Constructed Mott–Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O2 Battery
Corresponding Author: Guanghui Yue
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 258
Abstract
Lithium-oxygen batteries (LOBs) with high energy density are a promising advanced energy storage technology. However, the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time, resulting in large polarization and battery failure in a short time. Therefore, a self-supporting interconnected nanosheet array network NiCo2O4/MnO2 with a Mott–Schottky heterostructure on titanium paper (TP-NCO/MO) is ingeniously designed as an efficient cathode catalyst material for LOBs. This heterostructure can accelerate electron transfer and influence the charge transfer process during adsorption of intermediate by triggering the interface disturbance at the heterogeneous interface, thus accelerating oxygen reduction and oxygen evolution kinetics and regulating product decomposition, which is expected to solve the above problems. The meticulously designed unique structural advantages enable the TP-NCO/MO cathode catalyst to exhibit an astounding ultra-long cycle life of 800 cycles and an extraordinarily low overpotential of 0.73 V. This study utilizes a simple method to cleverly regulate the morphology of the discharge products by constructing a Mott–Schottky heterostructure, providing important reference for the design of efficient catalysts aimed at optimizing the adsorption of reaction intermediates.
Highlights:
1 A carbon free self supported Mott-Schottky heterostructure was constructed as an efficient cathode catalyst for lithium oxygen batteries, achieving homogeneous contact between the two materials for strong interfacial interactions.
2 The heterostructure triggered interfacial perturbations and band structure changes, which accelerated oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, resulting in an extremely long cycle life of 800 cycles and an extremely low overpotential of 0.73 V.
3 Combined with advanced characterization techniques and density functional theory calculations, the underlying mechanism behind the boosted ORR/OER activities and the electrocatalytic mechanism were revealed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis et al., A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018). https://doi.org/10.1038/nature25984
- Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
- A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/d1ee00508a
- J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu et al., Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014). https://doi.org/10.1021/cr400573b
- Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746–7786 (2014). https://doi.org/10.1039/C3CS60248F
- J. Lai, Y. Xing, N. Chen, L. Li, F. Wu et al., Electrolytes for rechargeable lithium–air batteries. Angew. Chem. Int. Ed. 59, 2974–2997 (2020). https://doi.org/10.1002/anie.201903459
- J. Liu, Y. Zhao, X. Li, C. Wang, Y. Zeng et al., CuCr2O4@rGO nanocomposites as high-performance cathode catalyst for rechargeable lithium–oxygen batteries. Nano-Micro Lett. 10, 22 (2017). https://doi.org/10.1007/s40820-017-0175-z
- C. Zhao, Z. Yan, B. Zhou, Y. Pan, A. Hu et al., Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries. Angew. Chem. Int. Ed. 62, e202302746 (2023). https://doi.org/10.1002/anie.202302746
- G. Yue, Z. Hong, Y. Xia, T. Yang, Y. Wu, Bifunctional electrocatalysts materials for non-aqueous Li–air batteries. Coatings 12, 1227 (2022). https://doi.org/10.3390/coatings12081227
- Y. Dou, S. Xing, Z. Zhang, Z. Zhou, Solving the singlet oxygen puzzle in metal-O2 batteries: current progress and future directions. Electrochem. Energy Rev. 7, 6 (2024). https://doi.org/10.1007/s41918-023-00201-w
- R. Li, A. Hu, C. Zhao, B. Zhou, M. He et al., Tailoring mixed geometrical configurations in amorphous catalysts to activate oxygen electrode reactions of lithium-oxygen batteries. Chem. Eng. J. 452, 139162 (2023). https://doi.org/10.1016/j.cej.2022.139162
- J. Lu, Y. Lei, K.C. Lau, X. Luo, P. Du et al., A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013). https://doi.org/10.1038/ncomms3383
