Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction
Corresponding Author: Jianan Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 5
Abstract
Electrocatalytic carbon dioxide (CO2) reduction (ECR) has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy, but there are still some problems such as poor stability, low activity, and selectivity. While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost, high activity, and long-term stability. Recently, defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials. Here, the present review mainly summarizes the latest research progress of the construction of the diverse types of defects (intrinsic carbon defects, heteroatom doping defects, metal atomic sites, and edges detects) for carbon materials in ECR, and unveil the structure–activity relationship and its catalytic mechanism. The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed, as well as possible future solutions. It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts.
Highlights:
1 The main construction methods of carbon-based nanomaterials (CBN) with different defects are systematically introduced.
2 The structure–activity relationship of defective carbon-based catalysts in electrocatalytic carbon dioxide reduction (ECR) reaction is mainly reviewed.
3 Challenges and opportunities of high-performance defective CBN in ECR and the possible solutions in the future are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhang, C. Ma, Y. Tu, R. Si, J. Wei et al., Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 12, 2313–2317 (2019). https://doi.org/10.1007/s12274-019-2316-9
- S. Lee, D. Kim, J. Lee, Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015). https://doi.org/10.1002/anie.201505730
- A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5(4), 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
- C. He, Y. Zhang, Y. Zhang, L. Zhao, L.P. Yuan et al., Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen. Angew. Chem. Int. Ed. 59, 4914–4919 (2020). https://doi.org/10.1002/anie.201916520
- J. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1–31 (2018). https://doi.org/10.1002/adma.201704649
- Y. Zhao, G.I.N. Waterhouse, G. Chen, X. Xiong, L.Z. Wu, C.H. Tung, T. Zhang, Two-dimensional-related catalytic materials for solar-driven conversion of CO: X into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019). https://doi.org/10.1039/c8cs00607e
- S. Hennessey, P. Farràs, Production of solar chemicals: Gaining selectivity with hybrid molecule/semiconductor assemblies. Chem. Commun. 54, 6662–6680 (2018). https://doi.org/10.1039/c8cc02487a
- G. Chen, G.I.N. Waterhouse, R. Shi, J. Zhao, Z. Li et al., From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed. 58, 17528–17551 (2019). https://doi.org/10.1002/anie.201814313
- N. Li, J. Liu, J. Liu, L. Dong, Z. Xin, Y. Teng, Y. Lan, Adenine components in biomimetic metal–organic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Ed. 131, 5280–5285 (2019). https://doi.org/10.1002/ange.201814729
- S. Ning, H. Xu, Y. Qi, L. Song, Q. Zhang, S. Ouyang, J. Ye, Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: A case of atomic-scale dispersed Co–N species anchored Co@C hybrid. ACS Catal. 10(8), 4726–4736 (2020). https://doi.org/10.1021/acscatal.9b04963
- D.U. Nielsen, X.M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO2–CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018). https://doi.org/10.1038/s41929-018-0051-3
- M.S. Frei, C. Mondelli, A. Cesarini, F. Krumeich, R. Hauert et al., Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal. 10, 1133–1145 (2020). https://doi.org/10.1021/acscatal.9b03305
- D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electro catalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
- W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electro catalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
- T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2–CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1–15 (2018). https://doi.org/10.1002/adma.201802066
- X. Wang, Z. Wang, F.P. García de Arquer, C.T. Dinh, A. Ozden et al., Efficient electrically powered CO2–ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
- D.M. Koshy, S. Chen, D.U. Lee, M.B. Stevens, A.M. Abdellah et al., Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts. Angew. Chem. Int. Ed. 59, 4043–4050 (2020). https://doi.org/10.1002/anie.201912857
- E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO–liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009). https://doi.org/10.1039/b804323j
- R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
- K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/c2ee21234j
- Y.J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014). https://doi.org/10.1021/cs5012298
