Tuning Active Metal Atomic Spacing by Filling of Light Atoms and Resulting Reversed Hydrogen Adsorption-Distance Relationship for Efficient Catalysis
Corresponding Author: Shichun Mu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 168
Abstract
Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism, but still remains a challenge. Here, we develop a strategy to dilute catalytically active metal interatomic spacing (dM-M) with light atoms and discover the unusual adsorption patterns. For example, by elevating the content of boron as interstitial atoms, the atomic spacing of osmium (dOs-Os) gradually increases from 2.73 to 2.96 Å. More importantly, we find that, with the increase in dOs-Os, the hydrogen adsorption-distance relationship is reversed via downshifting d-band states, which breaks the traditional cognition, thereby optimizing the H adsorption and H2O dissociation on the electrode surface during the catalytic process; this finally leads to a nearly linear increase in hydrogen evolution reaction activity. Namely, the maximum dOs-Os of 2.96 Å presents the optimal HER activity (8 mV @ 10 mA cm−2) in alkaline media as well as suppressed O adsorption and thus promoted stability. It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
Highlights:
1 Density functional theory calculations indicates that interstitial B atoms can tune the atomic spacing of host metal Os and achieve a reversal hydrogen adsorption-distance relationship.
2 The structure–activity relationship between the spacing of active Os atoms and catalytic activity is established.
3 Prepared OsB2 with increasing dOs-Os of 2.96 Å presents the optimal hydrogen evolution reaction activity (8 mV @ 10 mA cm−2) and robust stability in alkaline media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Hu, L. Shang, T. Sheng, Y. Chen, L. Wang, PtCo@NCS with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 30(28), 2002281 (2020). https://doi.org/10.1002/adfm.202002281
- C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
- H. Chen, Y. Zhang, Q. He, H. Zhang, S. Xu et al., A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. J. Mater. Chem. A. 8(5), 2364–2368 (2020). https://doi.org/10.1039/C9TA13192B
- D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng et al., Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 49(7), 2215–2264 (2020). https://doi.org/10.1039/C9CS00869A
- X. Ge, Y. Cao, K. Yan, Y. Li, L. Zhou et al., Increasing the distance of adjacent palladium atoms for configuration matching in selective hydrogenation. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202215225
- B. Wang, C. Cheng, M. Jin, J. He, H. Zhang et al., A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions. Angew. Chem. Int. Ed. 61(33), e202207268 (2022). https://doi.org/10.1002/anie.202207268
- J. Gu, C.-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed Fe3+ sites catalyze efficient co2 electroreduction to co. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
- Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
- X. Meng, C. Ma, L. Jiang, R. Si, X. Meng et al., Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 59(26), 10502–10507 (2020). https://doi.org/10.1002/anie.202003484
- Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
- H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang et al., Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 30(26), 1707301 (2018). https://doi.org/10.1002/adma.201707301
- Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60(6), 3212–3221 (2021). https://doi.org/10.1002/anie.202012798
- H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30(17), 1910534 (2020). https://doi.org/10.1002/adfm.201910534
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- W. Xu, G. Fan, J. Chen, J. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59(9), 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
- Z. Mao, C. Ding, X. Liu, Q. Zhang, X. Qin et al., Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 12(15), 8848–8856 (2022). https://doi.org/10.1021/acscatal.2c01052
- J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng et al., Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem. 8(6), 1673–1687 (2022). https://doi.org/10.1016/j.chempr.2022.02.003
- D. Chen, Z. Pu, P. Wang, R. Lu, W. Zeng et al., Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 12(4), 2623–2631 (2022). https://doi.org/10.1021/acscatal.1c05175