- J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang, X.-B. Zhang, Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013). https://doi.org/10.1038/ncomms3438
- L.-N. Song, W. Zhang, Y. Wang, X. Ge, L.-C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11, 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
- X. Li, Z. Qiang, G. Han, S. Guan, Y. Zhao et al., Enhanced redox electrocatalysis in high-entropy perovskite fluorides by tailoring d-p hybridization. Nano-Micro Lett. 16, 55 (2023). https://doi.org/10.1007/s40820-023-01275-3
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-In electric field for efficient energy electrocatalysis. ACS Nano 16, 19959–19979 (2022). https://doi.org/10.1021/acsnano.2c09888
- C. Wu, G. Qi, J. Zhang, J. Cheng, B. Wang, Porous Mo3 P/Mo nanorods as efficient Mott-Schottky cathode catalysts for low polarization Li-CO2 battery. Small 19, e2302078 (2023). https://doi.org/10.1002/smll.202302078
- Y. Xia, T. Yang, Z. Wang, T. Mao, Z. Hong et al., Van der waals forces between S and P ions at the CoP-C@MoS2/C heterointerface with enhanced lithium/sodium storage. Adv. Funct. Mater. 33, 2302830 (2023). https://doi.org/10.1002/adfm.202302830
- M. Shi, Z. Liu, S. Zhang, S. Liang, Y. Jiang et al., A Mott-Schottky heterogeneous layer for Li–S batteries: enabling both high stability and commercial-sulfur utilization. Adv. Energy Mater. 12, 2103657 (2022). https://doi.org/10.1002/aenm.202103657
- A. Hu, M. Zhou, T. Lei, Y. Hu, X. Du et al., Optimizing redox reactions in aprotic lithium–sulfur batteries. Adv. Energy Mater. 10, 2002180 (2020). https://doi.org/10.1002/aenm.202002180
- J. Hong, L. Zhang, Q. Zhu, Z. Du, Y. Zhou et al., A macroporous carbon nanoframe for hosting Mott-Schottky Fe-Co/Mo2C sites as an outstanding bi-functional oxygen electrocatalyst. Mater. Horiz. 10, 5969–5982 (2023). https://doi.org/10.1039/d3mh01237a
- X. Zhao, J. Chen, Z. Bi, S. Chen, L. Feng et al., Electron modulation and morphology engineering jointly accelerate oxygen reaction to enhance Zn-air battery performance. Adv. Sci. 10, e2205889 (2023). https://doi.org/10.1002/advs.202205889
- L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101
- Y. Wang, N.-C. Lai, Y.-R. Lu, Y. Zhou, C.-L. Dong et al., A solvent-controlled oxidation mechanism of Li2O2 in lithium-oxygen batteries. Joule 2, 2364–2380 (2018). https://doi.org/10.1016/j.joule.2018.07.021
- Q. Xia, D. Li, L. Zhao, J. Wang, Y. Long et al., Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li-O2 batteries. Chem. Sci. 13, 2841–2856 (2021). https://doi.org/10.1039/d1sc05781b
- P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries. Adv. Energy Mater. 9, 1900788 (2019). https://doi.org/10.1002/aenm.201900788
- P. Zhang, S. Zhang, M. He, J. Lang, A. Ren et al., Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries. Adv. Sci. 4, 1700172 (2017). https://doi.org/10.1002/advs.201700172
- J. Hafner, Materials simulations using VASP—a quantum perspective to materials science. Comput. Phys. Commun. 177, 6–13 (2007). https://doi.org/10.1016/j.cpc.2007.02.045
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
- M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005). https://doi.org/10.1103/physrevb.71.035105
- Y. Zheng, K. Song, J. Jung, C. Li, Y.-U. Heo et al., Critical descriptor for the rational design of oxide-based catalysts in rechargeable Li–O2 batteries: surface oxygen density. Chem. Mater. 27, 3243–3249 (2015). https://doi.org/10.1021/acs.chemmater.5b00056
- Y.-F. Xu, Y. Chen, G.-L. Xu, X.-R. Zhang, Z. Chen et al., RuO2 nanops supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy 28, 63–70 (2016). https://doi.org/10.1016/j.nanoen.2016.08.009
- C.-H. Chen, S. Suib, Control of catalytic activity via porosity, chemical composition, and morphology of nanostructured porous manganese oxide materials. J. Chin. Chem. Soc. 59, 465–472 (2012). https://doi.org/10.1002/jccs.201100699
- S. Liu, Y. Zhu, J. Xie, Y. Huo, H.Y. Yang et al., Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater. 4, 1301960 (2014). https://doi.org/10.1002/aenm.201301960
