Quantum Spin Exchange Interactions to Accelerate the Redox Kinetics in Li–S Batteries
Corresponding Author: Jianan Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 100
Abstract
Spin-engineering with electrocatalysts have been exploited to suppress the “shuttle effect” in Li–S batteries. Spin selection, spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions leading to a significant reduction of the electronic repulsions in the orbitals of catalysts. Herein, we anchor the MgPc molecules on fluorinated carbon nanotubes (MgPc@FCNT), which exhibits the single active Mg sites with axial displacement. According to the density functional theory calculations, the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batteries. As a result, the MgPc@FCNT provides an initial capacity of 6.1 mAh cm−2 even when the high sulfur loading is 4.5 mg cm−2, and still maintains 5.1 mAh cm−2 after 100 cycles. This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.
Highlights:
1 Compared with the traditional single-atom catalysts (SACs), the Mg SACs with axial displacement is accurately fabricated on the functional carbon nanotubes.
2 The electronic spin polarization modulates the spin density of MgPc, facilitating the LiPSs conversion kinetics in Li-S batteries.
3 The MgPc@FCNT achieves ultra-low capacity decay rate under the high sulfur loading.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). https://doi.org/10.1126/science.192.4244.1126
- M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
- C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
- G. Qu, K. Guo, W. Chen, Y. Du, Y. Wang et al., Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 6(4), 12502 (2023). https://doi.org/10.1002/eem2.12502
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
- X. Wang, Y. Yang, C. Lai, R. Li, H. Xu et al., Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 60, 11359–11369 (2021). https://doi.org/10.1002/anie.202016240
- Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8, 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
- Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 34, e2200102 (2022). https://doi.org/10.1002/adma.202200102
- Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
- H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sour. 378, 537–545 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
- M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
- S. Li, W. Zhang, Z. Zeng, S. Cheng, J. Xie, Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium–sulfur batteries. Electrochem. Energy Rev. 3, 613–642 (2020). https://doi.org/10.1007/s41918-020-00072-5
- C. Xing, H. Chen, S. Qian, Z. Wu, A. Nizami et al., Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. Chem 8, 1201–1230 (2022). https://doi.org/10.1016/j.chempr.2022.01.002
- X. Cui, X. Wang, Q. Pan, Achieving fast and stable Li+ transport in lithium-sulfur battery via a high ionic conduction and high adhesion solid polymer electrolyte. Energy Mater. 3, 300034 (2023). https://doi.org/10.20517/energymater.2023.19
- A. Le Mong, Y. Ahn, R. Puttaswamy, D. Kim, Pore filled solid electrolytes with high ionic conduction and electrochemical stability for lithium sulfur battery. Energy Mater. 3, 300035 (2023). https://doi.org/10.20517/energymater.2023.20
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
- Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33, e2105947 (2021). https://doi.org/10.1002/adma.202105947
- J. Yang, D.W. Kang, H. Kim, B. Hwang, J.W. Lee, CO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries. Chem. Eng. J. 451, 138909 (2023). https://doi.org/10.1016/j.cej.2022.138909
- J. Yang, D.W. Kang, H. Kim, J.H. Park, W.Y. Choi et al., Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries. J. Mater. Chem. A 9, 23660–23674 (2021). https://doi.org/10.1039/D1TA07415F
- X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
- Y. Zhong, Q. Wang, S.-M. Bak, S. Hwang, Y. Du et al., Identification and catalysis of the potential-limiting step in lithium-sulfur batteries. J. Am. Chem. Soc. 145, 7390–7396 (2023). https://doi.org/10.1021/jacs.2c13776
