Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts
Corresponding Author: Shichun Mu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 132
Abstract
The core reactions for fuel cells, rechargeable metal–air batteries, and hydrogen fuel production are the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), which are heavily dependent on the efficiency of electrocatalysts. Enormous attempts have previously been devoted in non-noble electrocatalysts born out of metal–organic frameworks (MOFs) for ORR, OER, and HER applications, due to the following advantageous reasons: (i) The significant porosity eases the electrolyte diffusion; (ii) the supreme catalyst–electrolyte contact area enhances the diffusion efficiency; and (iii) the electronic conductivity can be extensively increased owing to the unique construction block subunits for MOFs-derived electrocatalysis. Herein, the recent progress of MOFs-derived electrocatalysts including synthesis protocols, design engineering, DFT calculations roles, and energy applications is discussed and reviewed. It can be concluded that the elevated ORR, OER, and HER performances are attributed to an advantageously well-designed high-porosity structure, significant surface area, and plentiful active centers. Furthermore, the perspectives of MOF-derived electrocatalysts for the ORR, OER, and HER are presented.
Highlights:
1 Synthesis protocols, design engineering, theoretical calculations, and energy applications for metal–organic frameworks (MOFs)-derived electrocatalysts are systematically analyzed.
2 Synthesizing methods of MOF-derived catalysts and their oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction electrocatalysis are discussed.
3 The current status, ongoing challenges, and potential future outlooks of MOFs-derived electrocatalysts are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Inderwildi, C. Zhang, X. Wang, M. Kraft, The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 13(3), 744–771 (2020). https://doi.org/10.1039/c9ee01919g
- Z. Qian, Y. Pei, H. Zareipour, N. Chen, A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy 235, 939–953 (2019). https://doi.org/10.1016/j.apenergy.2018.10.080
- D. Farinotti, V. Round, M. Huss, L. Compagno, H. Zekollari, Large hydropower and water-storage potential in future glacier-free basins. Nature 575(7782), 341–344 (2019). https://doi.org/10.1038/s41586-019-1740-z
- S.G. Yalew, M.T. van Vliet, D.E. Gernaat, F. Ludwig, A. Miara et al., Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5(10), 794–802 (2020). https://doi.org/10.1038/s41560-020-0664-z
- J. Chang, Q. Huang, Y. Gao, Z. Zheng, Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. (2021). https://doi.org/10.1002/adma.202004419
- A. Radwan, Y. Liu, Y. Qi, W. Jin, V. Nguyen et al., Cycling stability of carbon coated Na5V12O32 ultralong nanowires as a cathode material for sodium-ion batteries. Mater. Res. Bull. 97, 24–29 (2018). https://doi.org/10.1016/j.materresbull.2017.08.047
- Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
- A.R. Radwan, Y. Liu, V. Nguyen, W. Chen, Sodium vanadate nanoflowers/rGO composite as a high-rate cathode material for sodium-ion batteries. J. Mater. Sci. Mater. Electron. 29(8), 7032–7039 (2018). https://doi.org/10.1007/s10854-018-8690-3
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- M. Hirscher, T. Autrey, S.-I. Orimo, Hydrogen energy. ChemPhysChem 20(10), 1157–1157 (2019). https://doi.org/10.1002/cphc.201900429
- H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), 2007508 (2021). https://doi.org/10.1002/adma.202007508
- T. Kirchartz, U. Rau, What makes a good solar cell? Adv. Energy Mater. 8(28), 1703385 (2018). https://doi.org/10.1002/aenm.201703385
- A.Q. Gilbert, M.D. Bazilian, Can distributed nuclear power address energy resilience and energy poverty? Joule 4(9), 1839–1843 (2020). https://doi.org/10.1016/j.joule.2020.08.005
- S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32(31), 2002235 (2020). https://doi.org/10.1002/adma.202002235
- W. Cheng, X.F. Lu, D. Luan, X.W. Lou, NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(41), 18234–18239 (2020). https://doi.org/10.1002/anie.202008129
- S.Y. Lim, S. Martin, G. Gao, Y. Dou, S.B. Simonsen et al., Self-standing nanofiber electrodes with Pt–Co derived from electrospun zeolitic imidazolate framework for high temperature PEM fuel cells. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006771
- Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc–air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
- I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo–N/C@ MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
- H. Zhou, D. He, A.I. Saana, J. Yang, Z. Wang et al., Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks. Nanoscale 10(13), 6147–6154 (2018). https://doi.org/10.1039/C8NR00137E
- I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–Air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–Air batteries. Adv. Mater. 31(39), 1902339 (2019). https://doi.org/10.1002/adma.201902339
- Q. Sun, N. Wang, Q. Xu, J. Yu, Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 32(44), e2001818 (2020). https://doi.org/10.1002/adma.202001818
- H. Yuan, J. Nai, H. Tian, Z. Ju, W. Zhang et al., An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Sci. Adv. 6(10), 3112 (2020). https://doi.org/10.1126/sciadv.aaz3112
- H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/ange.202001989
- X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13(12), 4536–4563 (2020). https://doi.org/10.1039/D0EE02800B
- C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
- Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 30(46), 1804504 (2018). https://doi.org/10.1002/adma.201804504
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
- T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc–air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048
- L. Yan, Y. Xu, P. Chen, S. Zhang, H. Jiang et al., A freestanding 3D Heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a Superior multifunctional electrode for overall water splitting and Zn–air batteries. Adv. Mater. 32(48), 2003313 (2020). https://doi.org/10.1002/adma.202003313
- J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
- H. Wang, F.X. Yin, N. Liu, R.H. Kou, X.B. He et al., Engineering Fe–Fe3C@ Fe–N–C active sites and hybrid structures from dual metal–organic frameworks for oxygen reduction reaction in H2–O2 fuel cell and Li–O2 battery. Adv. Funct. Mater. 29(23), 1901531 (2019). https://doi.org/10.1002/adfm.201901531
- S.L. Zhang, B.Y. Guan, X.W. Lou, Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15(13), 1805324 (2019). https://doi.org/10.1002/smll.201805324
- B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W. Lou, Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28(10), 1706738 (2018). https://doi.org/10.1002/adfm.201706738
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal–organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32(36), 2003649 (2020). https://doi.org/10.1002/adma.202003649
- A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
- Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006351
- T. Liu, P. Li, N. Yao, T. Kong, G. Cheng et al., Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 31(21), 1806672 (2019). https://doi.org/10.1002/adma.201806672