- X. Hu, X. Han, Y. Hu, F. Cheng, J. Chen, ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 6, 3522–3525 (2014). https://doi.org/10.1039/c3nr06361e
- B. Liu, Y. Sun, L. Liu, S. Xu, X. Yan, Advances in manganese-based oxides cathodic electrocatalysts for Li–air batteries. Adv. Funct. Mater. 28, 1704973 (2018). https://doi.org/10.1002/adfm.201704973
- S. Zhou, P. Huang, T. Xiong, F. Yang, H. Yang et al., Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries. Small 17, e2100778 (2021). https://doi.org/10.1002/smll.202100778
- Y. Yan, Z. Ran, T. Zeng, X. Wen, H. Xu et al., Interfacial electron redistribution of Hydrangea-like NiO@Ni2 P heterogeneous microspheres with dual-phase synergy for high-performance lithium-oxygen battery. Small 18, e2106707 (2022). https://doi.org/10.1002/smll.202106707
- S. Zhang, C. Tan, R. Yan, X. Zou, F.-L. Hu et al., Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem. Int. Ed. 62, e202302795 (2023). https://doi.org/10.1002/anie.202302795
- J. Sun, Y. Chang, J. Zhang, S. Tian, X. Liu et al., Epitaxial growth of NixCo3-xS4 nanoflakes from co-based Prussian blue analog for high-performance pseudocapacitors. Chem. Eng. J. 473, 145175 (2023). https://doi.org/10.1016/j.cej.2023.145175
- S.-S. Li, X.-L. Zhao, Y.-S. Liu, J.-J. Liu, K.-X. Wang et al., Tailoring the nucleation and growth routes of discharge products for lithium-oxygen batteries through the facet engineering of Ni2P catalysts. Energy Storage Mater. 56, 506–514 (2023). https://doi.org/10.1016/j.ensm.2023.01.023
- L. Jin, A. Xing, Z. Zhu, K. Fu, M. Zhou et al., In situ potential-regulated architecture of an ultrafine Ru-based electrocatalyst for ultralow overpotential lithium-oxygen batteries. Chem. Commun. 59, 5926–5929 (2023). https://doi.org/10.1039/d3cc00589e
- T. Liu, S. Zhao, Q. Xiong, J. Yu, J. Wang et al., Reversible discharge products in Li–air batteries. Adv. Mater. 35, 2208925 (2023). https://doi.org/10.1002/adma.202208925
- P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11, 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
- G. Zhang, G. Li, J. Wang, H. Tong, J. Wang et al., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries. Adv. Energy Mater. 12, 2103910 (2022). https://doi.org/10.1002/aenm.202103910
- T. Yang, Y. Xia, T. Mao, Q. Ding, Z. Wang et al., Phosphorus vacancies and heterojunction interface as effective lithium-peroxide promoter for long-cycle life lithium–oxygen batteries. Adv. Funct. Mater. 32, 2209876 (2022). https://doi.org/10.1002/adfm.202209876
- W.-L. Bai, Z. Zhang, K.-X. Wang, J.-S. Chen, Tuning discrete growth of ultrathin nonstoichiometric Li2−xO2 discs to achieve high cycling performance Li–O2 battery. Battery Energy 1, 20220019 (2022). https://doi.org/10.1002/bte2.20220019
- D.M. Josepetti, B.P. Sousa, S.A.J. Rodrigues, R.G. Freitas, G. Doubek, The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices. J. Energy Chem. 88, 223–231 (2024). https://doi.org/10.1016/j.jechem.2023.09.034
- I. Landa-Medrano, I. Ruiz de Larramendi, N. Ortiz-Vitoriano, R. Pinedo, J. Ignacio Ruiz de Larramendi et al., In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy. J. Power Sources 249, 110–117 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.077
- A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y
References
M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis et al., A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018). https://doi.org/10.1038/nature25984
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/d1ee00508a
J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu et al., Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014). https://doi.org/10.1021/cr400573b
Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746–7786 (2014). https://doi.org/10.1039/C3CS60248F
J. Lai, Y. Xing, N. Chen, L. Li, F. Wu et al., Electrolytes for rechargeable lithium–air batteries. Angew. Chem. Int. Ed. 59, 2974–2997 (2020). https://doi.org/10.1002/anie.201903459
J. Liu, Y. Zhao, X. Li, C. Wang, Y. Zeng et al., CuCr2O4@rGO nanocomposites as high-performance cathode catalyst for rechargeable lithium–oxygen batteries. Nano-Micro Lett. 10, 22 (2017). https://doi.org/10.1007/s40820-017-0175-z
