Heterogeneous CuxO Nano-Skeletons from Waste Electronics for Enhanced Glucose Detection
Corresponding Author: Mitch Guijun Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 249
Abstract
Electronic waste (e-waste) and diabetes are global challenges to modern societies. However, solving these two challenges together has been challenging until now. Herein, we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste. We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous CuxO (h-CuxO) nano-skeletons electrode for glucose sensing, offering rapid (< 1 min), clean, air-compatible, and continuous fabrication, applicable to a wide range of Cu-containing substrates. Leveraging this approach, h-CuxO nano-skeletons, with an inner core predominantly composed of Cu2O with lower oxygen content, juxtaposed with an outer layer rich in amorphous CuxO (a-CuxO) with higher oxygen content, are derived from discarded printed circuit boards. When employed in glucose detection, the h-CuxO nano-skeletons undergo a structural evolution process, transitioning into rigid Cu2O@CuO nano-skeletons prompted by electrochemical activation. This transformation yields exceptional glucose-sensing performance (sensitivity: 9.893 mA mM−1 cm−2; detection limit: 0.34 μM), outperforming most previously reported glucose sensors. Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption. This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives.
Highlights:
1 Novel laser-induced transfer method for fabricating glucose sensors from recycled e-waste copper, offering a sustainable and cost-effective solution.
2 Unique heterogeneous CuxO nano-skeletons derived from discarded printed circuit boards exhibiting exceptional glucose-sensing performance (sensitivity: 9.893 mA mM−1 cm−2, detection limit: 0.34 μM).
3 Miniaturized glucose detection device, optimized for scalability and portability, revolutionizing diabetes management and patient care.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Imre-Lucaci, S. Fogarasi, P. Ilea, M. Tamasan, Copper recovery from real samples of WPCBs by anodic dissolution. Environ. Eng. Manag. J. 11, 1439–1444 (2012). https://doi.org/10.30638/eemj.2012.179
- Z. Wang, B. Zhang, D. Guan, Take responsibility for electronic-waste disposal. Nature 536, 23–25 (2016). https://doi.org/10.1038/536023a
- D. Dutta, R. Rautela, L.K.S. Gujjala, D. Kundu, P. Sharma et al., A review on recovery processes of metals from E-waste: a green perspective. Sci. Total. Environ. 859, 160391 (2023). https://doi.org/10.1016/j.scitotenv.2022.160391
- J. Li, H. Lu, J. Guo, Z. Xu, Y. Zhou, Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol. 41, 1995–2000 (2007). https://doi.org/10.1021/es0618245
- Q. Tan, L. Liu, M. Yu, J. Li, An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production. J. Hazard. Mater. 390, 121892 (2020). https://doi.org/10.1016/j.jhazmat.2019.121892
- A. Chagnes, G. Cote, C. Ekberg, M. Nilsson, T. Retegan, WEEE recycling: Research, development, and policies (Elsevier, Amsterdam, 2016), pp.55–68
- S. Kanta Das, G. Ellamparuthy, T. Kundu, S.I. Angadi, S.S. Rath, A comprehensive review of the mechanical separation of waste printed circuit boards. Process. Saf. Environ. Prot. 187, 221–239 (2024). https://doi.org/10.1016/j.psep.2024.04.090
- K. Huang, J. Guo, Z. Xu, Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J. Hazard. Mater. 164, 399–408 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.051
- A. Berbardes, I. Bohlinger, D. Rodriguez, H. Milbrandt, W. Wuth, Recycling of printed circuit boards by melting with oxidising/reducing top blowing process. EPD Congress 1997, 363–375 (1997)