- B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
- J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. U.S.A. 108, 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
- H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu et al., Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016). https://doi.org/10.1126/science.aaf7680
- C. Xiao, W. Song, J. Liang, J. Zhang, Z. Huang et al., P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022). https://doi.org/10.1039/D1TA09422J
- B.I. Lundqvist, O. Gunnarsson, H. Hjelmberg, J.K. Nørskov, Theoretical description of molecule-metal interaction and surface reactions. Surf. Sci. 89, 196–225 (1979). https://doi.org/10.1016/0039-6028(79)90608-3
- B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
- L.S. Levitt, The role of magnesium in photosynthesis. Science 120, 33–35 (1954). https://doi.org/10.1126/science.120.3105.33
- L.S. Levitt, Mg–N bond length in chlorophyll. J. Chem. Phys. 28, 515–516 (1958). https://doi.org/10.1063/1.1744178
- L.S. Levitt, The photoelectric theory of photosynthesis. V. further correlation of the absorption spectrum of chlorophyll with the emission spectrum of magnesium. Appl. Spectrosc. 14(6), 161–164 (1960). https://doi.org/10.1366/000370260774614201
- S.L. Yean, G. Wuenschell, J. Termini, R.J. Lin, Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000). https://doi.org/10.1038/35048617
- S. Liu, Z. Li, C. Wang, W. Tao, M. Huang et al., Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 11, 938 (2020). https://doi.org/10.1038/s41467-020-14565-w
- J. Su, C.B. Musgrave, Y. Song, L. Huang, Y. Liu et al., Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023). https://doi.org/10.1038/s41929-023-01005-3
- I. Cojocariu, A. Windischbacher, D. Baranowski, M. Jugovac, R.C.C. Ferreira et al., Surface-mediated spin locking and thermal unlocking in a 2D molecular array. Adv. Sci. 10, e2300223 (2023). https://doi.org/10.1002/advs.202300223
- T. Wu, Z.J. Xu, Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 30, 100804 (2021). https://doi.org/10.1016/j.coelec.2021.100804
- R.R. Chen, Y. Sun, S.J.H. Ong, S. Xi, Y. Du et al., Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation. Adv. Mater. 32, e1907976 (2020). https://doi.org/10.1002/adma.201907976
- L. Zhang, A. Cheruvathur, C. Biz, M. Fianchini, J. Gracia, Ferromagnetic ligand holes in cobalt perovskite electrocatalysts as an essential factor for high activity towards oxygen evolution. Phys. Chem. Chem. Phys. 21, 2977–2983 (2019). https://doi.org/10.1039/c8cp07832g
- C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 (2022). https://doi.org/10.1002/anie.202211570
- Y. Jiao, R. Sharpe, T. Lim, J.W.H. Niemantsverdriet, J. Gracia, Photosystem II acts as a spin-controlled electron gate during oxygen formation and evolution. J. Am. Chem. Soc. 139, 16604–16608 (2017). https://doi.org/10.1021/jacs.7b07634
- J. Gracia, Itinerant spins and bond lengths in oxide electrocatalysts for oxygen evolution and reduction reactions. J. Phys. Chem. C 123, 9967–9972 (2019). https://doi.org/10.1021/acs.jpcc.9b01635
- G. Qu, K. Guo, J. Dong, H. Huang, P. Yuan et al., Tuning Fe-spin state of FeN4 structure by axial bonds as efficient catalyst in Li-S batteries. Energy Storage Mater. 55, 490–497 (2023). https://doi.org/10.1016/j.ensm.2022.12.011
- J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
- Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu et al., Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33, e2107103 (2021). https://doi.org/10.1002/adma.202107103
- S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai et al., Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 21, 9691–9698 (2021). https://doi.org/10.1021/acs.nanolett.1c03499
- R. Chen, F. Luo, Y. Liu, Y. Song, Y. Dong et al., Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO. Nat. Commun. 12, 3952 (2021). https://doi.org/10.1038/s41467-021-24247-w
