High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode
Corresponding Author: Dong‑Liang Peng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 55
Abstract
High-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
Highlights:
1 Layered iron vanadate ultrathin nanosheets (FeVO UNSs) with a thickness of ~ 2.2 nm were synthesized by a sonicate-assisted method.
2 Pseudocapacitive Na+ intercalation of FeVO UNSs anode delivers high initial coulombic efficiency (93.86%), high reversible capacity (292 mAh g−1), excellent rate capability, and remarkable cycling stability.
3 A pseudocapacitor–battery hybrid SIC is assembled with the elimination of presodiation and delivers high energy and power densities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nature Rev. Mater. 5(1), 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- Y.-S. Hu, Y. Lu, 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 4(11), 2689–2690 (2019). https://doi.org/10.1021/acsenergylett.9b02190
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
- Z. Dandan, W. Ying, Z. Yafei, High-performance Li-ion batteries and supercapacitors base on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). https://doi.org/10.5101/nml.v3i1.p62-71
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nature Commun. 7(1), 12647 (2016). https://doi.org/10.1038/ncomms12647
- K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363–9373 (2012). https://doi.org/10.1039/C2EE21675B
- B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30(17), 1705670 (2018). https://doi.org/10.1002/adma.201705670
- L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 25(22), 3341–3350 (2015). https://doi.org/10.1002/adfm.201404348
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
- H. Li, L. Peng, Y. Zhu, X. Zhang, G. Yu, Achieving high-energy–high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 16(9), 5938–5943 (2016). https://doi.org/10.1021/acs.nanolett.6b02932
- Y. Yuan, C. Wang, K. Lei, H. Li, F. Li et al., Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 4(9), 1261–1265 (2018). https://doi.org/10.1021/acscentsci.8b00437
- D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang et al., Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8(13), 1702769 (2018). https://doi.org/10.1002/aenm.201702769
- D. Han, J. Zhang, Z. Weng, D. Kong, Y. Tao et al., Two-dimensional materials for lithium/sodium-ion capacitors. Mater. Today Energy 11, 30–45 (2019). https://doi.org/10.1016/j.mtener.2018.10.013
- Z. Mao, H. Wang, D. Chao, R. Wang, B. He et al., Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 16(33), 2001950 (2020). https://doi.org/10.1002/smll.202001950
- F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang et al., Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 29(18), 1606860 (2017). https://doi.org/10.1002/adma.201606860
- X. Lixin, Y. Ze, S. Jingying, Z. Haiqing, C. Xiaowei et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of Mxene nanosheets for high-power sodium-ion hybrid capacitors. Nature Commun. 6(1), 6544 (2015). https://doi.org/10.1038/ncomms7544
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow Mxene spheres and 3D macroporous mxene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (Mxene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
- D. Yonghao, C. Yu, X. Na, L. Xintong, L. Linlin et al., Facile synthesis of FePS3 nanosheets@mxene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12, 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26(21), 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
- Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng et al., MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12794–12798 (2014). https://doi.org/10.1002/anie.201407898
- R. Wang, S. Wang, X. Peng, Y. Zhang, D. Jin et al., Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl. Mater. Interfaces 9(38), 32745–32755 (2017). https://doi.org/10.1021/acsami.7b09813
- P. Jeżowski, O. Crosnier, E. Deunf, P. Poizot, F. Béguin et al., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nature Mater. 17(2), 167–173 (2018). https://doi.org/10.1038/nmat5029
- C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen et al., High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bull. 63, 1125 (2018). https://doi.org/10.1016/j.scib.2018.07.018
- H. Huang, T. Tian, L. Pan, X. Chen, E. Tervoort et al., Layered metal vanadates with different interlayer cations for high-rate Na-ion storage. J. Mater. Chem. A 7(27), 16109–16116 (2019). https://doi.org/10.1039/C9TA05554A
- R. Muruganantham, W.-R. Liu, C.-H. Lin, M. Rudysh, M. Piasecki, Design of meso/macro porous 2D Man-vanadate as potential novel anode materials for sodium-ion storage. J. Energy Storage 26, 100915 (2019). https://doi.org/10.1016/j.est.2019.100915
- Q. Wei, R.H. DeBlock, D.M. Butts, C. Choi, B. Dunn, Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 3(3), 221–234 (2020). https://doi.org/10.1002/eem2.12131
- X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
- Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao et al., Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018). https://doi.org/10.1016/j.nanoen.2018.02.028
- Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