- F. Li, K. Cai, Q. Huang, M. Zhong, L. Wang et al., Recovery of Au and Cu from waste memory modules by electrolysis with hydrochloric acid-hydrogen peroxide system. Sep. Purif. Technol. 308, 122872 (2023). https://doi.org/10.1016/j.seppur.2022.122872
- B. Niu, E. Shanshan, Z. Xu, J. Guo, How to efficient and high-value recycling of electronic components mounted on waste printed circuit boards: recent progress, challenge, and future perspectives. J. Clean. Prod. 415, 137815 (2023). https://doi.org/10.1016/j.jclepro.2023.137815
- Z. Chen, C. Song, X. Lian, B. Xu, Y. Wang, Dynamic ionic liquids-based conductive coatings for customizable, integrated and recyclable printed circuit boards. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202400829
- M.P. Raele, L.R. De Pretto, D.M. Zezell, Soldering mask laser removal from printed circuit boards aiming copper recycling. Waste Manag. 68, 475–481 (2017). https://doi.org/10.1016/j.wasman.2017.07.019
- Z. Ur Rehman, F. Yang, M. Wang, T. Zhu, Fundamentals and advances in laser-induced transfer. Opt. Laser Technol. 160, 109065 (2023). https://doi.org/10.1016/j.optlastec.2022.109065
- L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
- H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018). https://doi.org/10.1002/adhm.201701150
- F. Lorestani, X. Zhang, A.M. Abdullah, X. Xin, Y. Liu et al., A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. Adv. Funct. Mater. 33, 2306117 (2023). https://doi.org/10.1002/adfm.202306117
- M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li et al., Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 56, 14553–14569 (2020). https://doi.org/10.1039/D0CC05650B
- Y. Qiao, Q. Liu, S. Lu, G. Chen, S. Gao et al., High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 8, 5411–5415 (2020). https://doi.org/10.1039/d0tb00131g
- J. Heikenfeld, Technological leap for sweat sensing. Nature 529, 475–476 (2016). https://doi.org/10.1038/529475a
- S. Emaminejad, W. Gao, E. Wu, Z.A. Davies, H. Yin Yin Nyein et al., Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. 114, 4625–4630 (2017). https://doi.org/10.1073/pnas.1701740114
- H. Lee, C. Song, Y.S. Hong, M. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
- W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky et al., Metal–organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021). https://doi.org/10.1021/acs.chemrev.0c01029
- J. Zhu, S. Liu, Z. Hu, X. Zhang, N. Yi et al., Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 193, 113606 (2021). https://doi.org/10.1016/j.bios.2021.113606
- S. Bag, A. Baksi, S.H. Nandam, D. Wang, X. Ye et al., Nonenzymatic glucose sensing using Ni60 Nb40 nanoglass. ACS Nano 14, 5543–5552 (2020). https://doi.org/10.1021/acsnano.9b09778
- T. Liu, Y. Guo, Z. Zhang, Z. Miao, X. Zhang et al., Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens. Actuat. B Chem. 286, 370–376 (2019). https://doi.org/10.1016/j.snb.2019.02.006
- Z. Zhai, B. Leng, N. Yang, B. Yang, L. Liu et al., Rational construction of 3D-networked carbon nanowalls/diamond supporting CuO architecture for high-performance electrochemical biosensors. Small 15, e1901527 (2019). https://doi.org/10.1002/smll.201901527
- P. Chakraborty, S. Dhar, N. Deka, K. Debnath, S.P. Mondal, Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuat. B Chem. 302, 127134 (2020). https://doi.org/10.1016/j.snb.2019.127134
- L. Fang, Y. Cai, B. Huang, Q. Cao, Q. Zhu et al., A highly sensitive nonenzymatic glucose sensor based on Cu/Cu2O composite nanops decorated single carbon fiber. J. Electroanal. Chem. 880, 114888 (2021). https://doi.org/10.1016/j.jelechem.2020.114888
