Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li–S Full Batteries
Corresponding Author: Qingshui Xie
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 67
Abstract
The commercial viability of lithium–sulfur batteries is still challenged by the notorious lithium polysulfides (LiPSs) shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode. Herein, a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton (3DIO FCSe-QDs@NC) is elaborately designed for both sulfur cathode and Li metal anode. The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble LiPSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors. Simultaneously, the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites. Taking advantage of these merits, the assembled Li–S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability (a low decay rate of 0.014% over 2,000 cycles at 2C). Remarkably, a promising areal capacity of 8.41 mAh cm−2 can be achieved at the sulfur loading up to 8.50 mg cm−2 with an ultra-low electrolyte/sulfur ratio of 4.1 μL mg−1. This work paves the bi-serve host design from systematic experimental and theoretical analysis, which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li–S full batteries.
Highlights:
1 A bi-service host with lithiophilic/sulfiphilic Fe2CoSe4 quantum dots embedded in three-dimensional ordered nitrogen-doped carbon skeleton is elaborately developed for both the sulfur cathode and Li anode synchronously.
2 The highly dispersed Fe2CoSe4 quantum dots can not only act as a redox accelerator to promote the bidirectional conversion of LiPSs but also regulate the uniform Li plating/stripping to mitigate the growth of Li dendrite.
3 The assembled Li-S full batteries achieve excellent long-term cyclability and a remarkable areal capacity of 8.41 mAh cm2 at high sulfur loading of 8.50 mg cm2, and the pouch full battery also displays high capacity and cycling-stability at lean electrolyte condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004
- S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 33(50), 2008654 (2021). https://doi.org/10.1002/adma.202008654
- R. Fang, K. Chen, L. Yin, Z. Sun, F. Li et al., The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019). https://doi.org/10.1002/adma.201800863
- J. Wang, W.Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32(2), 2107166 (2021). https://doi.org/10.1002/adfm.202107166
- X.J. Zhou, J. Tian, Q.P. Wu, J.L. Hu, C.L. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater. 24(5), 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
- Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi et al., Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery. Nano Energy 89(9), 106331 (2021). https://doi.org/10.1016/j.nanoen.2021.106331
- P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
- P. Wang, Z. Zhang, N. Song, X. An, J. Liu et al., WP nanocrystals on n,p dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium–sulfur batteries. CCS Chemistry 5(2), 397–411 (2023). https://doi.org/10.31635/ccschem.022.202202163
- S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-Dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 14(1), 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
- Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang et al., Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries. Nano Energy 86(7), 106111 (2021). https://doi.org/10.1016/j.nanoen.2021.106111
- P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
- W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in li-s batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
- Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang et al., Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv. Mater. 32(4), 1904876 (2020). https://doi.org/10.1002/adma.201904876
- D. Yang, C. Zhang, J. Biendicho, X. Han, Z. Liang et al., ZnSe/N-doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries. ACS Nano 14(11), 15492–15504 (2020). https://doi.org/10.1021/acsnano.0c06112
- L. Meng, Y. Yao, J. Liu, Z. Wang, D. Qian et al., MoSe2 nanosheets as a functional host for lithium-sulfur batteries. J. Energy Chem. 47(5), 241–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.003
- D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
- Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li et al., Crystalline multi-metallic compounds as host materials in cathode for lithium-sulfur batteries. Small 17(22), 2005332 (2021). https://doi.org/10.1002/smll.202005332
- Y. Hu, W. Chen, T. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium-sulfur batteries. Adv. Energy Mater. 9(7), 1802955 (2019). https://doi.org/10.1002/aenm.201802955
- T. Shen, L.P. Yang, M.E. Pam, Y.M. Shi, H.Y. Yang, Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. J. Mater. Chem. A 8(43), 22488–22506 (2020). https://doi.org/10.1039/d0ta07674k
- Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li et al., Multifunctional ZnCo2O4 quantum dots encapsulated in carbon carrier for anchoring/catalyzing polysulfides and self-repairing lithium metal anode in lithium-sulfur batteries. Adv. Funct. Mater. 32(12), 2109462 (2021). https://doi.org/10.1002/adfm.202109462
