Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives
Corresponding Author: Shuhui Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 21
Abstract
Hydrogen, a renewable and outstanding energy carrier with zero carbon dioxide emission, is regarded as the best alternative to fossil fuels. The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources (e.g., wind, solar, hydro, and tidal energy). However, the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts. Thus, designing high-effective, stable, and cheap materials for hydrogen evolution reaction (HER) could have a substantial impact on renewable energy technologies. Recently, single-atom catalysts (SACs) have emerged as a new frontier in catalysis science, because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity. Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs. In this review, we discuss recent progress on SACs synthesis, characterization methods, and their catalytic applications. Particularly, we highlight their unique electrochemical characteristics toward HER. Finally, the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.
Highlights:
1 All the important single-atom catalysts (SACs) synthetic strategies, such as wet-chemistry method, atomic layer deposition, metal–organic framework-derived method, electrodeposition, high-temperature atom trapping from bulk particles, and vacancies/defects immobilized strategy, have been summarized and discussed in detail.
2 Various metal-based (especially Pt, Pd, Ru, Fe, Co, Ni, Mo, W, V) SACs in electrocatalytic hydrogen evolution reaction (HER) have been systematically reviewed.
3 The current key challenges in SACs for electrochemical HER are pointed out, and some potential strategies/perspectives are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
- A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1142/9789814317665_0022
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
- L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9(1), 69–73 (2013). https://doi.org/10.1038/nnano.2013.272
- Y. Fu, Q. Wei, G. Zhang, S. Sun, Batteries: advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1702849 (2018). https://doi.org/10.1002/aenm.201702849
- D.A. Rand, R.M. Dell, Hydrogen Energy: Challenges and Prospects (RSC Publishing, Cambridge, 2007)
- S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/S0360-3199(01)00131-8
- J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, D. Blake, Renewable hydrogen production. Int. J. Energy Res. 32(5), 379–407 (2008). https://doi.org/10.1002/er.1372
- Z. Pu, I.S. Amiinu, Z. Kou, W. Li, S. Mu, RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56(38), 11559–11564 (2017). https://doi.org/10.1002/anie.201704911
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
- L. Feng, G. Yu, Y. Wu, G. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
- Y. Yan, B. Yu Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/C6TA08075H
- S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6(12), 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28(3), 141–145 (1995). https://doi.org/10.1021/ar00051a007
- M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7(11), 3519–3542 (2014). https://doi.org/10.1039/C4EE01760A
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9483–9487 (2015). https://doi.org/10.1002/anie.201503407
- Q. Luo, M. Peng, X. Sun, Y. Luo, A.M. Asiri, Efficient electrochemical water splitting catalyzed by electrodeposited NiFe nanosheets film. Int. J. Hydrogen Energy 41(21), 8785–8792 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.007
- L. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
- Z. Pu, Y. Luo, A.M. Asiri, X. Sun, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 8(7), 4718–4723 (2016). https://doi.org/10.1021/acsami.5b12143
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6814–6819 (2016). https://doi.org/10.1002/anie.201602237
- J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55(42), 13296–13300 (2016). https://doi.org/10.1002/anie.201607405
- T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137(40), 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
- Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng et al., Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 7, 2257–2261 (2016). https://doi.org/10.1039/C6EE01109H
- J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia et al., Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv. Energy Mater. 6(6), 1502313 (2016). https://doi.org/10.1002/aenm.201502313
- Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A
- Y. Zheng, Y. Jiao, M. Jaroniec, S. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54(1), 52–65 (2015). https://doi.org/10.1002/anie.201407031
- E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, L. Chen, Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 16(10), 6617–6621 (2016). https://doi.org/10.1021/acs.nanolett.6b03332
- Z. Pu, Q. Liu, P. Jiang, A.M. Asiri, A.Y. Obaid, X. Sun, CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 26(15), 4326–4329 (2014). https://doi.org/10.1021/cm501273s
- Y. Zheng, Y. Jiao, Y. Zhu, L. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). https://doi.org/10.1038/ncomms4783
- D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/C3EE42413H
- J. Kibsgaard, T.F. Jaramillo, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53(52), 14433–14437 (2014). https://doi.org/10.1002/anie.201408222
- I. Bhugun, D. Lexa, J.M. Savéant, Homogeneous catalysis of electrochemical hydrogen evolution by iron(0) porphyrins. J. Am. Chem. Soc. 118(16), 3982–3983 (1996). https://doi.org/10.1021/ja954326x
- D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014). https://doi.org/10.1021/ja501497n
- J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3(2), 166–169 (2013). https://doi.org/10.1021/cs300691m
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge, Y. Lin, G. Wu, X. Wang, Y. Hu, Z. Zhuang, Y. Wu, X. Hong, Y. Li, Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16263–16267 (2017). https://doi.org/10.1002/anie.201709803
- S. Sarkar, S.C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 5(9), 2060–2080 (2018). https://doi.org/10.1039/C8QI00042E