- E.R. Mamleyev, P.G. Weidler, A. Nefedov, D.V. Szabó, M. Islam et al., Nano- and microstructured copper/copper oxide composites on laser-induced carbon for enzyme-free glucose sensors. ACS Appl. Nano Mater. 4, 13747–13760 (2021). https://doi.org/10.1021/acsanm.1c03149
- Y. Gao, F. Yang, Q. Yu, R. Fan, M. Yang et al., Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim. Acta 186, 192 (2019). https://doi.org/10.1007/s00604-019-3263-6
- S. Zhang, J. Yuan, S. Wang, Y. Li, Y. Xu et al., Synergistic multilevel sieving membranes: integrating cellular graphene skeleton with continuous MOFs nanolayer for superior multiphase water separation. Adv. Funct. Mater. 34, 2307571 (2024). https://doi.org/10.1002/adfm.202307571
- V. Selvamani, A. Zareei, A. Elkashif, M.K. Maruthamuthu, S. Chittiboyina et al., Hierarchical micro/mesoporous copper structure with enhanced antimicrobial property via laser surface texturing. Adv. Mater. Interfaces 7, 1901890 (2020). https://doi.org/10.1002/admi.201901890
- R. Molina, M. Ertuğrul, Á. Larrea, R. Navarro, V. Rico et al., Laser-induced scanning transfer deposition of silver electrodes on glass surfaces: a green and scalable technology. Appl. Surf. Sci. 556, 149673 (2021). https://doi.org/10.1016/j.apsusc.2021.149673
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- L. Xu, Y. Yang, Z.-W. Hu, S.-H. Yu, Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano 10, 3823–3834 (2016). https://doi.org/10.1021/acsnano.6b00704
- L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. Le Cras, Comprehensive X-ray photoelectron spectroscopy study of the conversion reaction mechanism of CuO in lithiated thin film electrodes. J. Phys. Chem. C 117, 4421–4430 (2013). https://doi.org/10.1021/jp3119633
- S. Menkin, C.A. O’Keefe, A.B. Gunnarsdóttir, S. Dey, F.M. Pesci et al., Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021). https://doi.org/10.1021/acs.jpcc.1c03877
- R. Kumar, P. Rai, A. Sharma, Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv. 6, 3815–3822 (2016). https://doi.org/10.1039/C5RA20331G
- D. Ye, G. Liang, H. Li, J. Luo, S. Zhang et al., A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223–230 (2013). https://doi.org/10.1016/j.talanta.2013.04.008
- Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia et al., Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31, 426–432 (2012). https://doi.org/10.1016/j.bios.2011.11.006
- L.-Y. Lin, B.B. Karakocak, S. Kavadiya, T. Soundappan, P. Biswas, A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sens. Actuat. B Chem. 259, 745–752 (2018). https://doi.org/10.1016/j.snb.2017.12.035
- L. Laffont, M.Y. Wu, F. Chevallier, P. Poizot, M. Morcrette et al., High resolution EELS of Cu–V oxides: application to batteries materials. Micron 37, 459–464 (2006). https://doi.org/10.1016/j.micron.2005.11.007
- Y. Duan, Z.-Y. Yu, S.-J. Hu, X.-S. Zheng, C.-T. Zhang et al., Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. Int. Ed. 58, 15772–15777 (2019). https://doi.org/10.1002/anie.201909939
References
F. Imre-Lucaci, S. Fogarasi, P. Ilea, M. Tamasan, Copper recovery from real samples of WPCBs by anodic dissolution. Environ. Eng. Manag. J. 11, 1439–1444 (2012). https://doi.org/10.30638/eemj.2012.179
Z. Wang, B. Zhang, D. Guan, Take responsibility for electronic-waste disposal. Nature 536, 23–25 (2016). https://doi.org/10.1038/536023a
D. Dutta, R. Rautela, L.K.S. Gujjala, D. Kundu, P. Sharma et al., A review on recovery processes of metals from E-waste: a green perspective. Sci. Total. Environ. 859, 160391 (2023). https://doi.org/10.1016/j.scitotenv.2022.160391
J. Li, H. Lu, J. Guo, Z. Xu, Y. Zhou, Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol. 41, 1995–2000 (2007). https://doi.org/10.1021/es0618245