- S.T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva, W.K. Liu et al., Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat. Nanotechnol. 4, 681–687 (2009). https://doi.org/10.1038/nnano.2009.221
- L. Cai, J. He, Q. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622–2627 (2015). https://doi.org/10.1021/ja5120908
- C. Jia, S. Li, Y. Zhao, R.K. Hocking, W. Ren et al., Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Mater. 31, 2107072 (2021). https://doi.org/10.1002/adfm.202107072
- S. Menzli, B. Ben Hamada, I. Arbi, A. Souissi, A. Laribi et al., Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface. Appl. Surf. Sci. 369, 43–49 (2016). https://doi.org/10.1016/j.apsusc.2016.02.056
- B. Kim, J.M. Beebe, Y. Jun, X.-Y. Zhu, C.D. Frisbie, Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006). https://doi.org/10.1021/ja0607990
- B. Kim, S.H. Choi, X.-Y. Zhu, C.D. Frisbie, Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: Effect of surface linking group and metal work function. J. Am. Chem. Soc. 133, 19864–19877 (2011). https://doi.org/10.1021/ja207751w
- X. Wang, Y. Qian, L. Wang, H. Yang, H. Li et al., Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium–sulfur batteries. Adv. Funct. Mater. 29, 1902929 (2019). https://doi.org/10.1002/adfm.201902929
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361
- G. Cui, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 72, 104685 (2020). https://doi.org/10.1016/j.nanoen.2020.104685
- C. Li, W. Ge, S. Qi, L. Zhu, R. Huang et al., Manipulating electrocatalytic polysulfide redox kinetics by 1D core–shell like composite for lithium–sulfur batteries. Adv. Energy Mater. 12, 2103915 (2022). https://doi.org/10.1002/aenm.202103915
- R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 62, e202309046 (2023). https://doi.org/10.1002/anie.202309046
- C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2, 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
- P. Wang, X. Dai, P. Xu, S. Hu, X. Xiong et al., Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li–S batteries. eScience 3, 100088 (2023). https://doi.org/10.1016/j.esci.2022.100088
- X. Xu, F. Li, D. Zhang, S. Ji, Y. Huo et al., Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium-/sodium-ion storage. Carbon Neutralization 2, 54–62 (2023). https://doi.org/10.1002/cnl2.40
- L. Wang, H. Shi, Y. Xie, Z.-S. Wu, Boosting solid–solid conversion kinetics of sulfurized polyacrylonitrile via MoS2 doping for high-rate and long-life Li-S batteries. Carbon Neutralization 2, 262–270 (2023). https://doi.org/10.1002/cnl2.61
- J. Yan, Y. Wang, Y. Zhang, S. Xia, J. Yu et al., Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 33, e2007525 (2021). https://doi.org/10.1002/adma.202007525
- J. Wen, N. Li, Q. Shi, H. Wu, X. Feng et al., First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects. J. Mol. Graph. Model. 118, 108370 (2023). https://doi.org/10.1016/j.jmgm.2022.108370
- X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
References
M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). https://doi.org/10.1126/science.192.4244.1126
M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
G. Qu, K. Guo, W. Chen, Y. Du, Y. Wang et al., Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 6(4), 12502 (2023). https://doi.org/10.1002/eem2.12502
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
X. Wang, Y. Yang, C. Lai, R. Li, H. Xu et al., Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 60, 11359–11369 (2021). https://doi.org/10.1002/anie.202016240
Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8, 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 34, e2200102 (2022). https://doi.org/10.1002/adma.202200102
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sour. 378, 537–545 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
S. Li, W. Zhang, Z. Zeng, S. Cheng, J. Xie, Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium–sulfur batteries. Electrochem. Energy Rev. 3, 613–642 (2020). https://doi.org/10.1007/s41918-020-00072-5