- G. Xu, J. Hui, T. Huang, Y. Chen, J.M. Lee, Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J. Power Sources 285, 393–399 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.131
- Y. Mi, L. Wen, Z. Wang, D. Cao, H. Zhao, Y. Zhou, F. Grote, Y. Leia, Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal. Today 262, 141–145 (2016). https://doi.org/10.1016/j.cattod.2015.08.019
- C. Tang, D. Wang, Z. Wu, B. Duan, Tungsten carbide hollow microspheres as electrocatalyst and platinum support for hydrogen evolution reaction. Int. J. Hydrogen Energy 40(8), 3229–3237 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.105
- H. Yin, S. Zhao, K. Zha, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
- Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 7(10), 7131–7135 (2017). https://doi.org/10.1021/acscatal.7b01994
- R. Huang, Z. Sun, S. Chen, S. Wu, Z. Shen, X. Wu, J. Zeng, Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution. Chem. Commun. 53(51), 6922–6925 (2017). https://doi.org/10.1039/C7CC03643D
- Y. Shen, A.C. Lua, J. Xi, X. Qiu, Ternary platinum–copper–nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes. ACS Appl. Mater. Interfaces 8(5), 3464–3472 (2016). https://doi.org/10.1021/acsami.5b11966
- P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017). https://doi.org/10.1038/ncomms14580
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 56(44), 13694–13698 (2017). https://doi.org/10.1002/anie.201706921
- Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012). https://doi.org/10.1021/jz2016507
- J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
- L. He, Y. Huang, A. Wang, X. Wang, X. Chen, J.J. Delgado, T. Zhang, A noble-metal-free catalyst derived from Ni–Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition. Angew. Chem. Int. Ed. 51(25), 6191–6194 (2012). https://doi.org/10.1002/anie.201201737
- E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53(21), 5427–5430 (2014). https://doi.org/10.1002/anie.201402646
- J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136(21), 7587–7590 (2014). https://doi.org/10.1021/ja503372r
- W. Cui, N. Cheng, Q. Liu, C. Ge, A.M. Asiri, X. Sun, Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 4(8), 2658–2661 (2014). https://doi.org/10.1021/cs5005294
- Y. Xu, M. Gao, Y. Zheng, J. Jiang, S. Yu, Nickel/Nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52(33), 8546–8550 (2013). https://doi.org/10.1002/anie.201303495
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
- A.L. Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet et al., From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326(5958), 1384–1387 (2009). https://doi.org/10.1126/science.1179773
- W. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49(79), 8896–8909 (2013). https://doi.org/10.1039/C3CC44076A
- Q. Liu, J. Tian, W. Cui, N. Cheng, A.M. Asiri, X. Sun, Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 53(26), 6710–6714 (2014). https://doi.org/10.1002/anie.201404161
- P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 53(47), 12855–12859 (2014). https://doi.org/10.1002/anie.201406848
- C.G. Morales-Guio, X. Hu, Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47(8), 2671–2681 (2014). https://doi.org/10.1021/ar5002022
- B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(51), 19186–19192 (2013). https://doi.org/10.1021/ja4081056
- Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 53(50), 13934–13939 (2014). https://doi.org/10.1002/anie.201409080
- I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G. Monestel, F.O. Boakye, H. Zhang, S. Mu, Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
- R. Adhikari, K. Basu, Y. Zhou, F. Vetrone, D. Ma et al., Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production. J. Mater. Chem. A 6(16), 6822–6829 (2018). https://doi.org/10.1039/C7TA11378A
- X.Y. Yu, Y. Feng, Y. Jeon, B.Y. Guan, X.W. Lou, U. Paik, Formation of Ni–Co–MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28(40), 9006–9011 (2016). https://doi.org/10.1002/adma.201601188
- F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 54(51), 15395–15399 (2015). https://doi.org/10.1002/anie.201508715
- L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118(10), 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776
- S.X. Liang, C. Hao, Y.T. Shi, The power of single-atom catalysis. ChemCatChem 7(17), 2559–2567 (2015). https://doi.org/10.1002/cctc.201500363
- J. Kim, H.E. Kim, H. Lee, Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem 11(1), 104–113 (2018). https://doi.org/10.1002/cssc.201701306
- X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
- B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21), 1700191 (2017). https://doi.org/10.1002/smll.201700191
- A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
- L.Q. Wang, L. Huang, F. Liang, S.M. Liu, Y.H. Wang, H.J. Zhang, Preparation, characterization and catalytic performance of single-atom catalysts. Chin. J. Catal. 38(9), 1528–1539 (2017). https://doi.org/10.1016/S1872-2067(17)62770-0
- C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
- J. Su, R. Ge, Y. Dong, F. Hao, L. Chen, Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A 6(29), 14025–14042 (2018). https://doi.org/10.1039/C8TA04064H
- A. Corma, P. Concepcion, M. Boronat, M.J. Sabater, J. Navas et al., Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5(9), 775–781 (2013). https://doi.org/10.1038/nchem.1721
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
- R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren et al., Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55(52), 16054–16058 (2016). https://doi.org/10.1002/anie.201607885
- F. Chen, X. Jiang, L. Zhang, R. Lang, B. Qiao, Single-atom catalysis: bridging the homo-and heterogeneous catalysis. Chin. J. Catal. 39(5), 893–898 (2018). https://doi.org/10.1016/S1872-2067(18)63047-5
- J. Yang, D. He, W. Chen, W. Zhu, H. Zhang et al., Bimetallic Ru–Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 9(45), 39450–39455 (2017). https://doi.org/10.1021/acsami.7b14134
- S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
- X. Dai, Z. Chen, T. Yao, L. Zheng, Y. Lin et al., Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53(84), 11568 (2017). https://doi.org/10.1039/C7CC04820C
