim, H.W. Jang, Low-dimensional halide perovskites: review and issues. J. Mater. Chem. C 6, 2189–2209 (2018). https://doi.org/10.1039/c7tc05658c
J.C. Blancon, H. Tsai, W. Nie, C.C. Stoumpos, L. Pedesseau et al., Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1291 (2017). https://doi.org/10.1126/science.aal4211
M.I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A.A. Zhumekenov et al., Pure Cs4PbBr6: highly luminescent zero dimensional perovskite solids. ACS Energy Lett. 1, 840–845 (2016). https://doi.org/10.1021/acsenergylett.6b00396
I. Dursun, M.D. Bastiani, B. Turedi, B. Alamer, A. Shkurenko et al., CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10, 3746–3749 (2017). https://doi.org/10.1002/cssc.201701131
Z. Zhang, Y. Zhu, W. Wang, W. Zheng, R. Lin, F. Huang, Growth, characterization and optoelectronic applications of pure-phase large-area CsPb2Br5 flake single crystals. J. Mater. Chem. C 6, 446–451 (2018). https://doi.org/10.1039/c7tc04834c
J. Li, H.J. Zhang, S. Wang, D.B. Long, M.K. Li et al., Synthesis of all-inorganic CsPb2Br5 perovskite and determination of its luminescence mechanism. RSC Adv. 7, 54002–54007 (2017). https://doi.org/10.1039/c7ra10693a
Q.A. Akkerman, A.L. Abdelhady, L. Manna, Zero-dimensional cesium lead halides: history, properties, and challenges. J. Phys. Chem. Lett. 9, 2326–2337 (2018). https://doi.org/10.1021/acs.jpclett.8b00572
D. Han, H.L. Shi, W.M. Ming, C.K. Zhou, B.W. Ma et al., Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J. Mater. Chem. C 6, 6398–6405 (2018). https://doi.org/10.1039/c8tc01291a
X.Z. Min, P.C. Zhu, S. Gu, J. Zhu, Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond. 38, 011004 (2017). https://doi.org/10.1088/1674-4926/38/1/011004
R. Guo, Z.A. Zhu, A. Boulesbaa, F. Hao, A. Puretzky et al., Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals. Small Methods 1, 1700245 (2017). https://doi.org/10.1002/smtd.201700245
K.H. Wang, L. Wu, L. Li, H.B. Yao, H.S. Qian, S.H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55, 8328–8332 (2016). https://doi.org/10.1002/anie.201602787
B. Turedi, K.J. Lee, I. Dursun, B. Alamer, Z.N. Wu et al., Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 122, 14128–14134 (2018). https://doi.org/10.1021/acs.jpcc.8b01343
X.L. Zhang, B. Xu, J.B. Zhang, Y. Gao, Y.J. Zheng, K. Wang, X.W. Sun, All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3–CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016). https://doi.org/10.1002/adfm.201600958
G.P. Li, H. Wang, Z.F. Zhu, Y.J. Chang, T. Zhang, Z.H. Song, Y. Jiang, Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 52, 11296–11299 (2016). https://doi.org/10.1039/c6cc05877a
Y. Wang, C. Wang, X. Su, V.G. Hadjiev, H.A.C. Benavides et al., Bright luminescent surface states on the edges of wide-bandgap two-dimensional lead halide perovskite. arXiv: 180311490 (2018)
K.J.L.B. Turedi, I. Dursun, B. Alamer, Z. Wu, E. Alarousu et al., Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 122, 14128–14134 (2018). https://doi.org/10.1021/acs.jpcc.8b01343
S. Seth, A. Samanta, Photoluminescence of zero-dimensional perovskites and perovskite-related materials. J. Phys. Chem. Lett. 9, 176–183 (2018). https://doi.org/10.1021/acs.jpclett.7b02931
J. Yin, H. Yang, K. Song, A.M. El-Zohry, Y. Han, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Point defects and green emission in zero-dimensional perovskites. J. Phys. Chem. Lett. 9, 5490–5495 (2018). https://doi.org/10.1021/acs.jpclett.8b02477
J.Z. Song, J.H. Li, X.M. Li, L.M. Xu, Y.H. Dong, H.B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162 (2015). https://doi.org/10.1002/adma.201502567
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