- L. Chen, L.-R. Zhang, L.-Y. Yao, Y.-H. Fang, L. He et al., Metal boride better than pt: Hcp Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 12(10), 3099–3105 (2019). https://doi.org/10.1039/C9EE01564G
- J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8(9), eabl9271 (2022). https://doi.org/10.1126/sciadv.abl9271
- Z. Li, Z. Xie, H. Chen, X. Liang, X. Ai et al., Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chem. Eng. J. 419, 129568 (2021). https://doi.org/10.1016/j.cej.2021.129568
- C.W.A. Chan, A.H. Mahadi, M.M.-J. Li, E.C. Corbos, C. Tang et al., Interstitial modification of palladium nanops with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 5(1), 5787 (2014). https://doi.org/10.1038/ncomms6787
- H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng et al., Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem. Int. Ed. 58(33), 11409–11413 (2019). https://doi.org/10.1002/anie.201906394
- H. Chen, M. Zhang, K. Zhang, Z. Li, X. Liang et al., Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 18(10), 2107371 (2022). https://doi.org/10.1002/smll.202107371
- H. Jin, Q. Gu, B. Chen, C. Tang, Y. Zheng et al., Molten salt-directed catalytic synthesis of 2d layered transition-metal nitrides for efficient hydrogen evolution. Chem 6(9), 2382–2394 (2020). https://doi.org/10.1016/j.chempr.2020.06.037
- Z. Hu, X. Xiao, H. Jin, T. Li, M. Chen et al., Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 8(1), 15630 (2017). https://doi.org/10.1038/ncomms15630
- D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61(36), e202208642 (2022). https://doi.org/10.1002/anie.202208642
- D. Chen, R. Yu, R. Lu, Z. Pu, P. Wang et al., Tunable Ru-Ru2P heterostructures with charge redistribution for efficient ph-universal hydrogen evolution. InfoMat 4(5), e12287 (2022). https://doi.org/10.1002/inf2.12287
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- G. Wu, X. Han, J. Cai, P. Yin, P. Cui et al., In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 13(1), 4200 (2022). https://doi.org/10.1038/s41467-022-31971-4
- G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- Q. He, Y. Zhou, H. Shou, X. Wang, P. Zhang et al., Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 34(20), 2110604 (2022). https://doi.org/10.1002/adma.202110604
- Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui et al., Partially reduced Ru/RuO2 composites as efficient and ph-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 14(10), 5433–5443 (2021). https://doi.org/10.1039/D1EE02380B
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 33(42), 2102338 (2021). https://doi.org/10.1002/adma.202102338
- L. Fang, Y. Wang, X. Yang, H. Zhang, Y. Wang, Uniform OsP2 nanops anchored on n, p-doped carbon: a new electrocatalyst with enhanced activity for hydrogen generation at all ph values. J. Catal. 370, 404–411 (2019). https://doi.org/10.1016/j.jcat.2019.01.010
- D. Cao, H. Xu, H. Li, C. Feng, J. Zeng et al., Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 13(1), 5843 (2022). https://doi.org/10.1038/s41467-022-33589-y
- Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi et al., Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5(2), 109–118 (2022). https://doi.org/10.1038/s41929-021-00732-9
References
G. Hu, L. Shang, T. Sheng, Y. Chen, L. Wang, PtCo@NCS with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 30(28), 2002281 (2020). https://doi.org/10.1002/adfm.202002281
C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
H. Chen, Y. Zhang, Q. He, H. Zhang, S. Xu et al., A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. J. Mater. Chem. A. 8(5), 2364–2368 (2020). https://doi.org/10.1039/C9TA13192B
D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng et al., Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 49(7), 2215–2264 (2020). https://doi.org/10.1039/C9CS00869A
X. Ge, Y. Cao, K. Yan, Y. Li, L. Zhou et al., Increasing the distance of adjacent palladium atoms for configuration matching in selective hydrogenation. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202215225
B. Wang, C. Cheng, M. Jin, J. He, H. Zhang et al., A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions. Angew. Chem. Int. Ed. 61(33), e202207268 (2022). https://doi.org/10.1002/anie.202207268
J. Gu, C.-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed Fe3+ sites catalyze efficient co2 electroreduction to co. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