- T. Chao, Y. Hu, X. Hong, Y. Li, Design of noble metal electrocatalysts on an atomic level. ChemElectroChem 6(2), 289–303 (2019). https://doi.org/10.1002/celc.201801189
- S.T. Hunt, M. Milina, Z. Wang, Y. Román-Leshkov, Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 9(10), 3290–3301 (2016). https://doi.org/10.1039/C6EE01929C
- J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/C5EE00751H
- M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7(5), 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199
- H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, E.L. Samuel et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- X.J. Zeng, J.L. Shui, X.F. Liu, Q.T. Liu, Y.C. Li, J.X. Shang, L.R. Zheng, R.H. Yu, Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8(1), 1701345 (2018). https://doi.org/10.1002/aenm.201701345
- Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao, Y. Lin, Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B Environ. 240, 234–240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075
- S. Dou, C. Dong, Z. Hu, Y. Huang, J. Chen et al., Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27(36), 1702546 (2017). https://doi.org/10.1002/adfm.201702546
- L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
- H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo, G. Ma, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
- P. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- Y.J. Chen, S.F. Ji, Y.Y. Wang, J.C. Dong, W.X. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
- C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang et al., Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139(24), 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
- B. Wang, X. Wang, J. Zou, Y. Yan, S. Xie, G. Hu, Y. Li, A. Dong, Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 17(3), 2003–2009 (2017). https://doi.org/10.1021/acs.nanolett.7b00004
- C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi et al., Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11(7), 6930–6941 (2017). https://doi.org/10.1021/acsnano.7b02148
- Y. Han, Y. Wang, W. Chen, R. Xu, L. Zheng et al., Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139(48), 17269–17272 (2017). https://doi.org/10.1021/jacs.7b10194
- Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 13(22), 1604290 (2017). https://doi.org/10.1002/smll.201604290
- C.W. Lee, K.D. Yang, D.H. Nam, J.H. Jang, N.H. Cho, S.W. Im, K.T. Nam, Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 30(42), 1704717 (2018). https://doi.org/10.1002/adma.201704717
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
- Y. Wang, J. Liu, Y. Wang, A.M. Al-Enizi, G. Zheng, Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13(43), 1701809 (2017). https://doi.org/10.1002/smll.201701809
- P. Song, M. Luo, X. Liu, W. Xing, W. Xu, Z. Jiang, L. Gu, Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 27(28), 1700802 (2017). https://doi.org/10.1002/adfm.201700802
- Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 30(14), 1706194 (2018). https://doi.org/10.1002/adma.201706194
- A. Vasileff, Y. Zheng, S.Z. Qiao, Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7(21), 1700759 (2017). https://doi.org/10.1002/aenm.201700759
- W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8(1), 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
- Y. Cao, Y. Gao, H. Zhou, X. Chen, H. Hu et al., Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 1(5), 1800018 (2018). https://doi.org/10.1002/adts.201800018
- J. Zhao, Z. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 139(36), 12480–12487 (2017). https://doi.org/10.1021/jacs.7b05213
- C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 122(29), 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257
- H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8(1), 1701343 (2018). https://doi.org/10.1002/aenm.201701343
- V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017). https://doi.org/10.1021/acscatal.7b01800
- X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
- D.J. Harding, C. Kerpal, G. Meijer, A. Fielicke, Activated methane on small cationic platinum clusters. Angew. Chem. Int. Ed. 51(3), 817–819 (2012). https://doi.org/10.1002/anie.201107042
- J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8(1), 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
- J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
- Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
- B. Han, R. Lang, B. Qiao, A. Wang, T. Zhang, Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin. J. Catal. 38(9), 1498–1507 (2017). https://doi.org/10.1016/S1872-2067(17)62872-9
- H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao et al., FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5(1), 5634 (2014). https://doi.org/10.1038/ncomms6634
- M. Moses-DeBusk, M. Yoon, L.F. Allard, D.R. Mullins, Z. Wu et al., CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135(34), 12634–12645 (2013). https://doi.org/10.1021/ja401847c
- T.K. Ghosh, N.N. Nair, Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 5(7), 1811–1821 (2013). https://doi.org/10.1002/cctc.201200799
- G. Spezzati, Y. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd–O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 7(10), 6887–6891 (2017). https://doi.org/10.1021/acscatal.7b02001
- J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong et al., Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30(11), 1705369 (2018). https://doi.org/10.1002/adma.201705369
- B. Qiao, J. Liu, Y.-G. Wang, Q. Lin, X. Liu et al., Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5(11), 6249–6254 (2015). https://doi.org/10.1021/acscatal.5b01114
- B.J. O’Neill, D.H. Jackson, J. Lee, C. Canlas, P.C. Stair et al., Catalyst design with atomic layer deposition. ACS Catal. 5(3), 1804–1825 (2015). https://doi.org/10.1021/cs501862h
- V. Aleskovsky, M. Koltcov, USSR Patent USSR422446 (1972)
- S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou et al., Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3(5), 1775 (2013). https://doi.org/10.1038/srep01775
- H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao et al., Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137(33), 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485