- Y. Hori, Electrochemical CO2 reduction on metal electrodes. Mod. Asp. Electrochem. 42, 89–189 (2008). https://doi.org/10.1007/978-0-387-49489-0_3
- X. Yan, Y. Jia, X. Yao, Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47, 7628–7658 (2018). https://doi.org/10.1039/c7cs00690j
- S. Wang, H. Jiang, L. Song, Recent progress in defective carbon-based oxygen electrode materials for rechargeable zink-air batteries. Batter. Supercaps 2, 509–523 (2019). https://doi.org/10.1002/batt.201900001
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
- I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries. Adv. Funct. Mater. 28, 1–9 (2018). https://doi.org/10.1002/adfm.201704638
- Y. Jia, J. Chen, X. Yao, Defect electrocatalytic mechanism: Concept, topological structure and perspective. Mater. Chem. Front. 2, 1250–1268 (2018). https://doi.org/10.1039/c8qm00070k
- C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electro catalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
- H. Zhao, C. Sun, Z. Jin, D.W. Wang, X. Yan et al., Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A 3, 11736–11739 (2015). https://doi.org/10.1039/c5ta02229k
- S. Liu, H. Yang, X. Su, J. Ding, Q. Mao et al., Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J. Energy Chem. 36, 95–105 (2019). https://doi.org/10.1016/j.jechem.2019.06.013
- H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng et al., Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 1–8 (2020). https://doi.org/10.1038/s41467-020-14402-0
- T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
- B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-019-10854-1
- H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 1910534, 1–21 (2020). https://doi.org/10.1002/adfm.201910534
- Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electro catalytic CO2 reduction. Joule 2, 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013). https://doi.org/10.1021/jz3021155
- J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- W. Ni, Y. Xue, X. Zang, C. Li, H. Wang, Z. Yang, Y.M. Yan, Fluorine doped cagelike carbon electro catalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high over potential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528
- S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014). https://doi.org/10.1021/ja4113885
- A.S. Varela, W. Ju, A. Bagger, P. Franco, J. Rossmeisl, P. Strasser, Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019). https://doi.org/10.1021/acscatal.9b01405
- X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
- J. Li, P. Yan, K. Li, J. You, H. Wang et al., Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: a combined kinetics and thermodynamics investigation. J. Mater. Chem. A 7, 17014–17021 (2019). https://doi.org/10.1039/c9ta05112k
- H. Zhang, X. Chang, J.G. Chen, W.A. Goddard, B. Xu, M.J. Cheng, Q. Lu, Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10, 1–9 (2019). https://doi.org/10.1038/s41467-019-11292-9
- Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
- L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, 1–18 (2020). https://doi.org/10.1126/sciadv.aay3111
- A. Goyal, G. Marcandalli, V.A. Mints, M.T.M. Koper, Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142(9), 4154–4161 (2020). https://doi.org/10.1021/jacs.9b10061
- P.B. O’Mara, P. Wilde, T.M. Benedetti, C. Andronescu, S. Cheong et al., Cascade reactions in nanozymes: spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141, 14093–14097 (2019). https://doi.org/10.1021/jacs.9b07310
- F. Yang, W. Hu, C. Yang, M. Patrick, A.L. Cooksy et al., Tuning internal strain in metal–organic frameworks via vapor phase infiltration for CO2 reduction. Angew. Chem. Int. Ed. 132, 4602–4610 (2020). https://doi.org/10.1002/ange.202000022
- Q. He, J.H. Lee, D. Liu, Y. Liu, Z. Lin et al., Accelerating CO2 electroreduction to CO over pd single-atom catalyst. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000407
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electro catalysis of carbon dioxide reduction. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10819-4
- W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electro reduction of CO2. J. Mater. Chem. A 7, 4505–4515 (2019). https://doi.org/10.1039/c8ta11645h
- C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
- Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5(11), 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
- Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian et al., Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020). https://doi.org/10.1126/science.aav2412
- Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao et al., Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201901127