- C.C. Hou, L. Zou, Y. Wang, Q. Xu, MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc–air batteries. Angew. Chem. Int. Ed. 132(48), 21544–21550 (2020). https://doi.org/10.1002/ange.202011347
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@ N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo et al., 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A Porous Nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc–air batteries. Nano-Micro Lett. 12(1), 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
- Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo et al., Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11(1), 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13(1), 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
- X. Zhao, Y. Hamamura, Y. Yoshida, T. Kaneko, T. Gunji et al., Plasma-devised Pt/C model electrodes for understanding doubly beneficial roles of nanoneedle-carbon morphology and strong Pt-carbon interface in oxygen reduction reaction. ACS Appl. Energy Mater. 3(6), 5542–5551 (2020). https://doi.org/10.1021/acsaem.0c00528
- P. Mardle, X. Ji, J. Wu, S. Guan, H. Dong et al., Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl. Catal. B-Environ. 260, 118031 (2020). https://doi.org/10.1016/j.apcatb.2019.118031
- A.M. Jauhar, Z. Ma, M. Xiao, G. Jiang, S. Sy et al., Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. J. Power Sources 473, 228607 (2020). https://doi.org/10.1016/j.jpowsour.2020.228607
- S. Anantharaj, S. Kundu, S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021). https://doi.org/10.1016/j.nanoen.2020.105514
- L. Wang, Q. Zhou, Z. Pu, Q. Zhang, X. Mu et al., Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. Nano Energy 53, 270–276 (2018). https://doi.org/10.1016/j.nanoen.2018.08.061
- P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu et al., Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 9(31), 26001–26007 (2017). https://doi.org/10.1021/acsami.7b06305
- M. Wang, C. Zhang, T. Meng, Z. Pu, H. Jin et al., Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 413, 367–375 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.056
- X.F. Lu, L. Yu, X.W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
- H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49(5), 1414–1448 (2020). https://doi.org/10.1126/sciadv.aav6009
- Z. Liang, T. Qiu, S. Gao, R. Zhong, R. Zou, Multi-scale design of metal–organic framework-derived materials for energy electrocatalysis. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003410
- C.C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2019). https://doi.org/10.1002/aenm.201801307
- H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen et al., Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 50(2), 986–1029 (2021). https://doi.org/10.1039/d0cs00552e
- R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019). https://doi.org/10.1016/j.ccr.2017.09.027
- Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K. Mizrahi Rodriguez et al., MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119
- Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan et al., Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 57, 746–752 (2019). https://doi.org/10.1016/j.nanoen.2018.12.060
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- L.J. Small, S.E. Henkelis, D.X. Rademacher, M.E. Schindelholz, J.L. Krumhansl et al., Near-zero power MOF-based sensors for NO2 detection. Funct. Mater. Adv. (2020). https://doi.org/10.1002/adfm.202006598
- C. Chen, D. Xiong, M. Gu, C. Lu, F.-Y. Yi et al., MOF-derived bimetallic CoFe-PBA composites as highly selective and sensitive electrochemical sensors for hydrogen peroxide and nonenzymatic glucose in human serum. ACS Appl. Mater. Interfaces 12(31), 35365–35374 (2020). https://doi.org/10.1021/acsami.0c09689
- X.S. Xing, Z.H. Fu, N.N. Zhang, X.Q. Yu, M.S. Wang et al., High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chem. Commun. 55(9), 1241–1244 (2019). https://doi.org/10.1039/c8cc08700h
- Y. Ye, L. Gong, S. Xiang, Z. Zhang, B. Chen, Metal–organic frameworks as a versatile platform for proton conductors. Adv. Mater. 32(21), 1907090 (2020). https://doi.org/10.1002/adma.201907090
- Y. Feng, H. Wang, S. Zhang, Y. Zhao, J. Gao et al., Antibodies@ MOFs: an in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 31(2), 1805148 (2019). https://doi.org/10.1002/adma.201805148
- I.A. Lázaro, R.S. Forgan, Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230–259 (2019). https://doi.org/10.1016/j.ccr.2018.09.009
- H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
- S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43(16), 5415–5418 (2014). https://doi.org/10.1039/C4CS90059F
- C.A. Downes, S.C. Marinescu, Electrocatalytic metal-organic frameworks for energy applications. Chemsuschem 10(22), 1701420 (2017). https://doi.org/10.1002/cssc.201701420
- S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018). https://doi.org/10.1002/adma.201704303
- X. Long, P. Yin, T. Lei, K. Wang, Z. Zhan, Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl. Catal. B-Environ. 260, 118187 (2020). https://doi.org/10.1016/j.apcatb.2019.118187
- H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10(1), 684–694 (2016). https://doi.org/10.1021/acsnano.5b05728
- V. Briega-Martos, E. Herrero, J.M. Feliu, Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: surface charge effects and mechanistic consequences. Electrochim. Acta 334, 135452 (2020). https://doi.org/10.1016/j.electacta.2019.135452
- M.J. Farias, A.L. Silva, A.A. Tanaka, E. Herrero, J.M. Feliu, Surface defects as ingredients that can improve or inhibit the pathways for CO oxidation at low overpotentials using Pt (111)-type catalysts. J. Phys. Chem. C 124(49), 26583–26595 (2020). https://doi.org/10.1021/acs.jpcc.0c07104
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng, A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
- X. Wei, Y. Li, H. Peng, D. Gao, Y. Ou, A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem. Eng. J. 355, 336–340 (2019). https://doi.org/10.1016/j.cej.2018.08.009
- Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu et al., g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 7(9), 5020–5030 (2019). https://doi.org/10.1039/C8TA11785C
- M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan et al., Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horiz. 7(1), 32–53 (2020). https://doi.org/10.1039/C9MH01094G
- A. Mahmood, W. Guo, H. Tabassum, R. Zou, Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6(17), 1600423 (2016). https://doi.org/10.1002/aenm.201600423
- B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
- C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
- X.F. Lu, Y. Fang, D. Luan, X.W.D. Lou, Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21(4), 1555–1565 (2021). https://doi.org/10.1021/acs.nanolett.0c04898
- S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50(25), 3363–3366 (2014). https://doi.org/10.1039/c3cc47620k
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun et al., ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7(1), 442–450 (2014). https://doi.org/10.1039/c3ee42799d
- X.F. Lu, B.Y. Xia, S.Q. Zang, X.W. Lou, Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59(12), 4634–4650 (2020). https://doi.org/10.1002/anie.201910309