- M.P. Hermida, Z. Lu, A. White, K.B. Low, T.P. Wu, J.W. Elam, Z.L. Wu, Y. Lei, Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale 8(33), 15348–15356 (2016). https://doi.org/10.1039/C6NR04403D
- L. Zhang, Z. Zhao, M. Norouzi Banis, L. Li, Y. Zhao et al., Selective atomic layer deposition of RuOx catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. J. Mater. Chem. A 6(47), 24397–24406 (2018). https://doi.org/10.1039/c8ta08931k
- S.J. Jeong, Y. Gu, J. Heo, J. Yang, C.S. Lee et al., Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6(10), 20907 (2016). https://doi.org/10.1038/srep20907
- M. Leskela, M. Ritala, Atomic layer deposition chemistry: recent developments and future challenges. Angew. Chem. Int. Ed. 42(45), 5548–5554 (2003). https://doi.org/10.1002/anie.200301652
- H. Kim, J. Vac, Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. Sci. Technol. B 21(6), 2231–2261 (2003). https://doi.org/10.1116/1.162267
- R.J. Kuppler, D.J. Timmons, Q. Fang, J. Li, T.A. Makal et al., Potential applications of metal–organic frameworks. Coord. Chem. Rev. 253(23–24), 3042–3066 (2009). https://doi.org/10.1016/j.ccr.2009.05.019
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57(7), 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
- W. Chen, J. Pei, C. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), 1800396 (2018). https://doi.org/10.1002/adma.201800396
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139(48), 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
- S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong et al., Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139(29), 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018
- X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu et al., Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139(28), 9419–9422 (2017). https://doi.org/10.1021/jacs.7b01686
- W. Chen, J. Pei, C. He, J. Wan, H. Ren et al., Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16086–16090 (2017). https://doi.org/10.1002/anie.201710599
- G. Dong, M. Fang, H. Wang, S. Yip, H.-Y. Cheung et al., Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. J. Mater. Chem. A 3(24), 13080–13086 (2015). https://doi.org/10.1039/C5TA02551F
- Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo et al., Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 9(1), 1460 (2018). https://doi.org/10.1038/s41467-018-03896-4
- J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
- S. Wei, A. Li, J. Liu, Z. Li, W. Chen et al., Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
- J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen et al., In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57(43), 14095–14100 (2018). https://doi.org/10.1002/anie.201808049
- Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x
- Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141(11), 4505–4509 (2019). https://doi.org/10.1021/jacs.8b09834
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(8), 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
- J. Zhang, X. Wu, W.-C. Cheong, W. Chen, R. Lin et al., Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 9(1), 1002 (2018). https://doi.org/10.1038/s41467-018-03380-z
- X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
- Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8(8), 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014
- D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu et al., A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv. 1(11), 1500462 (2015). https://doi.org/10.1126/sciadv.1500462
- J.H. Kwak, J. Hu, D. Mei, C.W. Yi, D.H. Kim, C. Peden, H.L. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 325(5948), 1670–1673 (2009). https://doi.org/10.1126/science.1176745
- A. Corma, O.G. Salnikov, D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem. Eur. J. 21(19), 7012–7015 (2015). https://doi.org/10.1002/chem.201406664
- J. Ryczkowski, IR spectroscopy in catalysis. Catal. Today 68(4), 263–381 (2001). https://doi.org/10.1016/S0920-5861(01)00334-0
- C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39(12), 4951–5001 (2010). https://doi.org/10.1039/C0CS00117A
- Y. Zhou, G. Gao, Y. Li, W. Chu, L. Wang, Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Phys. Chem. Chem. Phys. 21(6), 3024–3032 (2019). https://doi.org/10.1039/C8CP06755D
- C. Ling, L. Shi, Y. Ouyang, X. Zeng, J. Wang, Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 17(8), 5133–5139 (2017). https://doi.org/10.1021/acs.nanolett.7b02518
- Z. Geng, Y. Liu, X. Kong, P. Li, K. Li et al., Achieving a record-high yield rate of 120.9 μg NH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30(40), 1803498 (2018). https://doi.org/10.1002/adma.201803498
- K. Mori, T. Taga, H. Yamashita, Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 7(5), 3147–3151 (2017). https://doi.org/10.1021/acscatal.7b00312
- H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang, J. Dong, X.W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- X. Yin, H. Wang, S. Tang, X. Lu, M. Shu, R. Si, T. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
- Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge et al., Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9(1), 2120 (2018). https://doi.org/10.1038/s41467-018-04501-4
- Y. Guan, Y. Feng, J. Wan, X. Yang, L. Fang et al., Ganoderma-like MoS2/NiS2 with single platinum atoms doping as an efficient and stable hydrogen evolution reaction catalyst. Small 14(27), 1800697 (2018). https://doi.org/10.1002/smll.201800697
- L. Fan, P. Liu, X. Yan, L. Gu, Z. Yang, H. Yang, S. Qiu, X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016). https://doi.org/10.1038/ncomms10667
- H. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54(47), 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
- C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8(19), 1703487 (2018). https://doi.org/10.1002/aenm.201703487
- L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5
- T. He, C. Zhang, A. Du, Single-atom supported on graphene grain boundary as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Eng. Sci. 194, 58–63 (2019). https://doi.org/10.1016/j.ces.2018.03.028