- L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electro catalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 2–9 (2018). https://doi.org/10.1038/s41467-018-06279-x
- S. Dou, L. Tao, R. Wang, S. El Hankari, R. Chen, S. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30, 1–24 (2018). https://doi.org/10.1002/adma.201705850
- L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electro catalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
- J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterial’s. Angew. Chem. Int. Ed. 58, 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
- J. Wu, T. Sharifi, Y. Gao, T. Zhang, P.M. Ajayan, Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 31, 1–24 (2019). https://doi.org/10.1002/adma.201804257
- M. Chen, S. Wang, H. Zhang, P. Zhang, Z. Tian et al., Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 13, 729–735 (2020). https://doi.org/10.1007/s12274-020-2683-2
- D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
- Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electro catalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/C8EE03781G
- Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan et al., Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. (2020). https://doi.org/10.1002/adma.202001300
- S. Liu, H. Yang, X. Huang, L. Liu, W. Cai et al., Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 28, 1–7 (2018). https://doi.org/10.1002/adfm.201800499
- L. Li, Y. Huang, Y. Li, Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024
- P.P. Sharma, J. Wu, R.M. Yadav, M. Liu, C.J. Wright et al., Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 54, 13701–13705 (2015). https://doi.org/10.1002/anie.201506062
- W. Feng, P. Long, Y.Y. Feng, Y. Li, Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1–22 (2016). https://doi.org/10.1002/advs.201500413
- J. Kim, R. Zhou, K. Murakoshi, S. Yasuda, Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media. RSC Adv. 8, 14152–14156 (2018). https://doi.org/10.1039/c8ra01636d
- J. Wu, M. Liu, P.P. Sharma, R.M. Yadav, L. Ma et al., Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16, 466–470 (2016). https://doi.org/10.1021/acs.nanolett.5b04123
- K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. Int. Ed. 53, 871–874 (2014). https://doi.org/10.1002/anie.201308657
- T. Liu, S. Ali, Z. Lian, C. Si, D.S. Su, B. Li, Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of the bonding configuration of phosphorus. J. Mater. Chem. A 6, 19998–20004 (2018). https://doi.org/10.1039/c8ta06649c
- J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Metal-free fluorine-doped carbon electro catalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57, 9640–9644 (2018). https://doi.org/10.1002/anie.201802055
- W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B Environ. 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
- A.S. Varela, N. Ranjbar-Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electro reduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). https://doi.org/10.1002/anie.201502099
- J. Zhu, S. Mu, Defect engineering in the carbon-based electro catalysts: insight into the intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
- J.N. Kuhn, W. Huang, C.K. Tsung, Y. Zhang, G.A. Somorjai, Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008). https://doi.org/10.1021/ja805050c
- R. Qin, P. Liu, G. Fu, N. Zheng, Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1–21 (2018). https://doi.org/10.1002/smtd.201700286
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- S. Wei, Y. Wang, W. Chen, Z. Li, W.C. Cheong et al., Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 11, 786–790 (2020). https://doi.org/10.1039/c9sc05005a
- M. Yoo, Y.-S. Yu, H. Ha, S. Lee, J.-S. Choi et al., A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 13, 1231–1239 (2020). https://doi.org/10.1039/c9ee03492g
- C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang et al., Ionic Exchange of metal-organic frameworks to access single nickel sites for efficient electro reduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electro reduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
- F. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng et al., Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 1–7 (2019). https://doi.org/10.1038/s41467-019-12460-7
- D.S. Su, B. Zhang, R. Schlögl, Electron microscopy of solid catalysts: transforming from a challenge to a toolbox. Chem. Rev. 115, 2818–2882 (2015). https://doi.org/10.1021/cr500084c
- Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang et al., Facile synthesis of defect-rich and S/N co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn-air Batteries. ACS Appl. Mater. Interfaces 9, 24545–24554 (2017). https://doi.org/10.1021/acsami.7b04665