- Y. Luo, D. Huang, C. Liang, P. Wang, K. Han et al., Fe2VO4 hierarchical porous microparticles prepared via a facile surface solvation treatment for high-performance lithium and sodium storage. Small 15(7), 1804706 (2019). https://doi.org/10.1002/smll.201804706
- D. Chao, C.-H. Lai, P. Liang, Q. Wei, Y.-S. Wang et al., Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 8(16), 1800058 (2018). https://doi.org/10.1002/aenm.201800058
- Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian et al., Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 3(15), 8070–8075 (2015). https://doi.org/10.1039/C5TA00502G
- S.-H. Yu, S.H. Lee, D.J. Lee, Y.-E. Sung, T. Hyeon, Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12(16), 2146–2172 (2016). https://doi.org/10.1002/smll.201502299
- X. Xu, R. Zhao, W. Ai, B. Chen, H. Du et al., Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30(27), 1800658 (2018). https://doi.org/10.1002/adma.201800658
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nature Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
- G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu et al., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2(7), 17090 (2017). https://doi.org/10.1038/nenergy.2017.90
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnol. 7(5), 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
- W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier et al., Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 1(9), 516–522 (2015). https://doi.org/10.1021/acscentsci.5b00329
- C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier et al., Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
- N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao et al., 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5(5), 1401123 (2015). https://doi.org/10.1002/aenm.201401123
- Z.-L. Xu, K. Lim, K.-Y. Park, G. Yoon, W.M. Seong et al., Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 28(29), 1802099 (2018). https://doi.org/10.1002/adfm.201802099
- B. Kong, L. Zu, C. Peng, Y. Zhang, W. Zhang et al., Direct superassemblies of freestanding metal–carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J. Am. Chem. Soc. 138(50), 16533–16541 (2016). https://doi.org/10.1021/jacs.6b10782
- L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu et al., Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Commun. 8(1), 15139 (2017). https://doi.org/10.1038/ncomms15139
- Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Commun. 4(1), 2365 (2013). https://doi.org/10.1038/ncomms3365
- Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, W.-H. Li et al., Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 65(2095–9273), 702 (2020). https://doi.org/10.1016/j.scib.2020.01.018
- Z. Mao, R. Wang, B. He, Y. Gong, H. Wang, Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15(36), 1902466 (2019). https://doi.org/10.1002/smll.201902466
- Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
- X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 28(46), 1804458 (2018). https://doi.org/10.1002/adfm.201804458
- K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195(18), 6250–6254 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.104
References
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nature Rev. Mater. 5(1), 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
Y.-S. Hu, Y. Lu, 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 4(11), 2689–2690 (2019). https://doi.org/10.1021/acsenergylett.9b02190
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
Z. Dandan, W. Ying, Z. Yafei, High-performance Li-ion batteries and supercapacitors base on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). https://doi.org/10.5101/nml.v3i1.p62-71
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nature Commun. 7(1), 12647 (2016). https://doi.org/10.1038/ncomms12647
K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363–9373 (2012). https://doi.org/10.1039/C2EE21675B
B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30(17), 1705670 (2018). https://doi.org/10.1002/adma.201705670
L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 25(22), 3341–3350 (2015). https://doi.org/10.1002/adfm.201404348
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
H. Li, L. Peng, Y. Zhu, X. Zhang, G. Yu, Achieving high-energy–high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 16(9), 5938–5943 (2016). https://doi.org/10.1021/acs.nanolett.6b02932
Y. Yuan, C. Wang, K. Lei, H. Li, F. Li et al., Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 4(9), 1261–1265 (2018). https://doi.org/10.1021/acscentsci.8b00437
D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang et al., Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8(13), 1702769 (2018). https://doi.org/10.1002/aenm.201702769
D. Han, J. Zhang, Z. Weng, D. Kong, Y. Tao et al., Two-dimensional materials for lithium/sodium-ion capacitors. Mater. Today Energy 11, 30–45 (2019). https://doi.org/10.1016/j.mtener.2018.10.013
Z. Mao, H. Wang, D. Chao, R. Wang, B. He et al., Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 16(33), 2001950 (2020). https://doi.org/10.1002/smll.202001950
F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang et al., Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 29(18), 1606860 (2017). https://doi.org/10.1002/adma.201606860