- L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4(2), 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
- W. Liu, Q. Xu, P. Yan, J. Chen, Y. Du, S. Chu, J. Wang, Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 10(5), 946–950 (2018). https://doi.org/10.1002/cctc.201701777
- S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu et al., Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12(3), 1000–1007 (2019). https://doi.org/10.1039/C8EE02888E
- M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
- H. Wei, H. Wu, K. Huang, B. Ge, J. Ma et al., Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 10(9), 2830–2836 (2019). https://doi.org/10.1039/C8SC04986F
- K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
- T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
- S. Yuan, Z. Pu, H. Zhou, J. Yu, I.S. Amiinu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
- D. Wang, Q. Li, C. Han, Z. Xing, X. Yang, Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B Environ. 249, 91–97 (2019). https://doi.org/10.1016/j.apcatb.2019.02.059
- L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y
- Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff et al., Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(35), 12252–12257 (2019). https://doi.org/10.1002/anie.201905554
- J. Yi, R. Xu, G. Chai, T. Zhang, K. Zang et al., Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 7, 1252–1259 (2019). https://doi.org/10.1039/C8TA09490J
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1142/9789814317665_0022
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9(1), 69–73 (2013). https://doi.org/10.1038/nnano.2013.272
Y. Fu, Q. Wei, G. Zhang, S. Sun, Batteries: advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1702849 (2018). https://doi.org/10.1002/aenm.201702849
D.A. Rand, R.M. Dell, Hydrogen Energy: Challenges and Prospects (RSC Publishing, Cambridge, 2007)
S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/S0360-3199(01)00131-8
J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, D. Blake, Renewable hydrogen production. Int. J. Energy Res. 32(5), 379–407 (2008). https://doi.org/10.1002/er.1372
Z. Pu, I.S. Amiinu, Z. Kou, W. Li, S. Mu, RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56(38), 11559–11564 (2017). https://doi.org/10.1002/anie.201704911
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
L. Feng, G. Yu, Y. Wu, G. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
Y. Yan, B. Yu Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/C6TA08075H
S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6(12), 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28(3), 141–145 (1995). https://doi.org/10.1021/ar00051a007
M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7(11), 3519–3542 (2014). https://doi.org/10.1039/C4EE01760A
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9483–9487 (2015). https://doi.org/10.1002/anie.201503407
Q. Luo, M. Peng, X. Sun, Y. Luo, A.M. Asiri, Efficient electrochemical water splitting catalyzed by electrodeposited NiFe nanosheets film. Int. J. Hydrogen Energy 41(21), 8785–8792 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.007
L. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
Z. Pu, Y. Luo, A.M. Asiri, X. Sun, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 8(7), 4718–4723 (2016). https://doi.org/10.1021/acsami.5b12143
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6814–6819 (2016). https://doi.org/10.1002/anie.201602237
J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55(42), 13296–13300 (2016). https://doi.org/10.1002/anie.201607405
T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137(40), 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng et al., Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 7, 2257–2261 (2016). https://doi.org/10.1039/C6EE01109H
J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia et al., Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv. Energy Mater. 6(6), 1502313 (2016). https://doi.org/10.1002/aenm.201502313
Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A
Y. Zheng, Y. Jiao, M. Jaroniec, S. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54(1), 52–65 (2015). https://doi.org/10.1002/anie.201407031
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, L. Chen, Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 16(10), 6617–6621 (2016). https://doi.org/10.1021/acs.nanolett.6b03332
Z. Pu, Q. Liu, P. Jiang, A.M. Asiri, A.Y. Obaid, X. Sun, CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 26(15), 4326–4329 (2014). https://doi.org/10.1021/cm501273s
Y. Zheng, Y. Jiao, Y. Zhu, L. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). https://doi.org/10.1038/ncomms4783
D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/C3EE42413H
J. Kibsgaard, T.F. Jaramillo, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53(52), 14433–14437 (2014). https://doi.org/10.1002/anie.201408222
I. Bhugun, D. Lexa, J.M. Savéant, Homogeneous catalysis of electrochemical hydrogen evolution by iron(0) porphyrins. J. Am. Chem. Soc. 118(16), 3982–3983 (1996). https://doi.org/10.1021/ja954326x
D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014). https://doi.org/10.1021/ja501497n
J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3(2), 166–169 (2013). https://doi.org/10.1021/cs300691m
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge, Y. Lin, G. Wu, X. Wang, Y. Hu, Z. Zhuang, Y. Wu, X. Hong, Y. Li, Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16263–16267 (2017). https://doi.org/10.1002/anie.201709803
S. Sarkar, S.C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 5(9), 2060–2080 (2018). https://doi.org/10.1039/C8QI00042E
G. Xu, J. Hui, T. Huang, Y. Chen, J.M. Lee, Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J. Power Sources 285, 393–399 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.131
Y. Mi, L. Wen, Z. Wang, D. Cao, H. Zhao, Y. Zhou, F. Grote, Y. Leia, Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal. Today 262, 141–145 (2016). https://doi.org/10.1016/j.cattod.2015.08.019
C. Tang, D. Wang, Z. Wu, B. Duan, Tungsten carbide hollow microspheres as electrocatalyst and platinum support for hydrogen evolution reaction. Int. J. Hydrogen Energy 40(8), 3229–3237 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.105