- A. Radwan, H. Jin, B. Liu, Z. Chen, Q. Wu et al., 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 171, 368–375 (2021). https://doi.org/10.1016/j.carbon.2020.09.024
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou et al., Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 28(26), 1801554 (2018). https://doi.org/10.1002/adfm.201801554
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
- C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6(8), 7084–7091 (2012). https://doi.org/10.1021/nn3021234
- Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie et al., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012). https://doi.org/10.1021/nn203393d
- Z.H. Huang, N.H. Xie, M. Zhang, B.Q. Xu, Nonpyrolyzed Fe-N coordination-based iron triazolate framework: an efficient and stable electrocatalyst for oxygen reduction reaction. Chemsuschem 12(1), 200–207 (2019). https://doi.org/10.1002/cssc.201801886
- A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez et al., Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 120(16), 8468–8535 (2020). https://doi.org/10.1021/acs.chemrev.9b00685
- R. Wang, X.Y. Dong, J. Du, J.Y. Zhao, S.Q. Zang, MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 30(6), 1703711 (2018). https://doi.org/10.1002/adma.201703711
- L. Yang, X. Zeng, W. Wang, D. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28(7), 1704537 (2018). https://doi.org/10.1002/adfm.201704537
- C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima et al., Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4(29), 11156–11178 (2016). https://doi.org/10.1039/C6TA03300H
- W. Zhou, J. Zhou, Y. Zhou, J. Lu, K. Zhou et al., N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem. Mater. 27(6), 2026–2032 (2015). https://doi.org/10.1021/acs.chemmater.5b00331
- Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 33(6), 1907818 (2021). https://doi.org/10.1002/adma.201907818
- Y. Li, Z. Wang, J. Hu, S. Li, Y. Du et al., Metal–organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 30(25), 1910498 (2020). https://doi.org/10.1002/adfm.201910498
- H. Huang, Y. Zhao, Y. Bai, F. Li, Y. Zhang et al., Conductive metal–organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Sci. 7(9), 2000012 (2020). https://doi.org/10.1002/advs.202000012
- Z.W. Chen, L.X. Chen, Z. Wen, Q. Jiang, Understanding electro-catalysis by using density functional theory. Phys. Chem. Chem. Phys. 21(43), 23782–23802 (2019). https://doi.org/10.1039/c9cp04430b
- S. Hammes-Schiffer, A conundrum for density functional theory. Science 355(6320), 28–29 (2017). https://doi.org/10.1126/science.aal3442
- S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/C8EE02679C
- W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
- Y. Zhu, Z. Zhang, Z. Lei, Y. Tan, W. Wu et al., Defect-enriched hollow porous Co–N-doped carbon for oxygen reduction reaction and Zn-Air batteries. Carbon 167, 188–195 (2020). https://doi.org/10.1016/j.carbon.2020.06.006
- Y. Lin, H. Wan, D. Wu, G. Chen, N. Zhang et al., Metal–organic framework hexagonal nanoplates: bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 142(16), 7317–7321 (2020). https://doi.org/10.1021/jacs.0c01916
- W. Li, S. Xue, S. Watzele, S. Hou, J. Fichtner et al., Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks. Angew. Chem. Int. Ed. 59(14), 5837–5843 (2020). https://doi.org/10.1002/anie.201916507
- B. Yan, D. Liu, X. Feng, M. Shao, Y. Zhang, Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 30(31), 2003007 (2020). https://doi.org/10.1002/adfm.202003007
- H. Huang, S. Zhou, C. Yu, H. Huang, J. Zhao et al., Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ. Sci. 13(2), 545–553 (2020). https://doi.org/10.1039/C9EE03273H
- W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang et al., Embedding ultrafine metal oxide nanoparticles in monolayered metal–organic framework nanosheets enables efficient electrocatalytic oxygen evolution. ACS Nano 14(2), 1971–1981 (2020). https://doi.org/10.1021/acsnano.9b08458
- L. Huang, G. Gao, H. Zhang, J. Chen, Y. Fang et al., Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 68, 104296 (2020). https://doi.org/10.1016/j.nanoen.2019.104296
- W. Cheng, X.F. Lu, D. Luan, X.W. Lou, NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(41), 18234–18239 (2020). https://doi.org/10.1002/anie.202008129
- G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 29(26), 1606814 (2017). https://doi.org/10.1002/adma.201606814
- D.Y. Chung, K.J. Lee, S.-H. Yu, M. Kim, S.Y. Lee et al., Alveoli-inspired facile transport structure of N-doped porous carbon for electrochemical energy applications. Adv. Energy Mater. 5(3), 1401309 (2015). https://doi.org/10.1002/aenm.201401309
- Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui et al., Metal−Organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4(11), 1400337 (2014). https://doi.org/10.1002/aenm.201400337
- S.S.A. Shah, T. Najam, M.K. Aslam, M. Ashfaq, M.M. Rahman et al., Recent advances on oxygen reduction electrocatalysis: correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B-Environ. 268, 118570 (2020). https://doi.org/10.1016/j.apcatb.2019.118570
- L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco et al., High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 82, 417–424 (2015). https://doi.org/10.1016/j.carbon.2014.10.085
- C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54(7), 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
- L. Yang, G. Xu, J. Ban, L. Zhang, G. Xu et al., Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 535, 415–424 (2019). https://doi.org/10.1016/j.jcis.2018.10.007
- X. Zhao, H. Zhao, T. Zhang, X. Yan, Y. Yuan et al., One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2(30), 11666–11671 (2014). https://doi.org/10.1039/c4ta00846d
- F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5(1), 1–10 (2014). https://doi.org/10.1038/ncomms6261
- L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
- J. Li, Y. Chen, Y. Tang, S. Li, H. Dong et al., Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2(18), 6316–6319 (2014). https://doi.org/10.1039/C3TA15335E
- J.-S. Li, S.-L. Li, Y.-J. Tang, K. Li, L. Zhou et al., Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci. Rep. 4, 5130 (2014). https://doi.org/10.1038/srep05130
- J. Yan, X. Zheng, C. Wei, Z. Sun, K. Zeng et al., Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 171, 320–328 (2021). https://doi.org/10.1016/j.carbon.2020.09.005
- J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang et al., Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25(36), 5768–5777 (2015). https://doi.org/10.1002/adfm.201502311
- Q. Ren, H. Wang, X.F. Lu, Y.X. Tong, G.R. Li, Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018). https://doi.org/10.1002/advs.201700515
- L. Du, L. Xing, G. Zhang, S. Sun, Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: recent progress and future perspectives. Carbon 156, 77–92 (2020). https://doi.org/10.1016/j.carbon.2019.09.029
- F. Guo, H. Yang, L. Liu, Y. Han, A.M. Al-Enizi et al., Hollow capsules of doped carbon incorporating metal@ metal sulfide and metal@ metal oxide core–shell nanoparticles derived from metal-organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 7, 3624–3631 (2019). https://doi.org/10.1039/C8TA11213D