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- Y. An, C. Luo, D. Yao, S. Wen, P. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13(1), 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
- W.J. Chen, B.Q. Li, C.X. Zhao, M. Zhao, T.Q. Yuan et al., Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59(27), 10732–10745 (2020). https://doi.org/10.1002/anie.201912701
- Y. Liu, D. Gao, H. Xiang, X. Feng, Y. Yu, Research progress on copper-based current collector for lithium metal batteries. Energy Fuels 35(16), 12921–12937 (2021). https://doi.org/10.1021/acs.energyfuels.1c02008
- S. Park, H.J. Jin, Y.S. Yun, Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 32(51), 2002193 (2020). https://doi.org/10.1002/adma.202002193
- X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16(8), 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- K. Liu, Z. Li, W. Xie, J. Li, D. Rao et al., Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater. 15(5), 308–314 (2018). https://doi.org/10.1016/j.ensm.2018.05.025
- J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang et al., Is graphite lithiophobic or lithiophilic? Natl. Sci. Rev. 7(7), 1208–1217 (2020). https://doi.org/10.1093/nsr/nwz222
- X. Yan, L. Lin, Q. Chen, Q. Xie, B. Qu et al., Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 3(2), 303–329 (2021). https://doi.org/10.1002/cey2.95
- P. Ghimire, M. Jaroniec, Renaissance of Stober method for synthesis of colloidal ps: New developments and opportunities. J. Colloid Interface Sci. 584, 838–865 (2021). https://doi.org/10.1016/j.jcis.2020.10.014
- L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan et al., Bifunctional catalytic effect of cose2 for lithium-sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32(8), 2107838 (2022). https://doi.org/10.1002/adfm.202107838
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13(1), 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
- B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Nano-Micro Lett. 14(1), 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance li-s batteries. Nano-Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
- Z. Qiao, Y. Zhang, Z. Meng, Q. Xie, L. Lin et al., Anchoring polysulfides and accelerating redox reaction enabled by fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 31(21), 2100970 (2021). https://doi.org/10.1002/adfm.202100970
- Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- D. Yang, M. Li, X. Zheng, X. Han, C. Zhang et al., Phase engineering of defective copper selenide toward robust lithium-sulfur batteries. ACS Nano 16(7), 11102–11114 (2022). https://doi.org/10.1021/acsnano.2c03788
- P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li-S chemistry. Adv. Mater. 34(51), 2207689 (2022). https://doi.org/10.1002/adma.202207689
- H. Wang, Z. Cui, S.A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered mxene-tin heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
- F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
- D.Q. Cai, J.L. Yang, T. Liu, S.X. Zhao, G.Z. Cao, Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries. Nano Energy 89(25), 106452 (2021). https://doi.org/10.1016/j.nanoen.2021.106452
- Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for li-s batteries. Adv. Mater. 33(44), 2105947 (2021). https://doi.org/10.1002/adma.202105947
- By.A. Bewic, M. Fleischm, H.R. Thirs, Kinetics of the electrocrystallization of thin films of calomel. Trans. Faraday Soc. 2200 (1962)
- S. Waluś, C. Barchasz, R. Bouchet, J.-C. Leprêtre, J.-F. Colin et al., Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5(16), 1500165 (2015). https://doi.org/10.1002/aenm.201500165
- C. Ma, Y. Zhang, Y. Feng, N. Wang, L. Zhou et al., Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 33(30), 2100171 (2021). https://doi.org/10.1002/adma.202100171
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a mott–schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- L. Lin, F. Liu, Y. Zhang, C. Ke, H. Zheng et al., Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS Nano 16(8), 13101–13110 (2022). https://doi.org/10.1021/acsnano.2c05832
- Z. Jiang, H. Guo, Z. Zeng, Z. Han, W. Hu et al., Reconfiguring organosulfur cathode by over-lithiation to enable ultrathick lithium metal anode toward practical lithium-sulfur batteries. ACS Nano 14(10), 13784–13793 (2020). https://doi.org/10.1021/acsnano.0c06133
- R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- G. Zhou, H. Chen, Y. Cui Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow ps toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29(6), 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004
References
Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004
S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 33(50), 2008654 (2021). https://doi.org/10.1002/adma.202008654
R. Fang, K. Chen, L. Yin, Z. Sun, F. Li et al., The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019). https://doi.org/10.1002/adma.201800863
J. Wang, W.Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32(2), 2107166 (2021). https://doi.org/10.1002/adfm.202107166
