Boosting the Electrochemical Performance of Li- and Mn-Rich Cathodes by a Three-in-One Strategy
Corresponding Author: Baihua Qu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 205
Abstract
There are plenty of issues need to be solved before the practical application of Li- and Mn-rich cathodes, including the detrimental voltage decay and mediocre rate capability, etc. Element doping can effectively solve the above problems, but cause the loss of capacity. The introduction of appropriate defects can compensate the capacity loss; however, it will lead to structural mismatch and stress accumulation. Herein, a three-in-one method that combines cation–polyanion co-doping, defect construction, and stress engineering is proposed. The co-doped Na+/SO42− can stabilize the layer framework and enhance the capacity and voltage stability. The induced defects would activate more reaction sites and promote the electrochemical performance. Meanwhile, the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling. Consequently, the modified sample retains a capacity of 273 mAh g−1 with a high-capacity retention of 94.1% after 100 cycles at 0.2 C, and 152 mAh g−1 after 1000 cycles at 2 C, the corresponding voltage attenuation is less than 0.907 mV per cycle.
Highlights:
1 A novel three-in-one method is put forward to prepare Li- and Mn-rich cathode.
2 The stress evolution of layered materials during cycling is characterized.
3 The capacity and voltage stability are enhanced greatly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. He, W. Guo, H. Wu, L. Lin, Q. Liu et al., Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 33(17), e2005937 (2021). https://doi.org/10.1002/adma.202005937
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2009). https://doi.org/10.1021/cm901452z
- J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng et al., Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021). https://doi.org/10.1016/j.mattod.2020.10.028
- J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- H. Khalifa, S.A. El-Safty, A. Reda, M.A. Shenashen, M.M. Selim et al., Theoretical and experimental sets of choice anode/cathode architectonics for high-performance full-scale LIB built-up models. Nano-Micro Lett. 11(1), 84–107 (2019). https://doi.org/10.1007/s40820-019-0315-8
- Y. Lu, X. Rong, Y.-S. Hu, H. Li, L. Chen, Research and development of advanced battery materials in china. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
- L. Deng, F. Wu, X. Gao, W. Wu, Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 39(12), 1457–1463 (2020). https://doi.org/10.1007/s12598-014-0316-1
- Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
- Y. Ji, S. Weng, X. Li, Q. Zhang, L. Gu, Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 39(3), 205–217 (2020). https://doi.org/10.1007/s12598-020-01369-6
- Y. Kobayashi, M. Sawamura, S. Kondo, M. Harada, Y. Noda et al., Activation and stabilization mechanisms of anionic redox for Li storage applications: Joint experimental and theoretical study on Li2TiO3-LiMnO2 binary system. Mater. Today 37, 43–55 (2020). https://doi.org/10.1016/j.mattod.2020.03.002
- E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu et al., Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv. Mater. 32(49), e1906070 (2020). https://doi.org/10.1002/adma.201906070
- W. Liu, X. Sun, X. Zhang, C. Li, K. Wang et al., Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li-ion battery. Rare Met. 40(3), 521–528 (2021). https://doi.org/10.1007/s12598-020-01406-4
- Q. Liu, T. Xie, Q. Xie, W. He, Y. Zhang et al., Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 13(7), 8239–8248 (2021). https://doi.org/10.1021/acsami.0c19040
- Q. Ma, Z. Chen, S. Zhong, J. Meng, F. Lai et al., Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81, 105622 (2021). https://doi.org/10.1016/j.nanoen.2020.105622
- T. Liu, S. Zhao, L. Gou, X. Wu, C.W. Nan, Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 38(3), 189–198 (2019). https://doi.org/10.1007/s12598-018-1168-x