- X. Wen, X. Yang, M. Li, L. Bai, J. Guan, Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochim. Acta 296, 830–841 (2019). https://doi.org/10.1016/j.electacta.2018.11.129
- J. Zhu, W. Tu, Z. Bai, H. Pan, P. Ji et al., Zeolitic-imidazolate-framework-derived Co@Co3O4 embedded into iron, nitrogen, sulfur Co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and zinc-air batteries. Electrochim. Acta 323, 134821 (2019). https://doi.org/10.1016/j.electacta.2019.134821
- X. Yi, X. He, F. Yin, B. Chen, G. Li et al., Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: The addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery. Electrochim. Acta 295, 966–977 (2019). https://doi.org/10.1016/j.electacta.2018.11.142
- H. Jin, Z. Kou, W. Cai, H. Zhou, P. Ji et al., P-Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. J. Mater. Chem. A 8(18), 9121–9127 (2020). https://doi.org/10.1039/D0TA02334E
- Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu et al., gC3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 7(9), 5020–5030 (2019). https://doi.org/10.1039/C8TA11785C
- Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao et al., New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137(6), 2235–2238 (2015). https://doi.org/10.1021/jacs.5b00076
- H.S. Kim, M.S. Kang, W.C. Yoo, Boost-up electrochemical performance of MOFs via confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications. J. Mater. Chem. A 7(10), 5561–5574 (2019). https://doi.org/10.1039/C8TA12200H
- Y. Li, W.-J. Zhang, J. Li, H. Ma, H. Du et al., Fe-MOF derived efficient ORR/OER bifunctional electrocatalyst for rechargeable Zinc-Air battery. ACS Appl. Mater. Interfaces 12(40), 44710–44719 (2020). https://doi.org/10.1021/acsami.0c11945
- C. Castillo-Blas, N. Lopez-Salas, M.C. Gutierrez, I. Puente-Orench, E. Gutierrez-Puebla et al., Encoding metal-cation arrangements in metal-organic frameworks for programming the composition of electrocatalytically active multimetal oxides. J. Am. Chem. Soc. 141(4), 1766–1774 (2019). https://doi.org/10.1021/jacs.8b12860
- X. Duan, S. Ren, N. Pan, M. Zhang, H. Zheng, MOF-derived Fe, Co@ N-C bifunctional oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 8(18), 9355–9363 (2020). https://doi.org/10.1039/D0TA02825H
- H. Wang, F. Yin, G. Li, B. Chen, Z. Wang, Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int. J. Hydrog. Energy 39(28), 16179–16186 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.120
- L. Li, W. Xie, J. Chen, J. Yang, ZIF-67 derived P/Ni/Co/NC nanoparticles as highly efficient electrocatalyst for oxygen reduction reaction (ORR). J. Solid State Chem. 264, 1–5 (2018). https://doi.org/10.1016/j.jssc.2018.04.035
- M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 7(17), 1700193 (2017). https://doi.org/10.1002/aenm.201700193
- X.-F. Lu, L.-F. Gu, J.-W. Wang, J.-X. Wu, P.-Q. Liao et al., Bimetal-organic framework derived CoFe2O4/C Porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29(3), 1604437 (2017). https://doi.org/10.1002/adma.201604437
- H.B. Wu, X.W.D. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv (2017). https://doi.org/10.1126/sciadv.aap9252
- Y. Yan, T. He, B. Zhao, K. Qi, H. Liu et al., Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6(33), 15905–15926 (2018). https://doi.org/10.1039/C8TA05985C
- W. Chen, Y. Zhang, G. Chen, R. Huang, Y. Zhou et al., Mesoporous cobalt–iron–organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. J. Mater. Chem. A 7(7), 3090–3100 (2019). https://doi.org/10.1039/C8TA10952D
- Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017). https://doi.org/10.1002/adma.201604898
- H. Wang, F. Yin, B. Chen, G. Li, Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J. Mater. Chem. A 3(31), 16168–16176 (2015). https://doi.org/10.1039/C5TA02244D
- E.M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath et al., Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7(1), 1–7 (2016). https://doi.org/10.1038/ncomms10942
- R.K. Tripathy, A.K. Samantara, J. Behera, A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans. 48(28), 10557–10564 (2019). https://doi.org/10.1039/C9DT01730E
- X. Wang, L. Yu, B.Y. Guan, S. Song, X.W. Lou, Metal–organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv. Mater. 30(29), 1801211 (2018). https://doi.org/10.1002/adma.201801211
- J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen et al., Layered metal–organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3(7), 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809
- J. Yang, F. Zhang, X. Wang, D. He, G. Wu et al., Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 55(41), 12854–12858 (2016). https://doi.org/10.1002/anie.201604315
- X. Liang, D. Zhang, Z. Wu, D. Wang, The Fe-promoted MoP catalyst with high activity for water splitting. Appl. Catal. A 524, 134–138 (2016). https://doi.org/10.1016/j.apcata.2016.06.029
- L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
- E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu et al., Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/C8EE00076J
- T. Liu, P. Li, N. Yao, G. Cheng, S. Chen et al., CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(14), 4679–4684 (2019). https://doi.org/10.1002/ange.201901409
- Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
- S. Ren, X. Duan, F. Ge, M. Zhang, H. Zheng, Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting. J. Power Sources 480, 228866 (2020). https://doi.org/10.1016/j.jpowsour.2020.228866
- L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang et al., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7(1), 387–392 (2014). https://doi.org/10.1039/C3EE42441C
- Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu et al., A self-templating method for metal–organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 7(14), 8602–8608 (2019). https://doi.org/10.1039/C9TA00557A
- H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 6(1), 6512 (2015). https://doi.org/10.1038/ncomms7512
- T. Wang, Q. Zhou, X. Wang, J. Zheng, X. Li, MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3(32), 16435–16439 (2015). https://doi.org/10.1039/C5TA04001A
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou et al., A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 1–8 (2016). https://doi.org/10.1038/nenergy.2015.6
- L. Zhang, X. Wang, R. Wang, M. Hong, Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27(22), 7610–7618 (2015). https://doi.org/10.1021/acs.chemmater.5b02708
- L. Ye, G. Chai, Z. Wen, Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 27(14), 1606190 (2017). https://doi.org/10.1002/adfm.201606190
- Q. Lai, Y. Zhao, Y. Liang, J. He, J. Chen, In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 26(45), 8334–8344 (2016). https://doi.org/10.1002/adfm.201603607
- P.-C. Shi, J.-D. Yi, T.-T. Liu, L. Li, L.-J. Zhang et al., Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@ zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 5(24), 12322–12329 (2017). https://doi.org/10.1039/C7TA02999C
- L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12), 6590–6602 (2014). https://doi.org/10.1039/C4NR00348A
- H. Park, S. Oh, S. Lee, S. Choi, M. Oh, Cobalt-and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl. Catal. B-Environ. 246, 322–329 (2019). https://doi.org/10.1016/j.apcatb.2019.01.083