C. Xing, H. Chen, S. Qian, Z. Wu, A. Nizami et al., Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. Chem 8, 1201–1230 (2022). https://doi.org/10.1016/j.chempr.2022.01.002
X. Cui, X. Wang, Q. Pan, Achieving fast and stable Li+ transport in lithium-sulfur battery via a high ionic conduction and high adhesion solid polymer electrolyte. Energy Mater. 3, 300034 (2023). https://doi.org/10.20517/energymater.2023.19
A. Le Mong, Y. Ahn, R. Puttaswamy, D. Kim, Pore filled solid electrolytes with high ionic conduction and electrochemical stability for lithium sulfur battery. Energy Mater. 3, 300035 (2023). https://doi.org/10.20517/energymater.2023.20
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33, e2105947 (2021). https://doi.org/10.1002/adma.202105947
J. Yang, D.W. Kang, H. Kim, B. Hwang, J.W. Lee, CO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries. Chem. Eng. J. 451, 138909 (2023). https://doi.org/10.1016/j.cej.2022.138909
J. Yang, D.W. Kang, H. Kim, J.H. Park, W.Y. Choi et al., Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries. J. Mater. Chem. A 9, 23660–23674 (2021). https://doi.org/10.1039/D1TA07415F
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
Y. Zhong, Q. Wang, S.-M. Bak, S. Hwang, Y. Du et al., Identification and catalysis of the potential-limiting step in lithium-sulfur batteries. J. Am. Chem. Soc. 145, 7390–7396 (2023). https://doi.org/10.1021/jacs.2c13776
B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. U.S.A. 108, 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu et al., Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016). https://doi.org/10.1126/science.aaf7680
C. Xiao, W. Song, J. Liang, J. Zhang, Z. Huang et al., P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022). https://doi.org/10.1039/D1TA09422J
B.I. Lundqvist, O. Gunnarsson, H. Hjelmberg, J.K. Nørskov, Theoretical description of molecule-metal interaction and surface reactions. Surf. Sci. 89, 196–225 (1979). https://doi.org/10.1016/0039-6028(79)90608-3
B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
L.S. Levitt, The role of magnesium in photosynthesis. Science 120, 33–35 (1954). https://doi.org/10.1126/science.120.3105.33
L.S. Levitt, Mg–N bond length in chlorophyll. J. Chem. Phys. 28, 515–516 (1958). https://doi.org/10.1063/1.1744178
L.S. Levitt, The photoelectric theory of photosynthesis. V. further correlation of the absorption spectrum of chlorophyll with the emission spectrum of magnesium. Appl. Spectrosc. 14(6), 161–164 (1960). https://doi.org/10.1366/000370260774614201
S.L. Yean, G. Wuenschell, J. Termini, R.J. Lin, Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000). https://doi.org/10.1038/35048617
S. Liu, Z. Li, C. Wang, W. Tao, M. Huang et al., Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 11, 938 (2020). https://doi.org/10.1038/s41467-020-14565-w
J. Su, C.B. Musgrave, Y. Song, L. Huang, Y. Liu et al., Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023). https://doi.org/10.1038/s41929-023-01005-3
I. Cojocariu, A. Windischbacher, D. Baranowski, M. Jugovac, R.C.C. Ferreira et al., Surface-mediated spin locking and thermal unlocking in a 2D molecular array. Adv. Sci. 10, e2300223 (2023). https://doi.org/10.1002/advs.202300223
T. Wu, Z.J. Xu, Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 30, 100804 (2021). https://doi.org/10.1016/j.coelec.2021.100804
R.R. Chen, Y. Sun, S.J.H. Ong, S. Xi, Y. Du et al., Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation. Adv. Mater. 32, e1907976 (2020). https://doi.org/10.1002/adma.201907976
L. Zhang, A. Cheruvathur, C. Biz, M. Fianchini, J. Gracia, Ferromagnetic ligand holes in cobalt perovskite electrocatalysts as an essential factor for high activity towards oxygen evolution. Phys. Chem. Chem. Phys. 21, 2977–2983 (2019). https://doi.org/10.1039/c8cp07832g
C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 (2022). https://doi.org/10.1002/anie.202211570
Y. Jiao, R. Sharpe, T. Lim, J.W.H. Niemantsverdriet, J. Gracia, Photosystem II acts as a spin-controlled electron gate during oxygen formation and evolution. J. Am. Chem. Soc. 139, 16604–16608 (2017). https://doi.org/10.1021/jacs.7b07634