- C. Yu, X. Han, Z. Liu, C. Zhao, H. Huang et al., An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon 126, 437–442 (2018). https://doi.org/10.1016/j.carbon.2017.10.047
- Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
- W. Wang, L. Shang, G. Chang, C. Yan, R. Shi et al., Intrinsic carbon-defect-driven electro catalytic reduction of carbon dioxide. Adv. Mater. 31, 1–7 (2019). https://doi.org/10.1002/adma.201808276
- Q. Wu, J. Gao, J. Feng, Q. Liu, Y. Zhou et al., A CO2 adsorption dominated carbon defect-based electro catalyst for efficient carbon dioxide reduction. J. Mater. Chem. A 8, 1205–1211 (2020). https://doi.org/10.1039/c9ta11473d
- D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect chemistry of nonprecious-metal electro catalysts for oxygen reactions. Adv. Mater. 29, 1–20 (2017). https://doi.org/10.1002/adma.201606459
- X. Xue, H. Yang, T. Yang, P. Yuan, Q. Li et al., N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electro catalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 7, 15271–15277 (2019). https://doi.org/10.1039/c9ta03828k
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014). https://doi.org/10.1021/ja500432h
- L. Zhang, J. Niu, M. Li, Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J. Phys. Chem. C 118, 3545–3553 (2014). https://doi.org/10.1021/jp410501u
- Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang et al., Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electro catalyst. Energy Environ. Sci. 10, 742–749 (2017). https://doi.org/10.1039/c6ee03265f
- Z. Pei, Q. Meng, L. Wei, J. Fan, Y. Chen, C. Zhi, Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater. 28, 55–63 (2020). https://doi.org/10.1016/j.ensm.2020.02.033
- J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
- M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya, Y. Einaga, Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J. Am. Chem. Soc. 141, 7414–7420 (2019). https://doi.org/10.1021/jacs.9b01773
- X. Zou, M. Liu, J. Wu, P.M. Ajayan, J. Li, B. Liu, B.I. Yakobson, How nitrogen-doped graphene quantum dots catalyze electro reduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 7, 6245–6250 (2017). https://doi.org/10.1021/acscatal.7b01839
- Z. Ma, L. Tao, D. Liu, Z. Li, Y. Zhang et al., Ultrafine nano-sulfur particles anchored on: in situ exfoliated graphene for lithium-sulfur batteries. J. Mater. Chem. A 5, 9412–9417 (2017). https://doi.org/10.1039/c7ta01981e
- W. Li, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz, Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2–CO and CH4. Chemsuschem 9, 606–616 (2016). https://doi.org/10.1002/cssc.201501575
- P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 22, 6402–6412 (2012). https://doi.org/10.1039/c2jm16929k
- L. Ye, Y. Ying, D. Sun, Z. Zhang, L. Fei et al., Highly efficient porous carbon electro catalyst with controllable n-species content for selective CO2 reduction. Angew. Chem. Int. Ed. 59, 3244–3251 (2020). https://doi.org/10.1002/anie.201912751
- J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary et al., Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079
- J. Wu, S. Ma, J. Sun, J.I. Gold, C. Tiwary et al., A metal-free electro catalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13869
- Y. Liu, S. Chen, X. Quan, X. Fan, H. Zhao, Q. Zhao, H. Yu, Nitrogen-doped nanodiamond rod array electrode with superior performance for electro reductive debromination of polybrominated diphenyl ethers. Appl. Catal. B Environ. 154–155, 206–212 (2014). https://doi.org/10.1016/j.apcatb.2014.02.028
- Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975
- C. Chen, X. Sun, X. Yan, Y. Wu, H. Liu et al., Boosting CO2 electro reduction on N, P-co-doped carbon aerogels. Angew. Chem. Int. Ed. 59(27), 11123–11129 (2020). https://doi.org/10.1002/anie.202004226
- Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc–air batteries. Adv. Funct. Mater. 28, 1–8 (2018). https://doi.org/10.1002/adfm.201802596
- T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
- W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30, 1–6 (2018). https://doi.org/10.1002/adma.201706617
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electro catalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- C. Yan, H. Li, Y. Ye, H. Wu, F. Cai et al., Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b
- Y. Cheng, S. Zhao, H. Li, S. He, J.P. Veder et al., Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 243, 294–303 (2019). https://doi.org/10.1016/j.apcatb.2018.10.046
- C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electro catalyst for carbon dioxide conversion. Adv. Funct. Mater. 29, 1806884 (2019). https://doi.org/10.1002/adfm.201806884
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electro reduction of CO2. Angew. Chem. Int. Ed. 130, 1962–1966 (2018). https://doi.org/10.1002/ange.201712451