X. Lixin, Y. Ze, S. Jingying, Z. Haiqing, C. Xiaowei et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of Mxene nanosheets for high-power sodium-ion hybrid capacitors. Nature Commun. 6(1), 6544 (2015). https://doi.org/10.1038/ncomms7544
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow Mxene spheres and 3D macroporous mxene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (Mxene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
D. Yonghao, C. Yu, X. Na, L. Xintong, L. Linlin et al., Facile synthesis of FePS3 nanosheets@mxene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12, 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26(21), 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng et al., MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12794–12798 (2014). https://doi.org/10.1002/anie.201407898
R. Wang, S. Wang, X. Peng, Y. Zhang, D. Jin et al., Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl. Mater. Interfaces 9(38), 32745–32755 (2017). https://doi.org/10.1021/acsami.7b09813
P. Jeżowski, O. Crosnier, E. Deunf, P. Poizot, F. Béguin et al., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nature Mater. 17(2), 167–173 (2018). https://doi.org/10.1038/nmat5029
C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen et al., High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bull. 63, 1125 (2018). https://doi.org/10.1016/j.scib.2018.07.018
H. Huang, T. Tian, L. Pan, X. Chen, E. Tervoort et al., Layered metal vanadates with different interlayer cations for high-rate Na-ion storage. J. Mater. Chem. A 7(27), 16109–16116 (2019). https://doi.org/10.1039/C9TA05554A
R. Muruganantham, W.-R. Liu, C.-H. Lin, M. Rudysh, M. Piasecki, Design of meso/macro porous 2D Man-vanadate as potential novel anode materials for sodium-ion storage. J. Energy Storage 26, 100915 (2019). https://doi.org/10.1016/j.est.2019.100915
Q. Wei, R.H. DeBlock, D.M. Butts, C. Choi, B. Dunn, Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 3(3), 221–234 (2020). https://doi.org/10.1002/eem2.12131
X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao et al., Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018). https://doi.org/10.1016/j.nanoen.2018.02.028
Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
Y. Luo, D. Huang, C. Liang, P. Wang, K. Han et al., Fe2VO4 hierarchical porous microparticles prepared via a facile surface solvation treatment for high-performance lithium and sodium storage. Small 15(7), 1804706 (2019). https://doi.org/10.1002/smll.201804706
D. Chao, C.-H. Lai, P. Liang, Q. Wei, Y.-S. Wang et al., Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 8(16), 1800058 (2018). https://doi.org/10.1002/aenm.201800058
Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian et al., Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 3(15), 8070–8075 (2015). https://doi.org/10.1039/C5TA00502G
S.-H. Yu, S.H. Lee, D.J. Lee, Y.-E. Sung, T. Hyeon, Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12(16), 2146–2172 (2016). https://doi.org/10.1002/smll.201502299
X. Xu, R. Zhao, W. Ai, B. Chen, H. Du et al., Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30(27), 1800658 (2018). https://doi.org/10.1002/adma.201800658
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nature Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu et al., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2(7), 17090 (2017). https://doi.org/10.1038/nenergy.2017.90
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnol. 7(5), 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier et al., Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 1(9), 516–522 (2015). https://doi.org/10.1021/acscentsci.5b00329
C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier et al., Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao et al., 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5(5), 1401123 (2015). https://doi.org/10.1002/aenm.201401123
Z.-L. Xu, K. Lim, K.-Y. Park, G. Yoon, W.M. Seong et al., Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 28(29), 1802099 (2018). https://doi.org/10.1002/adfm.201802099
B. Kong, L. Zu, C. Peng, Y. Zhang, W. Zhang et al., Direct superassemblies of freestanding metal–carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J. Am. Chem. Soc. 138(50), 16533–16541 (2016). https://doi.org/10.1021/jacs.6b10782
L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu et al., Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Commun. 8(1), 15139 (2017). https://doi.org/10.1038/ncomms15139
Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Commun. 4(1), 2365 (2013). https://doi.org/10.1038/ncomms3365
Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, W.-H. Li et al., Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 65(2095–9273), 702 (2020). https://doi.org/10.1016/j.scib.2020.01.018
Z. Mao, R. Wang, B. He, Y. Gong, H. Wang, Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15(36), 1902466 (2019). https://doi.org/10.1002/smll.201902466
Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 28(46), 1804458 (2018). https://doi.org/10.1002/adfm.201804458
K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195(18), 6250–6254 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.104