- M. Han, Z. Liu, X. Shen, L. Yang, X. Shen et al., Stacking faults hinder lithium insertion in Li2RuO3. Adv. Energy Mater. 10(48), 2002631 (2020). https://doi.org/10.1002/aenm.202002631
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
- H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin et al., Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 16, 220–227 (2019). https://doi.org/10.1016/j.ensm.2018.05.022
- Q. Li, Z. Yao, E. Lee, Y. Xu, M.M. Thackeray et al., Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 10(1), 1692–1699 (2019). https://doi.org/10.1038/s41467-019-09408-2
- W. He, P. Liu, B. Qu, Z. Zheng, H. Zheng et al., Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 6(14), 1802114 (2019). https://doi.org/10.1002/advs.201802114
- K. Park, Effect of Li ion in transition metal sites on electrochemical behavior of layered lithium manganese oxides solid solutions. Solid State Ionics 171(1–2), 141–146 (2004). https://doi.org/10.1016/j.ssi.2004.04.016
- B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242
- X. Liang, R. Dong, J.C. Ho, Self-assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications. Adv. Mater. Technol. 4(3), 1800541 (2019). https://doi.org/10.1002/admt.201800541
- Y. Zhou, J. Chen, J.-T. Li, Z.-B. Lin, S.-G. Sun, Onion-like metal-organic colloidosomes from counterion-induced self-assembly of anionic surfactants. J. Mater. Chem. A 6(29), 14091–14102 (2018). https://doi.org/10.1039/c8ta04057e
- W. He, P. Liu, Y. Zhou, H. Zheng, Z. Zheng et al., A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustain. Mater. Technol. 25, e00171 (2020). https://doi.org/10.1016/j.susmat.2020.e00171
- T. Zhao, A. Elzatahry, X. Li, D. Zhao, Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4(12), 775–791 (2019). https://doi.org/10.1038/s41578-019-0144-x
- X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
- B. Song, C. Zhou, Y. Chen, Z. Liu, M.O. Lai et al., Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv. 4(83), 44244–44252 (2014). https://doi.org/10.1039/c4ra04976d
- W. He, P. Liu, Y. Zhang, J. Lin, B. Qu et al., Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J. Power Sources 499, 229915 (2021). https://doi.org/10.1016/j.jpowsour.2021.229915
- S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 7(1), 13598–13606 (2016). https://doi.org/10.1038/ncomms13598
- X. Yu, Releasing oxygen from the bulk. Nat. Energy 6, 572–573 (2021). https://doi.org/10.1038/s41560-021-00834-5
- T. Wu, X. Liu, X. Zhang, Y. Lu, B. Wang et al., Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries. Adv. Mater. 33(2), e2001358 (2021). https://doi.org/10.1002/adma.202001358
- M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang et al., Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 7(3), 1902538 (2020). https://doi.org/10.1002/advs.201902538
References
W. He, W. Guo, H. Wu, L. Lin, Q. Liu et al., Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 33(17), e2005937 (2021). https://doi.org/10.1002/adma.202005937
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2009). https://doi.org/10.1021/cm901452z
J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng et al., Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021). https://doi.org/10.1016/j.mattod.2020.10.028
J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
H. Khalifa, S.A. El-Safty, A. Reda, M.A. Shenashen, M.M. Selim et al., Theoretical and experimental sets of choice anode/cathode architectonics for high-performance full-scale LIB built-up models. Nano-Micro Lett. 11(1), 84–107 (2019). https://doi.org/10.1007/s40820-019-0315-8
Y. Lu, X. Rong, Y.-S. Hu, H. Li, L. Chen, Research and development of advanced battery materials in china. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
L. Deng, F. Wu, X. Gao, W. Wu, Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 39(12), 1457–1463 (2020). https://doi.org/10.1007/s12598-014-0316-1
Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