X. Meng, C. Ma, L. Jiang, R. Si, X. Meng et al., Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 59(26), 10502–10507 (2020). https://doi.org/10.1002/anie.202003484
Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang et al., Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 30(26), 1707301 (2018). https://doi.org/10.1002/adma.201707301
Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60(6), 3212–3221 (2021). https://doi.org/10.1002/anie.202012798
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30(17), 1910534 (2020). https://doi.org/10.1002/adfm.201910534
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
W. Xu, G. Fan, J. Chen, J. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59(9), 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
Z. Mao, C. Ding, X. Liu, Q. Zhang, X. Qin et al., Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 12(15), 8848–8856 (2022). https://doi.org/10.1021/acscatal.2c01052
J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng et al., Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem. 8(6), 1673–1687 (2022). https://doi.org/10.1016/j.chempr.2022.02.003
D. Chen, Z. Pu, P. Wang, R. Lu, W. Zeng et al., Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 12(4), 2623–2631 (2022). https://doi.org/10.1021/acscatal.1c05175
L. Chen, L.-R. Zhang, L.-Y. Yao, Y.-H. Fang, L. He et al., Metal boride better than pt: Hcp Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 12(10), 3099–3105 (2019). https://doi.org/10.1039/C9EE01564G
J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8(9), eabl9271 (2022). https://doi.org/10.1126/sciadv.abl9271
Z. Li, Z. Xie, H. Chen, X. Liang, X. Ai et al., Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chem. Eng. J. 419, 129568 (2021). https://doi.org/10.1016/j.cej.2021.129568
C.W.A. Chan, A.H. Mahadi, M.M.-J. Li, E.C. Corbos, C. Tang et al., Interstitial modification of palladium nanops with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 5(1), 5787 (2014). https://doi.org/10.1038/ncomms6787
H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng et al., Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem. Int. Ed. 58(33), 11409–11413 (2019). https://doi.org/10.1002/anie.201906394
H. Chen, M. Zhang, K. Zhang, Z. Li, X. Liang et al., Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 18(10), 2107371 (2022). https://doi.org/10.1002/smll.202107371
H. Jin, Q. Gu, B. Chen, C. Tang, Y. Zheng et al., Molten salt-directed catalytic synthesis of 2d layered transition-metal nitrides for efficient hydrogen evolution. Chem 6(9), 2382–2394 (2020). https://doi.org/10.1016/j.chempr.2020.06.037
Z. Hu, X. Xiao, H. Jin, T. Li, M. Chen et al., Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 8(1), 15630 (2017). https://doi.org/10.1038/ncomms15630
D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61(36), e202208642 (2022). https://doi.org/10.1002/anie.202208642
D. Chen, R. Yu, R. Lu, Z. Pu, P. Wang et al., Tunable Ru-Ru2P heterostructures with charge redistribution for efficient ph-universal hydrogen evolution. InfoMat 4(5), e12287 (2022). https://doi.org/10.1002/inf2.12287
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
G. Wu, X. Han, J. Cai, P. Yin, P. Cui et al., In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 13(1), 4200 (2022). https://doi.org/10.1038/s41467-022-31971-4
G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
Q. He, Y. Zhou, H. Shou, X. Wang, P. Zhang et al., Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 34(20), 2110604 (2022). https://doi.org/10.1002/adma.202110604
Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui et al., Partially reduced Ru/RuO2 composites as efficient and ph-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 14(10), 5433–5443 (2021). https://doi.org/10.1039/D1EE02380B
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 33(42), 2102338 (2021). https://doi.org/10.1002/adma.202102338
L. Fang, Y. Wang, X. Yang, H. Zhang, Y. Wang, Uniform OsP2 nanops anchored on n, p-doped carbon: a new electrocatalyst with enhanced activity for hydrogen generation at all ph values. J. Catal. 370, 404–411 (2019). https://doi.org/10.1016/j.jcat.2019.01.010
D. Cao, H. Xu, H. Li, C. Feng, J. Zeng et al., Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 13(1), 5843 (2022). https://doi.org/10.1038/s41467-022-33589-y
Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi et al., Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5(2), 109–118 (2022). https://doi.org/10.1038/s41929-021-00732-9