H. Yin, S. Zhao, K. Zha, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 7(10), 7131–7135 (2017). https://doi.org/10.1021/acscatal.7b01994
R. Huang, Z. Sun, S. Chen, S. Wu, Z. Shen, X. Wu, J. Zeng, Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution. Chem. Commun. 53(51), 6922–6925 (2017). https://doi.org/10.1039/C7CC03643D
Y. Shen, A.C. Lua, J. Xi, X. Qiu, Ternary platinum–copper–nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes. ACS Appl. Mater. Interfaces 8(5), 3464–3472 (2016). https://doi.org/10.1021/acsami.5b11966
P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017). https://doi.org/10.1038/ncomms14580
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 56(44), 13694–13698 (2017). https://doi.org/10.1002/anie.201706921
Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012). https://doi.org/10.1021/jz2016507
J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
L. He, Y. Huang, A. Wang, X. Wang, X. Chen, J.J. Delgado, T. Zhang, A noble-metal-free catalyst derived from Ni–Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition. Angew. Chem. Int. Ed. 51(25), 6191–6194 (2012). https://doi.org/10.1002/anie.201201737
E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53(21), 5427–5430 (2014). https://doi.org/10.1002/anie.201402646
J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136(21), 7587–7590 (2014). https://doi.org/10.1021/ja503372r
W. Cui, N. Cheng, Q. Liu, C. Ge, A.M. Asiri, X. Sun, Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 4(8), 2658–2661 (2014). https://doi.org/10.1021/cs5005294
Y. Xu, M. Gao, Y. Zheng, J. Jiang, S. Yu, Nickel/Nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52(33), 8546–8550 (2013). https://doi.org/10.1002/anie.201303495
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
A.L. Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet et al., From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326(5958), 1384–1387 (2009). https://doi.org/10.1126/science.1179773
W. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49(79), 8896–8909 (2013). https://doi.org/10.1039/C3CC44076A
Q. Liu, J. Tian, W. Cui, N. Cheng, A.M. Asiri, X. Sun, Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 53(26), 6710–6714 (2014). https://doi.org/10.1002/anie.201404161
P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 53(47), 12855–12859 (2014). https://doi.org/10.1002/anie.201406848
C.G. Morales-Guio, X. Hu, Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47(8), 2671–2681 (2014). https://doi.org/10.1021/ar5002022
B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(51), 19186–19192 (2013). https://doi.org/10.1021/ja4081056
Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 53(50), 13934–13939 (2014). https://doi.org/10.1002/anie.201409080
I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G. Monestel, F.O. Boakye, H. Zhang, S. Mu, Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
R. Adhikari, K. Basu, Y. Zhou, F. Vetrone, D. Ma et al., Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production. J. Mater. Chem. A 6(16), 6822–6829 (2018). https://doi.org/10.1039/C7TA11378A
X.Y. Yu, Y. Feng, Y. Jeon, B.Y. Guan, X.W. Lou, U. Paik, Formation of Ni–Co–MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28(40), 9006–9011 (2016). https://doi.org/10.1002/adma.201601188
F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 54(51), 15395–15399 (2015). https://doi.org/10.1002/anie.201508715
L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118(10), 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776
S.X. Liang, C. Hao, Y.T. Shi, The power of single-atom catalysis. ChemCatChem 7(17), 2559–2567 (2015). https://doi.org/10.1002/cctc.201500363
J. Kim, H.E. Kim, H. Lee, Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem 11(1), 104–113 (2018). https://doi.org/10.1002/cssc.201701306
X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21), 1700191 (2017). https://doi.org/10.1002/smll.201700191
A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
L.Q. Wang, L. Huang, F. Liang, S.M. Liu, Y.H. Wang, H.J. Zhang, Preparation, characterization and catalytic performance of single-atom catalysts. Chin. J. Catal. 38(9), 1528–1539 (2017). https://doi.org/10.1016/S1872-2067(17)62770-0
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
J. Su, R. Ge, Y. Dong, F. Hao, L. Chen, Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A 6(29), 14025–14042 (2018). https://doi.org/10.1039/C8TA04064H
A. Corma, P. Concepcion, M. Boronat, M.J. Sabater, J. Navas et al., Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5(9), 775–781 (2013). https://doi.org/10.1038/nchem.1721
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren et al., Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55(52), 16054–16058 (2016). https://doi.org/10.1002/anie.201607885
F. Chen, X. Jiang, L. Zhang, R. Lang, B. Qiao, Single-atom catalysis: bridging the homo-and heterogeneous catalysis. Chin. J. Catal. 39(5), 893–898 (2018). https://doi.org/10.1016/S1872-2067(18)63047-5
J. Yang, D. He, W. Chen, W. Zhu, H. Zhang et al., Bimetallic Ru–Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 9(45), 39450–39455 (2017). https://doi.org/10.1021/acsami.7b14134
S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
X. Dai, Z. Chen, T. Yao, L. Zheng, Y. Lin et al., Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53(84), 11568 (2017). https://doi.org/10.1039/C7CC04820C
T. Chao, Y. Hu, X. Hong, Y. Li, Design of noble metal electrocatalysts on an atomic level. ChemElectroChem 6(2), 289–303 (2019). https://doi.org/10.1002/celc.201801189
S.T. Hunt, M. Milina, Z. Wang, Y. Román-Leshkov, Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 9(10), 3290–3301 (2016). https://doi.org/10.1039/C6EE01929C
J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/C5EE00751H
M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7(5), 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199
H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, E.L. Samuel et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
X.J. Zeng, J.L. Shui, X.F. Liu, Q.T. Liu, Y.C. Li, J.X. Shang, L.R. Zheng, R.H. Yu, Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8(1), 1701345 (2018). https://doi.org/10.1002/aenm.201701345
Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao, Y. Lin, Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B Environ. 240, 234–240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075
S. Dou, C. Dong, Z. Hu, Y. Huang, J. Chen et al., Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27(36), 1702546 (2017). https://doi.org/10.1002/adfm.201702546
L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo, G. Ma, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
P. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
Y.J. Chen, S.F. Ji, Y.Y. Wang, J.C. Dong, W.X. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang et al., Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139(24), 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
B. Wang, X. Wang, J. Zou, Y. Yan, S. Xie, G. Hu, Y. Li, A. Dong, Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 17(3), 2003–2009 (2017). https://doi.org/10.1021/acs.nanolett.7b00004
C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi et al., Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11(7), 6930–6941 (2017). https://doi.org/10.1021/acsnano.7b02148
Y. Han, Y. Wang, W. Chen, R. Xu, L. Zheng et al., Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139(48), 17269–17272 (2017). https://doi.org/10.1021/jacs.7b10194
Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 13(22), 1604290 (2017). https://doi.org/10.1002/smll.201604290
C.W. Lee, K.D. Yang, D.H. Nam, J.H. Jang, N.H. Cho, S.W. Im, K.T. Nam, Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 30(42), 1704717 (2018). https://doi.org/10.1002/adma.201704717
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
Y. Wang, J. Liu, Y. Wang, A.M. Al-Enizi, G. Zheng, Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13(43), 1701809 (2017). https://doi.org/10.1002/smll.201701809
P. Song, M. Luo, X. Liu, W. Xing, W. Xu, Z. Jiang, L. Gu, Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 27(28), 1700802 (2017). https://doi.org/10.1002/adfm.201700802
Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 30(14), 1706194 (2018). https://doi.org/10.1002/adma.201706194
A. Vasileff, Y. Zheng, S.Z. Qiao, Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7(21), 1700759 (2017). https://doi.org/10.1002/aenm.201700759
W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8(1), 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
Y. Cao, Y. Gao, H. Zhou, X. Chen, H. Hu et al., Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 1(5), 1800018 (2018). https://doi.org/10.1002/adts.201800018
J. Zhao, Z. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 139(36), 12480–12487 (2017). https://doi.org/10.1021/jacs.7b05213
C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 122(29), 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257
H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8(1), 1701343 (2018). https://doi.org/10.1002/aenm.201701343
V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017). https://doi.org/10.1021/acscatal.7b01800
X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
D.J. Harding, C. Kerpal, G. Meijer, A. Fielicke, Activated methane on small cationic platinum clusters. Angew. Chem. Int. Ed. 51(3), 817–819 (2012). https://doi.org/10.1002/anie.201107042
J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8(1), 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
B. Han, R. Lang, B. Qiao, A. Wang, T. Zhang, Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin. J. Catal. 38(9), 1498–1507 (2017). https://doi.org/10.1016/S1872-2067(17)62872-9
H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao et al., FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5(1), 5634 (2014). https://doi.org/10.1038/ncomms6634
M. Moses-DeBusk, M. Yoon, L.F. Allard, D.R. Mullins, Z. Wu et al., CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135(34), 12634–12645 (2013). https://doi.org/10.1021/ja401847c
T.K. Ghosh, N.N. Nair, Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 5(7), 1811–1821 (2013). https://doi.org/10.1002/cctc.201200799
G. Spezzati, Y. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd–O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 7(10), 6887–6891 (2017). https://doi.org/10.1021/acscatal.7b02001
J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong et al., Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30(11), 1705369 (2018). https://doi.org/10.1002/adma.201705369
B. Qiao, J. Liu, Y.-G. Wang, Q. Lin, X. Liu et al., Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5(11), 6249–6254 (2015). https://doi.org/10.1021/acscatal.5b01114
B.J. O’Neill, D.H. Jackson, J. Lee, C. Canlas, P.C. Stair et al., Catalyst design with atomic layer deposition. ACS Catal. 5(3), 1804–1825 (2015). https://doi.org/10.1021/cs501862h
V. Aleskovsky, M. Koltcov, USSR Patent USSR422446 (1972)
S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou et al., Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3(5), 1775 (2013). https://doi.org/10.1038/srep01775
H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao et al., Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137(33), 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485
M.P. Hermida, Z. Lu, A. White, K.B. Low, T.P. Wu, J.W. Elam, Z.L. Wu, Y. Lei, Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale 8(33), 15348–15356 (2016). https://doi.org/10.1039/C6NR04403D
L. Zhang, Z. Zhao, M. Norouzi Banis, L. Li, Y. Zhao et al., Selective atomic layer deposition of RuOx catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. J. Mater. Chem. A 6(47), 24397–24406 (2018). https://doi.org/10.1039/c8ta08931k
S.J. Jeong, Y. Gu, J. Heo, J. Yang, C.S. Lee et al., Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6(10), 20907 (2016). https://doi.org/10.1038/srep20907
M. Leskela, M. Ritala, Atomic layer deposition chemistry: recent developments and future challenges. Angew. Chem. Int. Ed. 42(45), 5548–5554 (2003). https://doi.org/10.1002/anie.200301652
H. Kim, J. Vac, Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. Sci. Technol. B 21(6), 2231–2261 (2003). https://doi.org/10.1116/1.162267