- W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/s41467-017-01035-z
- F. Pan, B. Li, E. Sarnello, Y. Fei, Y. Gang et al., Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotubes and graphene nanoribbons networks for CO2 reduction. ACS Nano 14(5), 5506–5516 (2020). https://doi.org/10.1021/acsnano.9b09658
- Y. Gong, L. Jiao, Y. Qian, C. Pan, L. Zheng et al., Regulating the coordination environment of MOF-templated single-atom nickel electro catalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 132, 2727–2731 (2020). https://doi.org/10.1002/ange.201914977
- J. Gong, Enhanced CO2 electroreduction on neighboring Zn/Co monomers via electronic effect. Angew. Chem. Int. Ed. 59(31), 12664–12668 (2020). https://doi.org/10.1002/anie.201916218
- W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electro reduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
- L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electro catalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5
- Y. Lu, J. Wang, L. Yu, L. Kovarik, X. Zhang et al., Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019). https://doi.org/10.1038/s41929-018-0192-4
References
Z. Zhang, C. Ma, Y. Tu, R. Si, J. Wei et al., Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 12, 2313–2317 (2019). https://doi.org/10.1007/s12274-019-2316-9
S. Lee, D. Kim, J. Lee, Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015). https://doi.org/10.1002/anie.201505730
A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5(4), 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
C. He, Y. Zhang, Y. Zhang, L. Zhao, L.P. Yuan et al., Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen. Angew. Chem. Int. Ed. 59, 4914–4919 (2020). https://doi.org/10.1002/anie.201916520
J. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1–31 (2018). https://doi.org/10.1002/adma.201704649
Y. Zhao, G.I.N. Waterhouse, G. Chen, X. Xiong, L.Z. Wu, C.H. Tung, T. Zhang, Two-dimensional-related catalytic materials for solar-driven conversion of CO: X into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019). https://doi.org/10.1039/c8cs00607e
S. Hennessey, P. Farràs, Production of solar chemicals: Gaining selectivity with hybrid molecule/semiconductor assemblies. Chem. Commun. 54, 6662–6680 (2018). https://doi.org/10.1039/c8cc02487a
G. Chen, G.I.N. Waterhouse, R. Shi, J. Zhao, Z. Li et al., From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed. 58, 17528–17551 (2019). https://doi.org/10.1002/anie.201814313
N. Li, J. Liu, J. Liu, L. Dong, Z. Xin, Y. Teng, Y. Lan, Adenine components in biomimetic metal–organic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Ed. 131, 5280–5285 (2019). https://doi.org/10.1002/ange.201814729
S. Ning, H. Xu, Y. Qi, L. Song, Q. Zhang, S. Ouyang, J. Ye, Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: A case of atomic-scale dispersed Co–N species anchored Co@C hybrid. ACS Catal. 10(8), 4726–4736 (2020). https://doi.org/10.1021/acscatal.9b04963
D.U. Nielsen, X.M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO2–CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018). https://doi.org/10.1038/s41929-018-0051-3
M.S. Frei, C. Mondelli, A. Cesarini, F. Krumeich, R. Hauert et al., Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal. 10, 1133–1145 (2020). https://doi.org/10.1021/acscatal.9b03305
D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electro catalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electro catalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2–CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1–15 (2018). https://doi.org/10.1002/adma.201802066
X. Wang, Z. Wang, F.P. García de Arquer, C.T. Dinh, A. Ozden et al., Efficient electrically powered CO2–ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
D.M. Koshy, S. Chen, D.U. Lee, M.B. Stevens, A.M. Abdellah et al., Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts. Angew. Chem. Int. Ed. 59, 4043–4050 (2020). https://doi.org/10.1002/anie.201912857
E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO–liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009). https://doi.org/10.1039/b804323j
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/c2ee21234j
Y.J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014). https://doi.org/10.1021/cs5012298
Y. Hori, Electrochemical CO2 reduction on metal electrodes. Mod. Asp. Electrochem. 42, 89–189 (2008). https://doi.org/10.1007/978-0-387-49489-0_3
X. Yan, Y. Jia, X. Yao, Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47, 7628–7658 (2018). https://doi.org/10.1039/c7cs00690j
S. Wang, H. Jiang, L. Song, Recent progress in defective carbon-based oxygen electrode materials for rechargeable zink-air batteries. Batter. Supercaps 2, 509–523 (2019). https://doi.org/10.1002/batt.201900001