H.C. Wang, S.Y. Lin, A.C. Tang, B.P. Singh, H.C. Tong et al., Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 55, 7924–7929 (2016). https://doi.org/10.1002/anie.201603698
Z.K. Liu, Y. Bekenstein, X.C. Ye, S.C. Nguyen, J. Swabeck et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139, 5309–5312 (2017). https://doi.org/10.1021/jacs.7b01409
C. de Weerd, J.H. Lin, L. Gomez, Y. Fujiwara, K. Suenaga, T. Gregorkiewicz, Hybridization of single nanocrystals of Cs4PbBr6 and CsPbBr3. J. Phys. Chem. C 121, 19490–19496 (2017). https://doi.org/10.1021/acs.jpcc.7b05752
L. Yang, D.M. Li, C. Wang, W. Yao, H. Wang, K.X. Huang, Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. J. Nanopart. Res. 19, 258 (2017). https://doi.org/10.1007/s11051-017-3959-7
F. Iyikanat, E. Sari, H. Sahin, Thinning CsPb2Br5 perovskite down to monolayers: Cs-dependent stability. Phys. Rev. B 96, 155442 (2017). https://doi.org/10.1103/PhysRevB.96.155442
J.W. Xu, W.X. Huang, P.Y. Li, D.R. Onken, C.C. Dun et al., Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength, and application in light-emitting. Adv. Mater. 29, 1703703 (2017). https://doi.org/10.1002/adma.1703703
Y. Bekenstein, B.A. Koscher, S.W. Eaton, P.D. Yang, A.P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015). https://doi.org/10.1021/jacs.5b11199
D.D. Zhang, S.W. Eaton, Y. Yu, L.T. Dou, P.D. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015). https://doi.org/10.1021/jacs.5b05404
C.K. Zhou, Y. Tian, M.C. Wang, A. Rose, T. Besara et al., Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56, 9018–9022 (2017). https://doi.org/10.1002/anie.201702825
H.L.C. Zhou, Q. He, L. Xu, M. Worku, M. Chaaban et al., Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R137, 38–65 (2019). https://doi.org/10.1016/j.mser.2018.12.001
P. Zhang, G.D. Zhang, L. Liu, D.X. Ju, L.Z. Zhang, K. Cheng, X.T. Tao, Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal. J. Phys. Chem. Lett. 9, 5040–5046 (2018). https://doi.org/10.1021/acs.jpclett.8b01945
M.Z. Zhang, Z.P. Zheng, Q.Y. Fu, P.J. Guo, S. Zhang et al., Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra. J. Phys. Chem. C 122, 10309–10315 (2018). https://doi.org/10.1021/acs.jpcc.8b01532
M. Rodova, J. Brozek, K. Knizek, K. Nitsch, Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003). https://doi.org/10.1023/a:1022836800820
F.J. Ye, W.Q. Yang, D.Y. Luo, R. Zhu, Q.H. Gong, Applications of cesium in the perovskite solar cells. J. Semicond. 38, 011003 (2017). https://doi.org/10.1088/1674-4926/38/1/011003
Q.S. Sun, C.L. Ni, Y.C. Yu, S. Attique, S.Y. Wei et al., Design principle of all-inorganic halide perovskite-related nanocrystals. J. Mater. Chem. C 6, 12484–12492 (2018). https://doi.org/10.1039/c8tc04254c
Z.J. Zhang, Y.M. Zhu, W.L. Wang, W. Zheng, R.C. Lin et al., Aqueous solution growth of millimeter-sized nongreen-luminescent wide bandgap Cs4PbBr6 bulk crystal. Cryst. Growth Des. 18, 6393–6398 (2018). https://doi.org/10.1021/acs.cgd.8b00817
W. Shen, L.F. Ruan, Z.T. Shen, Z.T. Deng, Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 54, 2804–2807 (2018). https://doi.org/10.1039/c8cc00139a
M. Cola, V. Massarot, R. Riccardi, C. Sinistri, Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study. Zeitschrift für Naturforschung A A 26(8), 1328–1332 (1971). https://doi.org/10.1515/zna-1971-0812
X.S. Tang, Z.P. Hu, W. Yuan, W. Hu, H.B. Shao et al., Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 5, 1600788 (2017). https://doi.org/10.1002/adom.201600788
L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, Alkyl-thiol ligands induced shape and crystalline phase controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017). https://doi.org/10.1021/acs.jpclett.7b01657