Q. Tan, L. Liu, M. Yu, J. Li, An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production. J. Hazard. Mater. 390, 121892 (2020). https://doi.org/10.1016/j.jhazmat.2019.121892
A. Chagnes, G. Cote, C. Ekberg, M. Nilsson, T. Retegan, WEEE recycling: Research, development, and policies (Elsevier, Amsterdam, 2016), pp.55–68
S. Kanta Das, G. Ellamparuthy, T. Kundu, S.I. Angadi, S.S. Rath, A comprehensive review of the mechanical separation of waste printed circuit boards. Process. Saf. Environ. Prot. 187, 221–239 (2024). https://doi.org/10.1016/j.psep.2024.04.090
K. Huang, J. Guo, Z. Xu, Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J. Hazard. Mater. 164, 399–408 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.051
A. Berbardes, I. Bohlinger, D. Rodriguez, H. Milbrandt, W. Wuth, Recycling of printed circuit boards by melting with oxidising/reducing top blowing process. EPD Congress 1997, 363–375 (1997)
F. Li, K. Cai, Q. Huang, M. Zhong, L. Wang et al., Recovery of Au and Cu from waste memory modules by electrolysis with hydrochloric acid-hydrogen peroxide system. Sep. Purif. Technol. 308, 122872 (2023). https://doi.org/10.1016/j.seppur.2022.122872
B. Niu, E. Shanshan, Z. Xu, J. Guo, How to efficient and high-value recycling of electronic components mounted on waste printed circuit boards: recent progress, challenge, and future perspectives. J. Clean. Prod. 415, 137815 (2023). https://doi.org/10.1016/j.jclepro.2023.137815
Z. Chen, C. Song, X. Lian, B. Xu, Y. Wang, Dynamic ionic liquids-based conductive coatings for customizable, integrated and recyclable printed circuit boards. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202400829
M.P. Raele, L.R. De Pretto, D.M. Zezell, Soldering mask laser removal from printed circuit boards aiming copper recycling. Waste Manag. 68, 475–481 (2017). https://doi.org/10.1016/j.wasman.2017.07.019
Z. Ur Rehman, F. Yang, M. Wang, T. Zhu, Fundamentals and advances in laser-induced transfer. Opt. Laser Technol. 160, 109065 (2023). https://doi.org/10.1016/j.optlastec.2022.109065
L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018). https://doi.org/10.1002/adhm.201701150
F. Lorestani, X. Zhang, A.M. Abdullah, X. Xin, Y. Liu et al., A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. Adv. Funct. Mater. 33, 2306117 (2023). https://doi.org/10.1002/adfm.202306117
M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li et al., Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 56, 14553–14569 (2020). https://doi.org/10.1039/D0CC05650B
Y. Qiao, Q. Liu, S. Lu, G. Chen, S. Gao et al., High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 8, 5411–5415 (2020). https://doi.org/10.1039/d0tb00131g
J. Heikenfeld, Technological leap for sweat sensing. Nature 529, 475–476 (2016). https://doi.org/10.1038/529475a
S. Emaminejad, W. Gao, E. Wu, Z.A. Davies, H. Yin Yin Nyein et al., Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. 114, 4625–4630 (2017). https://doi.org/10.1073/pnas.1701740114
H. Lee, C. Song, Y.S. Hong, M. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky et al., Metal–organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021). https://doi.org/10.1021/acs.chemrev.0c01029
J. Zhu, S. Liu, Z. Hu, X. Zhang, N. Yi et al., Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 193, 113606 (2021). https://doi.org/10.1016/j.bios.2021.113606
S. Bag, A. Baksi, S.H. Nandam, D. Wang, X. Ye et al., Nonenzymatic glucose sensing using Ni60 Nb40 nanoglass. ACS Nano 14, 5543–5552 (2020). https://doi.org/10.1021/acsnano.9b09778
T. Liu, Y. Guo, Z. Zhang, Z. Miao, X. Zhang et al., Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens. Actuat. B Chem. 286, 370–376 (2019). https://doi.org/10.1016/j.snb.2019.02.006