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries. Adv. Funct. Mater. 28, 1–9 (2018). https://doi.org/10.1002/adfm.201704638
Y. Jia, J. Chen, X. Yao, Defect electrocatalytic mechanism: Concept, topological structure and perspective. Mater. Chem. Front. 2, 1250–1268 (2018). https://doi.org/10.1039/c8qm00070k
C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electro catalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
H. Zhao, C. Sun, Z. Jin, D.W. Wang, X. Yan et al., Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A 3, 11736–11739 (2015). https://doi.org/10.1039/c5ta02229k
S. Liu, H. Yang, X. Su, J. Ding, Q. Mao et al., Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J. Energy Chem. 36, 95–105 (2019). https://doi.org/10.1016/j.jechem.2019.06.013
H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng et al., Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 1–8 (2020). https://doi.org/10.1038/s41467-020-14402-0
T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-019-10854-1
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 1910534, 1–21 (2020). https://doi.org/10.1002/adfm.201910534
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electro catalytic CO2 reduction. Joule 2, 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013). https://doi.org/10.1021/jz3021155
J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
W. Ni, Y. Xue, X. Zang, C. Li, H. Wang, Z. Yang, Y.M. Yan, Fluorine doped cagelike carbon electro catalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high over potential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528
S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014). https://doi.org/10.1021/ja4113885
A.S. Varela, W. Ju, A. Bagger, P. Franco, J. Rossmeisl, P. Strasser, Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019). https://doi.org/10.1021/acscatal.9b01405
X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
J. Li, P. Yan, K. Li, J. You, H. Wang et al., Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: a combined kinetics and thermodynamics investigation. J. Mater. Chem. A 7, 17014–17021 (2019). https://doi.org/10.1039/c9ta05112k
H. Zhang, X. Chang, J.G. Chen, W.A. Goddard, B. Xu, M.J. Cheng, Q. Lu, Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10, 1–9 (2019). https://doi.org/10.1038/s41467-019-11292-9
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, 1–18 (2020). https://doi.org/10.1126/sciadv.aay3111
A. Goyal, G. Marcandalli, V.A. Mints, M.T.M. Koper, Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142(9), 4154–4161 (2020). https://doi.org/10.1021/jacs.9b10061
P.B. O’Mara, P. Wilde, T.M. Benedetti, C. Andronescu, S. Cheong et al., Cascade reactions in nanozymes: spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141, 14093–14097 (2019). https://doi.org/10.1021/jacs.9b07310
F. Yang, W. Hu, C. Yang, M. Patrick, A.L. Cooksy et al., Tuning internal strain in metal–organic frameworks via vapor phase infiltration for CO2 reduction. Angew. Chem. Int. Ed. 132, 4602–4610 (2020). https://doi.org/10.1002/ange.202000022
Q. He, J.H. Lee, D. Liu, Y. Liu, Z. Lin et al., Accelerating CO2 electroreduction to CO over pd single-atom catalyst. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000407
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electro catalysis of carbon dioxide reduction. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10819-4
W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electro reduction of CO2. J. Mater. Chem. A 7, 4505–4515 (2019). https://doi.org/10.1039/c8ta11645h
C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5(11), 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian et al., Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020). https://doi.org/10.1126/science.aav2412
Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao et al., Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201901127
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electro catalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 2–9 (2018). https://doi.org/10.1038/s41467-018-06279-x
S. Dou, L. Tao, R. Wang, S. El Hankari, R. Chen, S. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30, 1–24 (2018). https://doi.org/10.1002/adma.201705850
L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electro catalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterial’s. Angew. Chem. Int. Ed. 58, 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
J. Wu, T. Sharifi, Y. Gao, T. Zhang, P.M. Ajayan, Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 31, 1–24 (2019). https://doi.org/10.1002/adma.201804257
M. Chen, S. Wang, H. Zhang, P. Zhang, Z. Tian et al., Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 13, 729–735 (2020). https://doi.org/10.1007/s12274-020-2683-2