J. Gracia, Itinerant spins and bond lengths in oxide electrocatalysts for oxygen evolution and reduction reactions. J. Phys. Chem. C 123, 9967–9972 (2019). https://doi.org/10.1021/acs.jpcc.9b01635
G. Qu, K. Guo, J. Dong, H. Huang, P. Yuan et al., Tuning Fe-spin state of FeN4 structure by axial bonds as efficient catalyst in Li-S batteries. Energy Storage Mater. 55, 490–497 (2023). https://doi.org/10.1016/j.ensm.2022.12.011
J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu et al., Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33, e2107103 (2021). https://doi.org/10.1002/adma.202107103
S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai et al., Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 21, 9691–9698 (2021). https://doi.org/10.1021/acs.nanolett.1c03499
R. Chen, F. Luo, Y. Liu, Y. Song, Y. Dong et al., Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO. Nat. Commun. 12, 3952 (2021). https://doi.org/10.1038/s41467-021-24247-w
S.T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva, W.K. Liu et al., Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat. Nanotechnol. 4, 681–687 (2009). https://doi.org/10.1038/nnano.2009.221
L. Cai, J. He, Q. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622–2627 (2015). https://doi.org/10.1021/ja5120908
C. Jia, S. Li, Y. Zhao, R.K. Hocking, W. Ren et al., Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Mater. 31, 2107072 (2021). https://doi.org/10.1002/adfm.202107072
S. Menzli, B. Ben Hamada, I. Arbi, A. Souissi, A. Laribi et al., Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface. Appl. Surf. Sci. 369, 43–49 (2016). https://doi.org/10.1016/j.apsusc.2016.02.056
B. Kim, J.M. Beebe, Y. Jun, X.-Y. Zhu, C.D. Frisbie, Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006). https://doi.org/10.1021/ja0607990
B. Kim, S.H. Choi, X.-Y. Zhu, C.D. Frisbie, Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: Effect of surface linking group and metal work function. J. Am. Chem. Soc. 133, 19864–19877 (2011). https://doi.org/10.1021/ja207751w
X. Wang, Y. Qian, L. Wang, H. Yang, H. Li et al., Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium–sulfur batteries. Adv. Funct. Mater. 29, 1902929 (2019). https://doi.org/10.1002/adfm.201902929
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361
G. Cui, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 72, 104685 (2020). https://doi.org/10.1016/j.nanoen.2020.104685
C. Li, W. Ge, S. Qi, L. Zhu, R. Huang et al., Manipulating electrocatalytic polysulfide redox kinetics by 1D core–shell like composite for lithium–sulfur batteries. Adv. Energy Mater. 12, 2103915 (2022). https://doi.org/10.1002/aenm.202103915
R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 62, e202309046 (2023). https://doi.org/10.1002/anie.202309046
C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2, 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
P. Wang, X. Dai, P. Xu, S. Hu, X. Xiong et al., Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li–S batteries. eScience 3, 100088 (2023). https://doi.org/10.1016/j.esci.2022.100088
X. Xu, F. Li, D. Zhang, S. Ji, Y. Huo et al., Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium-/sodium-ion storage. Carbon Neutralization 2, 54–62 (2023). https://doi.org/10.1002/cnl2.40
L. Wang, H. Shi, Y. Xie, Z.-S. Wu, Boosting solid–solid conversion kinetics of sulfurized polyacrylonitrile via MoS2 doping for high-rate and long-life Li-S batteries. Carbon Neutralization 2, 262–270 (2023). https://doi.org/10.1002/cnl2.61
J. Yan, Y. Wang, Y. Zhang, S. Xia, J. Yu et al., Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 33, e2007525 (2021). https://doi.org/10.1002/adma.202007525
J. Wen, N. Li, Q. Shi, H. Wu, X. Feng et al., First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects. J. Mol. Graph. Model. 118, 108370 (2023). https://doi.org/10.1016/j.jmgm.2022.108370
X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y