- L. Zheng, Y. Dong, B. Chi, Z. Cui, Y. Deng et al., UIO-66-NH2-derived mesoporous carbon catalyst Co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small 15(4), 1803520 (2019). https://doi.org/10.1002/smll.201803520
- S. Li, Z. Jiang, X. Xiao, W. Chen, X. Tian et al., MOF-derived Co nanoparticles embedded in N, S-codoped carbon layer/MWCNTs for efficient oxygen reduction in alkaline media. Ionics 25(2), 785–796 (2019). https://doi.org/10.1007/s11581-018-2775-0
- L. Fan, X. Du, Y. Zhang, M. Li, M. Wen et al., N, P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Trans. 48(7), 2352–2358 (2019). https://doi.org/10.1039/C8DT04650F
- Z. Meng, S. Cai, R. Wang, H. Tang, S. Song et al., Bimetallic− organic framework-derived hierarchically porous Co-Zn-NC as efficient catalyst for acidic oxygen reduction reaction. Appl. Catal. B 244, 120–127 (2019). https://doi.org/10.1016/j.apcatb.2018.11.037
- M. Lu, Y. Li, P. He, J. Cong, D. Chen et al., Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 272, 32–37 (2019). https://doi.org/10.1016/j.jssc.2019.01.023
- M. Ding, J. Chen, M. Jiang, X. Zhang, G. Wang, Ultrathin trimetallic metal–organic framework nanosheets for highly efficient oxygen evolution reaction. J. Mater. Chem. A 7(23), 14163–14168 (2019). https://doi.org/10.1039/c9ta00708cr
References
O. Inderwildi, C. Zhang, X. Wang, M. Kraft, The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 13(3), 744–771 (2020). https://doi.org/10.1039/c9ee01919g
Z. Qian, Y. Pei, H. Zareipour, N. Chen, A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy 235, 939–953 (2019). https://doi.org/10.1016/j.apenergy.2018.10.080
D. Farinotti, V. Round, M. Huss, L. Compagno, H. Zekollari, Large hydropower and water-storage potential in future glacier-free basins. Nature 575(7782), 341–344 (2019). https://doi.org/10.1038/s41586-019-1740-z
S.G. Yalew, M.T. van Vliet, D.E. Gernaat, F. Ludwig, A. Miara et al., Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5(10), 794–802 (2020). https://doi.org/10.1038/s41560-020-0664-z
J. Chang, Q. Huang, Y. Gao, Z. Zheng, Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. (2021). https://doi.org/10.1002/adma.202004419
A. Radwan, Y. Liu, Y. Qi, W. Jin, V. Nguyen et al., Cycling stability of carbon coated Na5V12O32 ultralong nanowires as a cathode material for sodium-ion batteries. Mater. Res. Bull. 97, 24–29 (2018). https://doi.org/10.1016/j.materresbull.2017.08.047
Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
A.R. Radwan, Y. Liu, V. Nguyen, W. Chen, Sodium vanadate nanoflowers/rGO composite as a high-rate cathode material for sodium-ion batteries. J. Mater. Sci. Mater. Electron. 29(8), 7032–7039 (2018). https://doi.org/10.1007/s10854-018-8690-3
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
M. Hirscher, T. Autrey, S.-I. Orimo, Hydrogen energy. ChemPhysChem 20(10), 1157–1157 (2019). https://doi.org/10.1002/cphc.201900429
H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), 2007508 (2021). https://doi.org/10.1002/adma.202007508
T. Kirchartz, U. Rau, What makes a good solar cell? Adv. Energy Mater. 8(28), 1703385 (2018). https://doi.org/10.1002/aenm.201703385
A.Q. Gilbert, M.D. Bazilian, Can distributed nuclear power address energy resilience and energy poverty? Joule 4(9), 1839–1843 (2020). https://doi.org/10.1016/j.joule.2020.08.005
S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32(31), 2002235 (2020). https://doi.org/10.1002/adma.202002235
W. Cheng, X.F. Lu, D. Luan, X.W. Lou, NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(41), 18234–18239 (2020). https://doi.org/10.1002/anie.202008129
S.Y. Lim, S. Martin, G. Gao, Y. Dou, S.B. Simonsen et al., Self-standing nanofiber electrodes with Pt–Co derived from electrospun zeolitic imidazolate framework for high temperature PEM fuel cells. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006771
Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc–air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo–N/C@ MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
H. Zhou, D. He, A.I. Saana, J. Yang, Z. Wang et al., Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks. Nanoscale 10(13), 6147–6154 (2018). https://doi.org/10.1039/C8NR00137E
I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–Air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–Air batteries. Adv. Mater. 31(39), 1902339 (2019). https://doi.org/10.1002/adma.201902339
Q. Sun, N. Wang, Q. Xu, J. Yu, Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 32(44), e2001818 (2020). https://doi.org/10.1002/adma.202001818
H. Yuan, J. Nai, H. Tian, Z. Ju, W. Zhang et al., An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Sci. Adv. 6(10), 3112 (2020). https://doi.org/10.1126/sciadv.aaz3112
H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/ange.202001989
X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13(12), 4536–4563 (2020). https://doi.org/10.1039/D0EE02800B
C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 30(46), 1804504 (2018). https://doi.org/10.1002/adma.201804504
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc–air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048
L. Yan, Y. Xu, P. Chen, S. Zhang, H. Jiang et al., A freestanding 3D Heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a Superior multifunctional electrode for overall water splitting and Zn–air batteries. Adv. Mater. 32(48), 2003313 (2020). https://doi.org/10.1002/adma.202003313
J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
H. Wang, F.X. Yin, N. Liu, R.H. Kou, X.B. He et al., Engineering Fe–Fe3C@ Fe–N–C active sites and hybrid structures from dual metal–organic frameworks for oxygen reduction reaction in H2–O2 fuel cell and Li–O2 battery. Adv. Funct. Mater. 29(23), 1901531 (2019). https://doi.org/10.1002/adfm.201901531
S.L. Zhang, B.Y. Guan, X.W. Lou, Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15(13), 1805324 (2019). https://doi.org/10.1002/smll.201805324
B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W. Lou, Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28(10), 1706738 (2018). https://doi.org/10.1002/adfm.201706738
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal–organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32(36), 2003649 (2020). https://doi.org/10.1002/adma.202003649
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006351
T. Liu, P. Li, N. Yao, T. Kong, G. Cheng et al., Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 31(21), 1806672 (2019). https://doi.org/10.1002/adma.201806672
C.C. Hou, L. Zou, Y. Wang, Q. Xu, MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc–air batteries. Angew. Chem. Int. Ed. 132(48), 21544–21550 (2020). https://doi.org/10.1002/ange.202011347
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@ N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo et al., 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A Porous Nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc–air batteries. Nano-Micro Lett. 12(1), 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo et al., Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11(1), 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13(1), 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