Y. Ji, S. Weng, X. Li, Q. Zhang, L. Gu, Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 39(3), 205–217 (2020). https://doi.org/10.1007/s12598-020-01369-6
Y. Kobayashi, M. Sawamura, S. Kondo, M. Harada, Y. Noda et al., Activation and stabilization mechanisms of anionic redox for Li storage applications: Joint experimental and theoretical study on Li2TiO3-LiMnO2 binary system. Mater. Today 37, 43–55 (2020). https://doi.org/10.1016/j.mattod.2020.03.002
E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu et al., Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv. Mater. 32(49), e1906070 (2020). https://doi.org/10.1002/adma.201906070
W. Liu, X. Sun, X. Zhang, C. Li, K. Wang et al., Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li-ion battery. Rare Met. 40(3), 521–528 (2021). https://doi.org/10.1007/s12598-020-01406-4
Q. Liu, T. Xie, Q. Xie, W. He, Y. Zhang et al., Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 13(7), 8239–8248 (2021). https://doi.org/10.1021/acsami.0c19040
Q. Ma, Z. Chen, S. Zhong, J. Meng, F. Lai et al., Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81, 105622 (2021). https://doi.org/10.1016/j.nanoen.2020.105622
T. Liu, S. Zhao, L. Gou, X. Wu, C.W. Nan, Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 38(3), 189–198 (2019). https://doi.org/10.1007/s12598-018-1168-x
M. Han, Z. Liu, X. Shen, L. Yang, X. Shen et al., Stacking faults hinder lithium insertion in Li2RuO3. Adv. Energy Mater. 10(48), 2002631 (2020). https://doi.org/10.1002/aenm.202002631
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin et al., Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 16, 220–227 (2019). https://doi.org/10.1016/j.ensm.2018.05.022
Q. Li, Z. Yao, E. Lee, Y. Xu, M.M. Thackeray et al., Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 10(1), 1692–1699 (2019). https://doi.org/10.1038/s41467-019-09408-2
W. He, P. Liu, B. Qu, Z. Zheng, H. Zheng et al., Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 6(14), 1802114 (2019). https://doi.org/10.1002/advs.201802114
K. Park, Effect of Li ion in transition metal sites on electrochemical behavior of layered lithium manganese oxides solid solutions. Solid State Ionics 171(1–2), 141–146 (2004). https://doi.org/10.1016/j.ssi.2004.04.016
B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242
X. Liang, R. Dong, J.C. Ho, Self-assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications. Adv. Mater. Technol. 4(3), 1800541 (2019). https://doi.org/10.1002/admt.201800541
Y. Zhou, J. Chen, J.-T. Li, Z.-B. Lin, S.-G. Sun, Onion-like metal-organic colloidosomes from counterion-induced self-assembly of anionic surfactants. J. Mater. Chem. A 6(29), 14091–14102 (2018). https://doi.org/10.1039/c8ta04057e
W. He, P. Liu, Y. Zhou, H. Zheng, Z. Zheng et al., A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustain. Mater. Technol. 25, e00171 (2020). https://doi.org/10.1016/j.susmat.2020.e00171
T. Zhao, A. Elzatahry, X. Li, D. Zhao, Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4(12), 775–791 (2019). https://doi.org/10.1038/s41578-019-0144-x
X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
B. Song, C. Zhou, Y. Chen, Z. Liu, M.O. Lai et al., Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv. 4(83), 44244–44252 (2014). https://doi.org/10.1039/c4ra04976d
W. He, P. Liu, Y. Zhang, J. Lin, B. Qu et al., Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J. Power Sources 499, 229915 (2021). https://doi.org/10.1016/j.jpowsour.2021.229915
S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 7(1), 13598–13606 (2016). https://doi.org/10.1038/ncomms13598
X. Yu, Releasing oxygen from the bulk. Nat. Energy 6, 572–573 (2021). https://doi.org/10.1038/s41560-021-00834-5
T. Wu, X. Liu, X. Zhang, Y. Lu, B. Wang et al., Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries. Adv. Mater. 33(2), e2001358 (2021). https://doi.org/10.1002/adma.202001358
M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang et al., Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 7(3), 1902538 (2020). https://doi.org/10.1002/advs.201902538