P.Z. Li, C.B. Hu, L. Zhou, J.T. Jiang, Y.Z. Cheng, M.L. He, X.J. Liang, W.D. Xiang, Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses. Mater. Lett. 209, 483–485 (2017). https://doi.org/10.1016/j.matlet.2017.08.079
C.J. Qin, T. Matsushima, A.S.D. Sandanayaka, Y. Tsuchiya, C. Adachi, Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes. J. Phys. Chem. Lett. 8, 5415–5421 (2017). https://doi.org/10.1021/acs.jpclett.7b02371
J.F. Lv, L.L. Fang, J.Q. Shen, Synthesis of highly luminescent CsPb2Br5 nanoplatelets and their application for light-emitting diodes. Mater. Lett. 211, 199–202 (2018). https://doi.org/10.1016/j.matlet.2017.09.106
C. Han, C.L. Li, Z.G. Zang, M. Wang, K. Sun, X.S. Tang, J.H. Du, Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Res. 5, 473–480 (2017). https://doi.org/10.1364/prj.5.000473
P.Z. Li, Y.Z. Cheng, L. Zhou, X.Q. Yu, J.T. Jiang, M.L. He, X.J. Liang, W.D. Xiang, Photoluminescence properties and device application dots in glasses of CsPb2Br5 quantum dots in glasses. Mater. Res. Bull. 105, 63–67 (2018). https://doi.org/10.1016/j.materresbull.2018.04.028
K.W. Wu, A. Bera, C. Ma, Y.M. Du, Y. Yang, L. Li, T. Wu, Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014). https://doi.org/10.1039/c4cp03573a
L.F. Ruan, J. Lin, W. Shen, Z.T. Deng, Ligand-mediated synthesis of compositionally related cesium lead halide CsPb2X5 nanowires with improved stability. Nanoscale 10, 7658–7665 (2018). https://doi.org/10.1039/c8nr00883c
F. Palazon, S. Dogan, S. Marras, F. Locardi, I. Nelli et al., From CsPbBr3 nano-inks to sintered CsPbBr3–CsPb2Br5 films via thermal annealing: implications on optoelectronic properties. J. Phys. Chem. C 121, 11956–11961 (2017). https://doi.org/10.1021/acs.jpcc.7b03389
B. Qiao, P.J. Song, J.Y. Cao, S.L. Zhao, Z.H. Shen et al., Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals. Nanotechnology 28, 445602 (2017). https://doi.org/10.1088/1361-6528/aa892e
S.K. Balakrishnan, P.V. Kamat, Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 30, 74–78 (2017). https://doi.org/10.1021/acs.chemmater.7b04142
C.K. Zhou, Y. Tian, Z. Yuan, H.R. Lin, B.H. Chen et al., Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Appl. Mater. Interfaces 9, 44579–44583 (2017). https://doi.org/10.1021/acsami.7b12862
C.K. Zhou, H.R. Lin, Y. Tian, Z. Yuan, R. Clark et al., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018). https://doi.org/10.1039/c7sc04539e
J. Yin, P. Maity, M. De Bastiani, I. Dursun, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Molecular behavior of zero-dimensional perovskites. Sci. Adv. 3, e1701793 (2017). https://doi.org/10.1126/sciadv.1701793
J. Yin, Y.H. Zhang, A. Bruno, C. Soci, O.M. Bakr, J.L. Bredas, O.F. Mohammed, Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Lett. 2, 2805–2811 (2017). https://doi.org/10.1021/acsenergylett.7b01026
M. De Bastiani, I. Dursun, Y.H. Zhang, B.A. Alshankiti, X.H. Miao et al., Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals. Chem. Mater. 29, 7108–7113 (2017). https://doi.org/10.1021/acs.chemmater.7b02415
J. Almutlaq, J. Yin, O.F. Mohammed, O.M. Bakr, The benefit and challenges of zero-dimensional perovskites. J. Phys. Chem. Lett. 9, 4131–4138 (2018). https://doi.org/10.1021/acs.jpclett.8b00532
Y. Zhang, L. Sinatra, E. Alarousu, J. Yin, A.M. El-Zohry, O.M. Bakr, O.F. Mohammed, Ligand-free nanocrystals of highly emissive Cs4PbBr6 perovskite. J. Phys. Chem. C 122, 6493–6498 (2018). https://doi.org/10.1021/acs.jpcc.8b01735
J.H. Cha, J.H. Han, W. Yin, C. Park, Y. Park et al., Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8, 565–570 (2017). https://doi.org/10.1021/acs.jpclett.6b02763