X. Zhao, Y. Hamamura, Y. Yoshida, T. Kaneko, T. Gunji et al., Plasma-devised Pt/C model electrodes for understanding doubly beneficial roles of nanoneedle-carbon morphology and strong Pt-carbon interface in oxygen reduction reaction. ACS Appl. Energy Mater. 3(6), 5542–5551 (2020). https://doi.org/10.1021/acsaem.0c00528
P. Mardle, X. Ji, J. Wu, S. Guan, H. Dong et al., Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl. Catal. B-Environ. 260, 118031 (2020). https://doi.org/10.1016/j.apcatb.2019.118031
A.M. Jauhar, Z. Ma, M. Xiao, G. Jiang, S. Sy et al., Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. J. Power Sources 473, 228607 (2020). https://doi.org/10.1016/j.jpowsour.2020.228607
S. Anantharaj, S. Kundu, S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021). https://doi.org/10.1016/j.nanoen.2020.105514
L. Wang, Q. Zhou, Z. Pu, Q. Zhang, X. Mu et al., Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. Nano Energy 53, 270–276 (2018). https://doi.org/10.1016/j.nanoen.2018.08.061
P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu et al., Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 9(31), 26001–26007 (2017). https://doi.org/10.1021/acsami.7b06305
M. Wang, C. Zhang, T. Meng, Z. Pu, H. Jin et al., Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 413, 367–375 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.056
X.F. Lu, L. Yu, X.W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49(5), 1414–1448 (2020). https://doi.org/10.1126/sciadv.aav6009
Z. Liang, T. Qiu, S. Gao, R. Zhong, R. Zou, Multi-scale design of metal–organic framework-derived materials for energy electrocatalysis. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003410
C.C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2019). https://doi.org/10.1002/aenm.201801307
H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen et al., Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 50(2), 986–1029 (2021). https://doi.org/10.1039/d0cs00552e
R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019). https://doi.org/10.1016/j.ccr.2017.09.027
Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K. Mizrahi Rodriguez et al., MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119
Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan et al., Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 57, 746–752 (2019). https://doi.org/10.1016/j.nanoen.2018.12.060
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
L.J. Small, S.E. Henkelis, D.X. Rademacher, M.E. Schindelholz, J.L. Krumhansl et al., Near-zero power MOF-based sensors for NO2 detection. Funct. Mater. Adv. (2020). https://doi.org/10.1002/adfm.202006598
C. Chen, D. Xiong, M. Gu, C. Lu, F.-Y. Yi et al., MOF-derived bimetallic CoFe-PBA composites as highly selective and sensitive electrochemical sensors for hydrogen peroxide and nonenzymatic glucose in human serum. ACS Appl. Mater. Interfaces 12(31), 35365–35374 (2020). https://doi.org/10.1021/acsami.0c09689
X.S. Xing, Z.H. Fu, N.N. Zhang, X.Q. Yu, M.S. Wang et al., High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chem. Commun. 55(9), 1241–1244 (2019). https://doi.org/10.1039/c8cc08700h
Y. Ye, L. Gong, S. Xiang, Z. Zhang, B. Chen, Metal–organic frameworks as a versatile platform for proton conductors. Adv. Mater. 32(21), 1907090 (2020). https://doi.org/10.1002/adma.201907090
Y. Feng, H. Wang, S. Zhang, Y. Zhao, J. Gao et al., Antibodies@ MOFs: an in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 31(2), 1805148 (2019). https://doi.org/10.1002/adma.201805148
I.A. Lázaro, R.S. Forgan, Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230–259 (2019). https://doi.org/10.1016/j.ccr.2018.09.009
H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43(16), 5415–5418 (2014). https://doi.org/10.1039/C4CS90059F
C.A. Downes, S.C. Marinescu, Electrocatalytic metal-organic frameworks for energy applications. Chemsuschem 10(22), 1701420 (2017). https://doi.org/10.1002/cssc.201701420
S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018). https://doi.org/10.1002/adma.201704303
X. Long, P. Yin, T. Lei, K. Wang, Z. Zhan, Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl. Catal. B-Environ. 260, 118187 (2020). https://doi.org/10.1016/j.apcatb.2019.118187
H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10(1), 684–694 (2016). https://doi.org/10.1021/acsnano.5b05728
V. Briega-Martos, E. Herrero, J.M. Feliu, Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: surface charge effects and mechanistic consequences. Electrochim. Acta 334, 135452 (2020). https://doi.org/10.1016/j.electacta.2019.135452
M.J. Farias, A.L. Silva, A.A. Tanaka, E. Herrero, J.M. Feliu, Surface defects as ingredients that can improve or inhibit the pathways for CO oxidation at low overpotentials using Pt (111)-type catalysts. J. Phys. Chem. C 124(49), 26583–26595 (2020). https://doi.org/10.1021/acs.jpcc.0c07104
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng, A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
X. Wei, Y. Li, H. Peng, D. Gao, Y. Ou, A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem. Eng. J. 355, 336–340 (2019). https://doi.org/10.1016/j.cej.2018.08.009
Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu et al., g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 7(9), 5020–5030 (2019). https://doi.org/10.1039/C8TA11785C
M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan et al., Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horiz. 7(1), 32–53 (2020). https://doi.org/10.1039/C9MH01094G
A. Mahmood, W. Guo, H. Tabassum, R. Zou, Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6(17), 1600423 (2016). https://doi.org/10.1002/aenm.201600423
B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
X.F. Lu, Y. Fang, D. Luan, X.W.D. Lou, Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21(4), 1555–1565 (2021). https://doi.org/10.1021/acs.nanolett.0c04898
S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50(25), 3363–3366 (2014). https://doi.org/10.1039/c3cc47620k
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun et al., ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7(1), 442–450 (2014). https://doi.org/10.1039/c3ee42799d
X.F. Lu, B.Y. Xia, S.Q. Zang, X.W. Lou, Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59(12), 4634–4650 (2020). https://doi.org/10.1002/anie.201910309
A. Radwan, H. Jin, B. Liu, Z. Chen, Q. Wu et al., 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 171, 368–375 (2021). https://doi.org/10.1016/j.carbon.2020.09.024
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou et al., Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 28(26), 1801554 (2018). https://doi.org/10.1002/adfm.201801554
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6(8), 7084–7091 (2012). https://doi.org/10.1021/nn3021234
Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie et al., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012). https://doi.org/10.1021/nn203393d
Z.H. Huang, N.H. Xie, M. Zhang, B.Q. Xu, Nonpyrolyzed Fe-N coordination-based iron triazolate framework: an efficient and stable electrocatalyst for oxygen reduction reaction. Chemsuschem 12(1), 200–207 (2019). https://doi.org/10.1002/cssc.201801886
A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez et al., Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 120(16), 8468–8535 (2020). https://doi.org/10.1021/acs.chemrev.9b00685