C. Zhao, Z. Yan, B. Zhou, Y. Pan, A. Hu et al., Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries. Angew. Chem. Int. Ed. 62, e202302746 (2023). https://doi.org/10.1002/anie.202302746
G. Yue, Z. Hong, Y. Xia, T. Yang, Y. Wu, Bifunctional electrocatalysts materials for non-aqueous Li–air batteries. Coatings 12, 1227 (2022). https://doi.org/10.3390/coatings12081227
Y. Dou, S. Xing, Z. Zhang, Z. Zhou, Solving the singlet oxygen puzzle in metal-O2 batteries: current progress and future directions. Electrochem. Energy Rev. 7, 6 (2024). https://doi.org/10.1007/s41918-023-00201-w
R. Li, A. Hu, C. Zhao, B. Zhou, M. He et al., Tailoring mixed geometrical configurations in amorphous catalysts to activate oxygen electrode reactions of lithium-oxygen batteries. Chem. Eng. J. 452, 139162 (2023). https://doi.org/10.1016/j.cej.2022.139162
J. Lu, Y. Lei, K.C. Lau, X. Luo, P. Du et al., A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013). https://doi.org/10.1038/ncomms3383
J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang, X.-B. Zhang, Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013). https://doi.org/10.1038/ncomms3438
L.-N. Song, W. Zhang, Y. Wang, X. Ge, L.-C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11, 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
X. Li, Z. Qiang, G. Han, S. Guan, Y. Zhao et al., Enhanced redox electrocatalysis in high-entropy perovskite fluorides by tailoring d-p hybridization. Nano-Micro Lett. 16, 55 (2023). https://doi.org/10.1007/s40820-023-01275-3
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-In electric field for efficient energy electrocatalysis. ACS Nano 16, 19959–19979 (2022). https://doi.org/10.1021/acsnano.2c09888
C. Wu, G. Qi, J. Zhang, J. Cheng, B. Wang, Porous Mo3 P/Mo nanorods as efficient Mott-Schottky cathode catalysts for low polarization Li-CO2 battery. Small 19, e2302078 (2023). https://doi.org/10.1002/smll.202302078
Y. Xia, T. Yang, Z. Wang, T. Mao, Z. Hong et al., Van der waals forces between S and P ions at the CoP-C@MoS2/C heterointerface with enhanced lithium/sodium storage. Adv. Funct. Mater. 33, 2302830 (2023). https://doi.org/10.1002/adfm.202302830
M. Shi, Z. Liu, S. Zhang, S. Liang, Y. Jiang et al., A Mott-Schottky heterogeneous layer for Li–S batteries: enabling both high stability and commercial-sulfur utilization. Adv. Energy Mater. 12, 2103657 (2022). https://doi.org/10.1002/aenm.202103657
A. Hu, M. Zhou, T. Lei, Y. Hu, X. Du et al., Optimizing redox reactions in aprotic lithium–sulfur batteries. Adv. Energy Mater. 10, 2002180 (2020). https://doi.org/10.1002/aenm.202002180
J. Hong, L. Zhang, Q. Zhu, Z. Du, Y. Zhou et al., A macroporous carbon nanoframe for hosting Mott-Schottky Fe-Co/Mo2C sites as an outstanding bi-functional oxygen electrocatalyst. Mater. Horiz. 10, 5969–5982 (2023). https://doi.org/10.1039/d3mh01237a
X. Zhao, J. Chen, Z. Bi, S. Chen, L. Feng et al., Electron modulation and morphology engineering jointly accelerate oxygen reaction to enhance Zn-air battery performance. Adv. Sci. 10, e2205889 (2023). https://doi.org/10.1002/advs.202205889
L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101
Y. Wang, N.-C. Lai, Y.-R. Lu, Y. Zhou, C.-L. Dong et al., A solvent-controlled oxidation mechanism of Li2O2 in lithium-oxygen batteries. Joule 2, 2364–2380 (2018). https://doi.org/10.1016/j.joule.2018.07.021
Q. Xia, D. Li, L. Zhao, J. Wang, Y. Long et al., Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li-O2 batteries. Chem. Sci. 13, 2841–2856 (2021). https://doi.org/10.1039/d1sc05781b
P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries. Adv. Energy Mater. 9, 1900788 (2019). https://doi.org/10.1002/aenm.201900788
P. Zhang, S. Zhang, M. He, J. Lang, A. Ren et al., Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries. Adv. Sci. 4, 1700172 (2017). https://doi.org/10.1002/advs.201700172
J. Hafner, Materials simulations using VASP—a quantum perspective to materials science. Comput. Phys. Commun. 177, 6–13 (2007). https://doi.org/10.1016/j.cpc.2007.02.045
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005). https://doi.org/10.1103/physrevb.71.035105