Z. Zhai, B. Leng, N. Yang, B. Yang, L. Liu et al., Rational construction of 3D-networked carbon nanowalls/diamond supporting CuO architecture for high-performance electrochemical biosensors. Small 15, e1901527 (2019). https://doi.org/10.1002/smll.201901527
P. Chakraborty, S. Dhar, N. Deka, K. Debnath, S.P. Mondal, Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuat. B Chem. 302, 127134 (2020). https://doi.org/10.1016/j.snb.2019.127134
L. Fang, Y. Cai, B. Huang, Q. Cao, Q. Zhu et al., A highly sensitive nonenzymatic glucose sensor based on Cu/Cu2O composite nanops decorated single carbon fiber. J. Electroanal. Chem. 880, 114888 (2021). https://doi.org/10.1016/j.jelechem.2020.114888
E.R. Mamleyev, P.G. Weidler, A. Nefedov, D.V. Szabó, M. Islam et al., Nano- and microstructured copper/copper oxide composites on laser-induced carbon for enzyme-free glucose sensors. ACS Appl. Nano Mater. 4, 13747–13760 (2021). https://doi.org/10.1021/acsanm.1c03149
Y. Gao, F. Yang, Q. Yu, R. Fan, M. Yang et al., Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim. Acta 186, 192 (2019). https://doi.org/10.1007/s00604-019-3263-6
S. Zhang, J. Yuan, S. Wang, Y. Li, Y. Xu et al., Synergistic multilevel sieving membranes: integrating cellular graphene skeleton with continuous MOFs nanolayer for superior multiphase water separation. Adv. Funct. Mater. 34, 2307571 (2024). https://doi.org/10.1002/adfm.202307571
V. Selvamani, A. Zareei, A. Elkashif, M.K. Maruthamuthu, S. Chittiboyina et al., Hierarchical micro/mesoporous copper structure with enhanced antimicrobial property via laser surface texturing. Adv. Mater. Interfaces 7, 1901890 (2020). https://doi.org/10.1002/admi.201901890
R. Molina, M. Ertuğrul, Á. Larrea, R. Navarro, V. Rico et al., Laser-induced scanning transfer deposition of silver electrodes on glass surfaces: a green and scalable technology. Appl. Surf. Sci. 556, 149673 (2021). https://doi.org/10.1016/j.apsusc.2021.149673
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
L. Xu, Y. Yang, Z.-W. Hu, S.-H. Yu, Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano 10, 3823–3834 (2016). https://doi.org/10.1021/acsnano.6b00704
L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. Le Cras, Comprehensive X-ray photoelectron spectroscopy study of the conversion reaction mechanism of CuO in lithiated thin film electrodes. J. Phys. Chem. C 117, 4421–4430 (2013). https://doi.org/10.1021/jp3119633
S. Menkin, C.A. O’Keefe, A.B. Gunnarsdóttir, S. Dey, F.M. Pesci et al., Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021). https://doi.org/10.1021/acs.jpcc.1c03877
R. Kumar, P. Rai, A. Sharma, Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv. 6, 3815–3822 (2016). https://doi.org/10.1039/C5RA20331G
D. Ye, G. Liang, H. Li, J. Luo, S. Zhang et al., A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223–230 (2013). https://doi.org/10.1016/j.talanta.2013.04.008
Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia et al., Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31, 426–432 (2012). https://doi.org/10.1016/j.bios.2011.11.006
L.-Y. Lin, B.B. Karakocak, S. Kavadiya, T. Soundappan, P. Biswas, A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sens. Actuat. B Chem. 259, 745–752 (2018). https://doi.org/10.1016/j.snb.2017.12.035
L. Laffont, M.Y. Wu, F. Chevallier, P. Poizot, M. Morcrette et al., High resolution EELS of Cu–V oxides: application to batteries materials. Micron 37, 459–464 (2006). https://doi.org/10.1016/j.micron.2005.11.007
Y. Duan, Z.-Y. Yu, S.-J. Hu, X.-S. Zheng, C.-T. Zhang et al., Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. Int. Ed. 58, 15772–15777 (2019). https://doi.org/10.1002/anie.201909939