R. Wang, X.Y. Dong, J. Du, J.Y. Zhao, S.Q. Zang, MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 30(6), 1703711 (2018). https://doi.org/10.1002/adma.201703711
L. Yang, X. Zeng, W. Wang, D. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28(7), 1704537 (2018). https://doi.org/10.1002/adfm.201704537
C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima et al., Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4(29), 11156–11178 (2016). https://doi.org/10.1039/C6TA03300H
W. Zhou, J. Zhou, Y. Zhou, J. Lu, K. Zhou et al., N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem. Mater. 27(6), 2026–2032 (2015). https://doi.org/10.1021/acs.chemmater.5b00331
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 33(6), 1907818 (2021). https://doi.org/10.1002/adma.201907818
Y. Li, Z. Wang, J. Hu, S. Li, Y. Du et al., Metal–organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 30(25), 1910498 (2020). https://doi.org/10.1002/adfm.201910498
H. Huang, Y. Zhao, Y. Bai, F. Li, Y. Zhang et al., Conductive metal–organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Sci. 7(9), 2000012 (2020). https://doi.org/10.1002/advs.202000012
Z.W. Chen, L.X. Chen, Z. Wen, Q. Jiang, Understanding electro-catalysis by using density functional theory. Phys. Chem. Chem. Phys. 21(43), 23782–23802 (2019). https://doi.org/10.1039/c9cp04430b
S. Hammes-Schiffer, A conundrum for density functional theory. Science 355(6320), 28–29 (2017). https://doi.org/10.1126/science.aal3442
S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/C8EE02679C
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
Y. Zhu, Z. Zhang, Z. Lei, Y. Tan, W. Wu et al., Defect-enriched hollow porous Co–N-doped carbon for oxygen reduction reaction and Zn-Air batteries. Carbon 167, 188–195 (2020). https://doi.org/10.1016/j.carbon.2020.06.006
Y. Lin, H. Wan, D. Wu, G. Chen, N. Zhang et al., Metal–organic framework hexagonal nanoplates: bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 142(16), 7317–7321 (2020). https://doi.org/10.1021/jacs.0c01916
W. Li, S. Xue, S. Watzele, S. Hou, J. Fichtner et al., Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks. Angew. Chem. Int. Ed. 59(14), 5837–5843 (2020). https://doi.org/10.1002/anie.201916507
B. Yan, D. Liu, X. Feng, M. Shao, Y. Zhang, Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 30(31), 2003007 (2020). https://doi.org/10.1002/adfm.202003007
H. Huang, S. Zhou, C. Yu, H. Huang, J. Zhao et al., Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ. Sci. 13(2), 545–553 (2020). https://doi.org/10.1039/C9EE03273H
W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang et al., Embedding ultrafine metal oxide nanoparticles in monolayered metal–organic framework nanosheets enables efficient electrocatalytic oxygen evolution. ACS Nano 14(2), 1971–1981 (2020). https://doi.org/10.1021/acsnano.9b08458
L. Huang, G. Gao, H. Zhang, J. Chen, Y. Fang et al., Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 68, 104296 (2020). https://doi.org/10.1016/j.nanoen.2019.104296
W. Cheng, X.F. Lu, D. Luan, X.W. Lou, NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(41), 18234–18239 (2020). https://doi.org/10.1002/anie.202008129
G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 29(26), 1606814 (2017). https://doi.org/10.1002/adma.201606814
D.Y. Chung, K.J. Lee, S.-H. Yu, M. Kim, S.Y. Lee et al., Alveoli-inspired facile transport structure of N-doped porous carbon for electrochemical energy applications. Adv. Energy Mater. 5(3), 1401309 (2015). https://doi.org/10.1002/aenm.201401309
Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui et al., Metal−Organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4(11), 1400337 (2014). https://doi.org/10.1002/aenm.201400337
S.S.A. Shah, T. Najam, M.K. Aslam, M. Ashfaq, M.M. Rahman et al., Recent advances on oxygen reduction electrocatalysis: correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B-Environ. 268, 118570 (2020). https://doi.org/10.1016/j.apcatb.2019.118570
L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco et al., High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 82, 417–424 (2015). https://doi.org/10.1016/j.carbon.2014.10.085
C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54(7), 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
L. Yang, G. Xu, J. Ban, L. Zhang, G. Xu et al., Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 535, 415–424 (2019). https://doi.org/10.1016/j.jcis.2018.10.007
X. Zhao, H. Zhao, T. Zhang, X. Yan, Y. Yuan et al., One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2(30), 11666–11671 (2014). https://doi.org/10.1039/c4ta00846d
F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5(1), 1–10 (2014). https://doi.org/10.1038/ncomms6261
L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
J. Li, Y. Chen, Y. Tang, S. Li, H. Dong et al., Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2(18), 6316–6319 (2014). https://doi.org/10.1039/C3TA15335E
J.-S. Li, S.-L. Li, Y.-J. Tang, K. Li, L. Zhou et al., Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci. Rep. 4, 5130 (2014). https://doi.org/10.1038/srep05130
J. Yan, X. Zheng, C. Wei, Z. Sun, K. Zeng et al., Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 171, 320–328 (2021). https://doi.org/10.1016/j.carbon.2020.09.005
J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang et al., Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25(36), 5768–5777 (2015). https://doi.org/10.1002/adfm.201502311
Q. Ren, H. Wang, X.F. Lu, Y.X. Tong, G.R. Li, Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018). https://doi.org/10.1002/advs.201700515
L. Du, L. Xing, G. Zhang, S. Sun, Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: recent progress and future perspectives. Carbon 156, 77–92 (2020). https://doi.org/10.1016/j.carbon.2019.09.029
F. Guo, H. Yang, L. Liu, Y. Han, A.M. Al-Enizi et al., Hollow capsules of doped carbon incorporating metal@ metal sulfide and metal@ metal oxide core–shell nanoparticles derived from metal-organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 7, 3624–3631 (2019). https://doi.org/10.1039/C8TA11213D
X. Wen, X. Yang, M. Li, L. Bai, J. Guan, Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochim. Acta 296, 830–841 (2019). https://doi.org/10.1016/j.electacta.2018.11.129
J. Zhu, W. Tu, Z. Bai, H. Pan, P. Ji et al., Zeolitic-imidazolate-framework-derived Co@Co3O4 embedded into iron, nitrogen, sulfur Co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and zinc-air batteries. Electrochim. Acta 323, 134821 (2019). https://doi.org/10.1016/j.electacta.2019.134821
X. Yi, X. He, F. Yin, B. Chen, G. Li et al., Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: The addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery. Electrochim. Acta 295, 966–977 (2019). https://doi.org/10.1016/j.electacta.2018.11.142
H. Jin, Z. Kou, W. Cai, H. Zhou, P. Ji et al., P-Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. J. Mater. Chem. A 8(18), 9121–9127 (2020). https://doi.org/10.1039/D0TA02334E
Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu et al., gC3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 7(9), 5020–5030 (2019). https://doi.org/10.1039/C8TA11785C
Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao et al., New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137(6), 2235–2238 (2015). https://doi.org/10.1021/jacs.5b00076
H.S. Kim, M.S. Kang, W.C. Yoo, Boost-up electrochemical performance of MOFs via confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications. J. Mater. Chem. A 7(10), 5561–5574 (2019). https://doi.org/10.1039/C8TA12200H
Y. Li, W.-J. Zhang, J. Li, H. Ma, H. Du et al., Fe-MOF derived efficient ORR/OER bifunctional electrocatalyst for rechargeable Zinc-Air battery. ACS Appl. Mater. Interfaces 12(40), 44710–44719 (2020). https://doi.org/10.1021/acsami.0c11945
C. Castillo-Blas, N. Lopez-Salas, M.C. Gutierrez, I. Puente-Orench, E. Gutierrez-Puebla et al., Encoding metal-cation arrangements in metal-organic frameworks for programming the composition of electrocatalytically active multimetal oxides. J. Am. Chem. Soc. 141(4), 1766–1774 (2019). https://doi.org/10.1021/jacs.8b12860
X. Duan, S. Ren, N. Pan, M. Zhang, H. Zheng, MOF-derived Fe, Co@ N-C bifunctional oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 8(18), 9355–9363 (2020). https://doi.org/10.1039/D0TA02825H
H. Wang, F. Yin, G. Li, B. Chen, Z. Wang, Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int. J. Hydrog. Energy 39(28), 16179–16186 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.120
L. Li, W. Xie, J. Chen, J. Yang, ZIF-67 derived P/Ni/Co/NC nanoparticles as highly efficient electrocatalyst for oxygen reduction reaction (ORR). J. Solid State Chem. 264, 1–5 (2018). https://doi.org/10.1016/j.jssc.2018.04.035
M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 7(17), 1700193 (2017). https://doi.org/10.1002/aenm.201700193
X.-F. Lu, L.-F. Gu, J.-W. Wang, J.-X. Wu, P.-Q. Liao et al., Bimetal-organic framework derived CoFe2O4/C Porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29(3), 1604437 (2017). https://doi.org/10.1002/adma.201604437
H.B. Wu, X.W.D. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv (2017). https://doi.org/10.1126/sciadv.aap9252
Y. Yan, T. He, B. Zhao, K. Qi, H. Liu et al., Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6(33), 15905–15926 (2018). https://doi.org/10.1039/C8TA05985C
W. Chen, Y. Zhang, G. Chen, R. Huang, Y. Zhou et al., Mesoporous cobalt–iron–organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. J. Mater. Chem. A 7(7), 3090–3100 (2019). https://doi.org/10.1039/C8TA10952D
Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017). https://doi.org/10.1002/adma.201604898
H. Wang, F. Yin, B. Chen, G. Li, Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J. Mater. Chem. A 3(31), 16168–16176 (2015). https://doi.org/10.1039/C5TA02244D
E.M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath et al., Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7(1), 1–7 (2016). https://doi.org/10.1038/ncomms10942
R.K. Tripathy, A.K. Samantara, J. Behera, A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans. 48(28), 10557–10564 (2019). https://doi.org/10.1039/C9DT01730E
X. Wang, L. Yu, B.Y. Guan, S. Song, X.W. Lou, Metal–organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv. Mater. 30(29), 1801211 (2018). https://doi.org/10.1002/adma.201801211
J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen et al., Layered metal–organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3(7), 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809
J. Yang, F. Zhang, X. Wang, D. He, G. Wu et al., Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 55(41), 12854–12858 (2016). https://doi.org/10.1002/anie.201604315
X. Liang, D. Zhang, Z. Wu, D. Wang, The Fe-promoted MoP catalyst with high activity for water splitting. Appl. Catal. A 524, 134–138 (2016). https://doi.org/10.1016/j.apcata.2016.06.029
L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu et al., Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/C8EE00076J
T. Liu, P. Li, N. Yao, G. Cheng, S. Chen et al., CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(14), 4679–4684 (2019). https://doi.org/10.1002/ange.201901409
Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
S. Ren, X. Duan, F. Ge, M. Zhang, H. Zheng, Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting. J. Power Sources 480, 228866 (2020). https://doi.org/10.1016/j.jpowsour.2020.228866
L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang et al., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7(1), 387–392 (2014). https://doi.org/10.1039/C3EE42441C
Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu et al., A self-templating method for metal–organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 7(14), 8602–8608 (2019). https://doi.org/10.1039/C9TA00557A
H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 6(1), 6512 (2015). https://doi.org/10.1038/ncomms7512
T. Wang, Q. Zhou, X. Wang, J. Zheng, X. Li, MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3(32), 16435–16439 (2015). https://doi.org/10.1039/C5TA04001A
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou et al., A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 1–8 (2016). https://doi.org/10.1038/nenergy.2015.6
L. Zhang, X. Wang, R. Wang, M. Hong, Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27(22), 7610–7618 (2015). https://doi.org/10.1021/acs.chemmater.5b02708
L. Ye, G. Chai, Z. Wen, Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 27(14), 1606190 (2017). https://doi.org/10.1002/adfm.201606190
Q. Lai, Y. Zhao, Y. Liang, J. He, J. Chen, In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 26(45), 8334–8344 (2016). https://doi.org/10.1002/adfm.201603607
P.-C. Shi, J.-D. Yi, T.-T. Liu, L. Li, L.-J. Zhang et al., Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@ zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 5(24), 12322–12329 (2017). https://doi.org/10.1039/C7TA02999C
L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12), 6590–6602 (2014). https://doi.org/10.1039/C4NR00348A
H. Park, S. Oh, S. Lee, S. Choi, M. Oh, Cobalt-and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl. Catal. B-Environ. 246, 322–329 (2019). https://doi.org/10.1016/j.apcatb.2019.01.083
L. Zheng, Y. Dong, B. Chi, Z. Cui, Y. Deng et al., UIO-66-NH2-derived mesoporous carbon catalyst Co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small 15(4), 1803520 (2019). https://doi.org/10.1002/smll.201803520
S. Li, Z. Jiang, X. Xiao, W. Chen, X. Tian et al., MOF-derived Co nanoparticles embedded in N, S-codoped carbon layer/MWCNTs for efficient oxygen reduction in alkaline media. Ionics 25(2), 785–796 (2019). https://doi.org/10.1007/s11581-018-2775-0
L. Fan, X. Du, Y. Zhang, M. Li, M. Wen et al., N, P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Trans. 48(7), 2352–2358 (2019). https://doi.org/10.1039/C8DT04650F
Z. Meng, S. Cai, R. Wang, H. Tang, S. Song et al., Bimetallic− organic framework-derived hierarchically porous Co-Zn-NC as efficient catalyst for acidic oxygen reduction reaction. Appl. Catal. B 244, 120–127 (2019). https://doi.org/10.1016/j.apcatb.2018.11.037
M. Lu, Y. Li, P. He, J. Cong, D. Chen et al., Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 272, 32–37 (2019). https://doi.org/10.1016/j.jssc.2019.01.023
M. Ding, J. Chen, M. Jiang, X. Zhang, G. Wang, Ultrathin trimetallic metal–organic framework nanosheets for highly efficient oxygen evolution reaction. J. Mater. Chem. A 7(23), 14163–14168 (2019). https://doi.org/10.1039/c9ta00708cr