R.J. Kuppler, D.J. Timmons, Q. Fang, J. Li, T.A. Makal et al., Potential applications of metal–organic frameworks. Coord. Chem. Rev. 253(23–24), 3042–3066 (2009). https://doi.org/10.1016/j.ccr.2009.05.019
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57(7), 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
W. Chen, J. Pei, C. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), 1800396 (2018). https://doi.org/10.1002/adma.201800396
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139(48), 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong et al., Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139(29), 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018
X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu et al., Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139(28), 9419–9422 (2017). https://doi.org/10.1021/jacs.7b01686
W. Chen, J. Pei, C. He, J. Wan, H. Ren et al., Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16086–16090 (2017). https://doi.org/10.1002/anie.201710599
G. Dong, M. Fang, H. Wang, S. Yip, H.-Y. Cheung et al., Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. J. Mater. Chem. A 3(24), 13080–13086 (2015). https://doi.org/10.1039/C5TA02551F
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo et al., Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 9(1), 1460 (2018). https://doi.org/10.1038/s41467-018-03896-4
J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
S. Wei, A. Li, J. Liu, Z. Li, W. Chen et al., Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen et al., In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57(43), 14095–14100 (2018). https://doi.org/10.1002/anie.201808049
Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x
Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141(11), 4505–4509 (2019). https://doi.org/10.1021/jacs.8b09834
J. Zhang, Y. Zhao, X. Guo, C. Chen, C. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(8), 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
J. Zhang, X. Wu, W.-C. Cheong, W. Chen, R. Lin et al., Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 9(1), 1002 (2018). https://doi.org/10.1038/s41467-018-03380-z
X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8(8), 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014
D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu et al., A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv. 1(11), 1500462 (2015). https://doi.org/10.1126/sciadv.1500462
J.H. Kwak, J. Hu, D. Mei, C.W. Yi, D.H. Kim, C. Peden, H.L. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 325(5948), 1670–1673 (2009). https://doi.org/10.1126/science.1176745
A. Corma, O.G. Salnikov, D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem. Eur. J. 21(19), 7012–7015 (2015). https://doi.org/10.1002/chem.201406664
J. Ryczkowski, IR spectroscopy in catalysis. Catal. Today 68(4), 263–381 (2001). https://doi.org/10.1016/S0920-5861(01)00334-0
C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39(12), 4951–5001 (2010). https://doi.org/10.1039/C0CS00117A
Y. Zhou, G. Gao, Y. Li, W. Chu, L. Wang, Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Phys. Chem. Chem. Phys. 21(6), 3024–3032 (2019). https://doi.org/10.1039/C8CP06755D
C. Ling, L. Shi, Y. Ouyang, X. Zeng, J. Wang, Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 17(8), 5133–5139 (2017). https://doi.org/10.1021/acs.nanolett.7b02518
Z. Geng, Y. Liu, X. Kong, P. Li, K. Li et al., Achieving a record-high yield rate of 120.9 μg NH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30(40), 1803498 (2018). https://doi.org/10.1002/adma.201803498
K. Mori, T. Taga, H. Yamashita, Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 7(5), 3147–3151 (2017). https://doi.org/10.1021/acscatal.7b00312
H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang, J. Dong, X.W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
X. Yin, H. Wang, S. Tang, X. Lu, M. Shu, R. Si, T. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge et al., Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9(1), 2120 (2018). https://doi.org/10.1038/s41467-018-04501-4
Y. Guan, Y. Feng, J. Wan, X. Yang, L. Fang et al., Ganoderma-like MoS2/NiS2 with single platinum atoms doping as an efficient and stable hydrogen evolution reaction catalyst. Small 14(27), 1800697 (2018). https://doi.org/10.1002/smll.201800697
L. Fan, P. Liu, X. Yan, L. Gu, Z. Yang, H. Yang, S. Qiu, X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016). https://doi.org/10.1038/ncomms10667
H. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54(47), 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8(19), 1703487 (2018). https://doi.org/10.1002/aenm.201703487
L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5
T. He, C. Zhang, A. Du, Single-atom supported on graphene grain boundary as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Eng. Sci. 194, 58–63 (2019). https://doi.org/10.1016/j.ces.2018.03.028
L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4(2), 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
W. Liu, Q. Xu, P. Yan, J. Chen, Y. Du, S. Chu, J. Wang, Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 10(5), 946–950 (2018). https://doi.org/10.1002/cctc.201701777
S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu et al., Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12(3), 1000–1007 (2019). https://doi.org/10.1039/C8EE02888E
M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
H. Wei, H. Wu, K. Huang, B. Ge, J. Ma et al., Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 10(9), 2830–2836 (2019). https://doi.org/10.1039/C8SC04986F
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
S. Yuan, Z. Pu, H. Zhou, J. Yu, I.S. Amiinu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
D. Wang, Q. Li, C. Han, Z. Xing, X. Yang, Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B Environ. 249, 91–97 (2019). https://doi.org/10.1016/j.apcatb.2019.02.059
L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y
Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff et al., Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(35), 12252–12257 (2019). https://doi.org/10.1002/anie.201905554
J. Yi, R. Xu, G. Chai, T. Zhang, K. Zang et al., Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 7, 1252–1259 (2019). https://doi.org/10.1039/C8TA09490J