D.Q. Chen, Z.Y. Wan, X. Chen, Y.J. Yuan, J.S. Zhong, Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 4, 10646–10653 (2016). https://doi.org/10.1039/c6tc04036e
S. Seth, A. Samanta, Fluorescent phase-pure zero-dimensional perovskite-related Cs4PbBr6 microdisks: synthesis and single-particle imaging study. J. Phys. Chem. Lett. 8, 4461–4467 (2017). https://doi.org/10.1021/acs.jpclett.7b02100
Z.J. Zhang, W. Zheng, R.C. Lin, F. Huang, One-step on-chip synthesis of highly-luminescent Cs4PbBr6 microcrystal. Mater. Lett. 232, 118–121 (2018). https://doi.org/10.1016/j.matlet.2018.08.083
W.K. Wang, D.F. Wang, F. Fang, S. Wang, G.H. Xu, T.J. Zhang, CsPbBr3/Cs4PbBr6 nanocomposites: formation mechanism, large-scale and green synthesis, and application in white light-emitting diodes. Cryst. Growth Des. 18, 6133–6141 (2018). https://doi.org/10.1021/acs.cgd.8b01013
Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17, 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
X.M. Chen, F. Zhang, Y. Ge, L.F. Shi, S. Huang et al., Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 28, 1706567 (2018). https://doi.org/10.1002/adfm.201706567
M. Kepenekian, B. Traore, J.C. Blancon, L. Pedesseau, H. Tsai et al., Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett. 18, 5603–5609 (2018). https://doi.org/10.1021/acs.nanolett.8b02078
K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L.Q. Chu et al., Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908 (2018). https://doi.org/10.1038/s41563-018-0164-8
E. Shi, S. Deng, B. Yuan, Y. Gao, Akriti et al., Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b07631
M.H. Du, Density functional calculations of native defects in CH3NH3Pbl3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015). https://doi.org/10.1021/acs.jpclett.5b00199
E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013). https://doi.org/10.1021/jp4048659
S.B. Zhang, S.H. Wei, Nitrogen solubility and induced defect complexes in epitaxial GaAs: N. Phys. Rev. Lett. 86, 1789–1792 (2001). https://doi.org/10.1103/PhysRevLett.86.1789
S.H. Wei, S.B. Zhang, Chemical trends of defect formation and doping limit in II–VI semiconductors: the case of CdTe. Phys. Rev. B 66, 155211 (2002). https://doi.org/10.1103/PhysRevB.66.155211
J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060
J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005). https://doi.org/10.1063/1.2085170
C.W.M. Castleton, A. Hoglund, S. Mirbt, Density functional theory calculations of defect energies using supercells. Model. Simul. Mater. Sci. Eng. 17, 084003 (2009). https://doi.org/10.1088/0965-0393/17/8/084003
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014). https://doi.org/10.1103/RevModPhys.86.253
M.C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno, Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 139, 12201–12208 (2017). https://doi.org/10.1021/jacs.7b05683
V.G. Hadjiev, C. Wang, Y. Wang, X. Su, H.A. Calderon et al., Phonon fingerprints of CsPb2Br5. J. Phys.: Condes. Matter 30, 405703 (2018). https://doi.org/10.1088/1361-648X/aadeb4
J.M. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Martensson, J. Tragardh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8, 836–841 (2008). https://doi.org/10.1021/nl072921e
Z. Zhu, V.G. Hadjiev, Y.G. Rong, R. Guo, B. Cao et al., Interaction of organic cation with water molecule in perovskite MAPbI3: from dynamic orientational disorder to hydrogen bonding. Chem. Mater. 28, 7385–7393 (2016). https://doi.org/10.1021/acs.chemmater.6b02883
A. Dazzi, C.B. Prater, AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
G. Kolhatkar, J. Plathier, A. Ruediger, Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy—a review. J. Mater. Chem. C 6, 1307–1319 (2018). https://doi.org/10.1039/c7tc05688e