Y. Zheng, K. Song, J. Jung, C. Li, Y.-U. Heo et al., Critical descriptor for the rational design of oxide-based catalysts in rechargeable Li–O2 batteries: surface oxygen density. Chem. Mater. 27, 3243–3249 (2015). https://doi.org/10.1021/acs.chemmater.5b00056
Y.-F. Xu, Y. Chen, G.-L. Xu, X.-R. Zhang, Z. Chen et al., RuO2 nanops supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy 28, 63–70 (2016). https://doi.org/10.1016/j.nanoen.2016.08.009
C.-H. Chen, S. Suib, Control of catalytic activity via porosity, chemical composition, and morphology of nanostructured porous manganese oxide materials. J. Chin. Chem. Soc. 59, 465–472 (2012). https://doi.org/10.1002/jccs.201100699
S. Liu, Y. Zhu, J. Xie, Y. Huo, H.Y. Yang et al., Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater. 4, 1301960 (2014). https://doi.org/10.1002/aenm.201301960
X. Hu, X. Han, Y. Hu, F. Cheng, J. Chen, ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 6, 3522–3525 (2014). https://doi.org/10.1039/c3nr06361e
B. Liu, Y. Sun, L. Liu, S. Xu, X. Yan, Advances in manganese-based oxides cathodic electrocatalysts for Li–air batteries. Adv. Funct. Mater. 28, 1704973 (2018). https://doi.org/10.1002/adfm.201704973
S. Zhou, P. Huang, T. Xiong, F. Yang, H. Yang et al., Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries. Small 17, e2100778 (2021). https://doi.org/10.1002/smll.202100778
Y. Yan, Z. Ran, T. Zeng, X. Wen, H. Xu et al., Interfacial electron redistribution of Hydrangea-like NiO@Ni2 P heterogeneous microspheres with dual-phase synergy for high-performance lithium-oxygen battery. Small 18, e2106707 (2022). https://doi.org/10.1002/smll.202106707
S. Zhang, C. Tan, R. Yan, X. Zou, F.-L. Hu et al., Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem. Int. Ed. 62, e202302795 (2023). https://doi.org/10.1002/anie.202302795
J. Sun, Y. Chang, J. Zhang, S. Tian, X. Liu et al., Epitaxial growth of NixCo3-xS4 nanoflakes from co-based Prussian blue analog for high-performance pseudocapacitors. Chem. Eng. J. 473, 145175 (2023). https://doi.org/10.1016/j.cej.2023.145175
S.-S. Li, X.-L. Zhao, Y.-S. Liu, J.-J. Liu, K.-X. Wang et al., Tailoring the nucleation and growth routes of discharge products for lithium-oxygen batteries through the facet engineering of Ni2P catalysts. Energy Storage Mater. 56, 506–514 (2023). https://doi.org/10.1016/j.ensm.2023.01.023
L. Jin, A. Xing, Z. Zhu, K. Fu, M. Zhou et al., In situ potential-regulated architecture of an ultrafine Ru-based electrocatalyst for ultralow overpotential lithium-oxygen batteries. Chem. Commun. 59, 5926–5929 (2023). https://doi.org/10.1039/d3cc00589e
T. Liu, S. Zhao, Q. Xiong, J. Yu, J. Wang et al., Reversible discharge products in Li–air batteries. Adv. Mater. 35, 2208925 (2023). https://doi.org/10.1002/adma.202208925
P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11, 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
G. Zhang, G. Li, J. Wang, H. Tong, J. Wang et al., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries. Adv. Energy Mater. 12, 2103910 (2022). https://doi.org/10.1002/aenm.202103910
T. Yang, Y. Xia, T. Mao, Q. Ding, Z. Wang et al., Phosphorus vacancies and heterojunction interface as effective lithium-peroxide promoter for long-cycle life lithium–oxygen batteries. Adv. Funct. Mater. 32, 2209876 (2022). https://doi.org/10.1002/adfm.202209876
W.-L. Bai, Z. Zhang, K.-X. Wang, J.-S. Chen, Tuning discrete growth of ultrathin nonstoichiometric Li2−xO2 discs to achieve high cycling performance Li–O2 battery. Battery Energy 1, 20220019 (2022). https://doi.org/10.1002/bte2.20220019
D.M. Josepetti, B.P. Sousa, S.A.J. Rodrigues, R.G. Freitas, G. Doubek, The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices. J. Energy Chem. 88, 223–231 (2024). https://doi.org/10.1016/j.jechem.2023.09.034
I. Landa-Medrano, I. Ruiz de Larramendi, N. Ortiz-Vitoriano, R. Pinedo, J. Ignacio Ruiz de Larramendi et al., In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy. J. Power Sources 249, 110–117 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.077
A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y