D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electro catalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/C8EE03781G
Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan et al., Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. (2020). https://doi.org/10.1002/adma.202001300
S. Liu, H. Yang, X. Huang, L. Liu, W. Cai et al., Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 28, 1–7 (2018). https://doi.org/10.1002/adfm.201800499
L. Li, Y. Huang, Y. Li, Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024
P.P. Sharma, J. Wu, R.M. Yadav, M. Liu, C.J. Wright et al., Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 54, 13701–13705 (2015). https://doi.org/10.1002/anie.201506062
W. Feng, P. Long, Y.Y. Feng, Y. Li, Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1–22 (2016). https://doi.org/10.1002/advs.201500413
J. Kim, R. Zhou, K. Murakoshi, S. Yasuda, Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media. RSC Adv. 8, 14152–14156 (2018). https://doi.org/10.1039/c8ra01636d
J. Wu, M. Liu, P.P. Sharma, R.M. Yadav, L. Ma et al., Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16, 466–470 (2016). https://doi.org/10.1021/acs.nanolett.5b04123
K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. Int. Ed. 53, 871–874 (2014). https://doi.org/10.1002/anie.201308657
T. Liu, S. Ali, Z. Lian, C. Si, D.S. Su, B. Li, Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of the bonding configuration of phosphorus. J. Mater. Chem. A 6, 19998–20004 (2018). https://doi.org/10.1039/c8ta06649c
J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Metal-free fluorine-doped carbon electro catalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57, 9640–9644 (2018). https://doi.org/10.1002/anie.201802055
W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B Environ. 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
A.S. Varela, N. Ranjbar-Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electro reduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). https://doi.org/10.1002/anie.201502099
J. Zhu, S. Mu, Defect engineering in the carbon-based electro catalysts: insight into the intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
J.N. Kuhn, W. Huang, C.K. Tsung, Y. Zhang, G.A. Somorjai, Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008). https://doi.org/10.1021/ja805050c
R. Qin, P. Liu, G. Fu, N. Zheng, Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1–21 (2018). https://doi.org/10.1002/smtd.201700286
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
S. Wei, Y. Wang, W. Chen, Z. Li, W.C. Cheong et al., Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 11, 786–790 (2020). https://doi.org/10.1039/c9sc05005a
M. Yoo, Y.-S. Yu, H. Ha, S. Lee, J.-S. Choi et al., A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 13, 1231–1239 (2020). https://doi.org/10.1039/c9ee03492g
C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang et al., Ionic Exchange of metal-organic frameworks to access single nickel sites for efficient electro reduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electro reduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
F. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng et al., Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 1–7 (2019). https://doi.org/10.1038/s41467-019-12460-7
D.S. Su, B. Zhang, R. Schlögl, Electron microscopy of solid catalysts: transforming from a challenge to a toolbox. Chem. Rev. 115, 2818–2882 (2015). https://doi.org/10.1021/cr500084c
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang et al., Facile synthesis of defect-rich and S/N co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn-air Batteries. ACS Appl. Mater. Interfaces 9, 24545–24554 (2017). https://doi.org/10.1021/acsami.7b04665
C. Yu, X. Han, Z. Liu, C. Zhao, H. Huang et al., An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon 126, 437–442 (2018). https://doi.org/10.1016/j.carbon.2017.10.047
Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
W. Wang, L. Shang, G. Chang, C. Yan, R. Shi et al., Intrinsic carbon-defect-driven electro catalytic reduction of carbon dioxide. Adv. Mater. 31, 1–7 (2019). https://doi.org/10.1002/adma.201808276
Q. Wu, J. Gao, J. Feng, Q. Liu, Y. Zhou et al., A CO2 adsorption dominated carbon defect-based electro catalyst for efficient carbon dioxide reduction. J. Mater. Chem. A 8, 1205–1211 (2020). https://doi.org/10.1039/c9ta11473d
D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect chemistry of nonprecious-metal electro catalysts for oxygen reactions. Adv. Mater. 29, 1–20 (2017). https://doi.org/10.1002/adma.201606459
X. Xue, H. Yang, T. Yang, P. Yuan, Q. Li et al., N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electro catalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 7, 15271–15277 (2019). https://doi.org/10.1039/c9ta03828k
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014). https://doi.org/10.1021/ja500432h
L. Zhang, J. Niu, M. Li, Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J. Phys. Chem. C 118, 3545–3553 (2014). https://doi.org/10.1021/jp410501u
Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang et al., Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electro catalyst. Energy Environ. Sci. 10, 742–749 (2017). https://doi.org/10.1039/c6ee03265f
Z. Pei, Q. Meng, L. Wei, J. Fan, Y. Chen, C. Zhi, Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater. 28, 55–63 (2020). https://doi.org/10.1016/j.ensm.2020.02.033
J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya, Y. Einaga, Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J. Am. Chem. Soc. 141, 7414–7420 (2019). https://doi.org/10.1021/jacs.9b01773
X. Zou, M. Liu, J. Wu, P.M. Ajayan, J. Li, B. Liu, B.I. Yakobson, How nitrogen-doped graphene quantum dots catalyze electro reduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 7, 6245–6250 (2017). https://doi.org/10.1021/acscatal.7b01839
Z. Ma, L. Tao, D. Liu, Z. Li, Y. Zhang et al., Ultrafine nano-sulfur particles anchored on: in situ exfoliated graphene for lithium-sulfur batteries. J. Mater. Chem. A 5, 9412–9417 (2017). https://doi.org/10.1039/c7ta01981e
W. Li, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz, Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2–CO and CH4. Chemsuschem 9, 606–616 (2016). https://doi.org/10.1002/cssc.201501575
P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 22, 6402–6412 (2012). https://doi.org/10.1039/c2jm16929k
L. Ye, Y. Ying, D. Sun, Z. Zhang, L. Fei et al., Highly efficient porous carbon electro catalyst with controllable n-species content for selective CO2 reduction. Angew. Chem. Int. Ed. 59, 3244–3251 (2020). https://doi.org/10.1002/anie.201912751
J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary et al., Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079
J. Wu, S. Ma, J. Sun, J.I. Gold, C. Tiwary et al., A metal-free electro catalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13869
Y. Liu, S. Chen, X. Quan, X. Fan, H. Zhao, Q. Zhao, H. Yu, Nitrogen-doped nanodiamond rod array electrode with superior performance for electro reductive debromination of polybrominated diphenyl ethers. Appl. Catal. B Environ. 154–155, 206–212 (2014). https://doi.org/10.1016/j.apcatb.2014.02.028
Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975
C. Chen, X. Sun, X. Yan, Y. Wu, H. Liu et al., Boosting CO2 electro reduction on N, P-co-doped carbon aerogels. Angew. Chem. Int. Ed. 59(27), 11123–11129 (2020). https://doi.org/10.1002/anie.202004226
Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc–air batteries. Adv. Funct. Mater. 28, 1–8 (2018). https://doi.org/10.1002/adfm.201802596
T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30, 1–6 (2018). https://doi.org/10.1002/adma.201706617
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electro catalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
C. Yan, H. Li, Y. Ye, H. Wu, F. Cai et al., Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b
Y. Cheng, S. Zhao, H. Li, S. He, J.P. Veder et al., Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 243, 294–303 (2019). https://doi.org/10.1016/j.apcatb.2018.10.046
C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electro catalyst for carbon dioxide conversion. Adv. Funct. Mater. 29, 1806884 (2019). https://doi.org/10.1002/adfm.201806884
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electro reduction of CO2. Angew. Chem. Int. Ed. 130, 1962–1966 (2018). https://doi.org/10.1002/ange.201712451
W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/s41467-017-01035-z
F. Pan, B. Li, E. Sarnello, Y. Fei, Y. Gang et al., Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotubes and graphene nanoribbons networks for CO2 reduction. ACS Nano 14(5), 5506–5516 (2020). https://doi.org/10.1021/acsnano.9b09658
Y. Gong, L. Jiao, Y. Qian, C. Pan, L. Zheng et al., Regulating the coordination environment of MOF-templated single-atom nickel electro catalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 132, 2727–2731 (2020). https://doi.org/10.1002/ange.201914977
J. Gong, Enhanced CO2 electroreduction on neighboring Zn/Co monomers via electronic effect. Angew. Chem. Int. Ed. 59(31), 12664–12668 (2020). https://doi.org/10.1002/anie.201916218
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electro reduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electro catalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5
Y. Lu, J. Wang, L. Yu, L. Kovarik, X. Zhang et al., Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019). https://doi.org/10.1038/s41929-018-0192-4