X.J. Zhou, J. Tian, Q.P. Wu, J.L. Hu, C.L. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater. 24(5), 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi et al., Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery. Nano Energy 89(9), 106331 (2021). https://doi.org/10.1016/j.nanoen.2021.106331
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
P. Wang, Z. Zhang, N. Song, X. An, J. Liu et al., WP nanocrystals on n,p dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium–sulfur batteries. CCS Chemistry 5(2), 397–411 (2023). https://doi.org/10.31635/ccschem.022.202202163
S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-Dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 14(1), 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang et al., Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries. Nano Energy 86(7), 106111 (2021). https://doi.org/10.1016/j.nanoen.2021.106111
P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in li-s batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang et al., Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv. Mater. 32(4), 1904876 (2020). https://doi.org/10.1002/adma.201904876
D. Yang, C. Zhang, J. Biendicho, X. Han, Z. Liang et al., ZnSe/N-doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries. ACS Nano 14(11), 15492–15504 (2020). https://doi.org/10.1021/acsnano.0c06112
L. Meng, Y. Yao, J. Liu, Z. Wang, D. Qian et al., MoSe2 nanosheets as a functional host for lithium-sulfur batteries. J. Energy Chem. 47(5), 241–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.003
D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li et al., Crystalline multi-metallic compounds as host materials in cathode for lithium-sulfur batteries. Small 17(22), 2005332 (2021). https://doi.org/10.1002/smll.202005332
Y. Hu, W. Chen, T. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium-sulfur batteries. Adv. Energy Mater. 9(7), 1802955 (2019). https://doi.org/10.1002/aenm.201802955
T. Shen, L.P. Yang, M.E. Pam, Y.M. Shi, H.Y. Yang, Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. J. Mater. Chem. A 8(43), 22488–22506 (2020). https://doi.org/10.1039/d0ta07674k
Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li et al., Multifunctional ZnCo2O4 quantum dots encapsulated in carbon carrier for anchoring/catalyzing polysulfides and self-repairing lithium metal anode in lithium-sulfur batteries. Adv. Funct. Mater. 32(12), 2109462 (2021). https://doi.org/10.1002/adfm.202109462
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
Y. An, C. Luo, D. Yao, S. Wen, P. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13(1), 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
W.J. Chen, B.Q. Li, C.X. Zhao, M. Zhao, T.Q. Yuan et al., Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59(27), 10732–10745 (2020). https://doi.org/10.1002/anie.201912701
Y. Liu, D. Gao, H. Xiang, X. Feng, Y. Yu, Research progress on copper-based current collector for lithium metal batteries. Energy Fuels 35(16), 12921–12937 (2021). https://doi.org/10.1021/acs.energyfuels.1c02008
S. Park, H.J. Jin, Y.S. Yun, Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 32(51), 2002193 (2020). https://doi.org/10.1002/adma.202002193
X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16(8), 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
K. Liu, Z. Li, W. Xie, J. Li, D. Rao et al., Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater. 15(5), 308–314 (2018). https://doi.org/10.1016/j.ensm.2018.05.025
J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang et al., Is graphite lithiophobic or lithiophilic? Natl. Sci. Rev. 7(7), 1208–1217 (2020). https://doi.org/10.1093/nsr/nwz222
X. Yan, L. Lin, Q. Chen, Q. Xie, B. Qu et al., Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 3(2), 303–329 (2021). https://doi.org/10.1002/cey2.95
P. Ghimire, M. Jaroniec, Renaissance of Stober method for synthesis of colloidal ps: New developments and opportunities. J. Colloid Interface Sci. 584, 838–865 (2021). https://doi.org/10.1016/j.jcis.2020.10.014
L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan et al., Bifunctional catalytic effect of cose2 for lithium-sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32(8), 2107838 (2022). https://doi.org/10.1002/adfm.202107838
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13(1), 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Nano-Micro Lett. 14(1), 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance li-s batteries. Nano-Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
Z. Qiao, Y. Zhang, Z. Meng, Q. Xie, L. Lin et al., Anchoring polysulfides and accelerating redox reaction enabled by fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 31(21), 2100970 (2021). https://doi.org/10.1002/adfm.202100970
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
D. Yang, M. Li, X. Zheng, X. Han, C. Zhang et al., Phase engineering of defective copper selenide toward robust lithium-sulfur batteries. ACS Nano 16(7), 11102–11114 (2022). https://doi.org/10.1021/acsnano.2c03788
P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li-S chemistry. Adv. Mater. 34(51), 2207689 (2022). https://doi.org/10.1002/adma.202207689
H. Wang, Z. Cui, S.A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered mxene-tin heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
D.Q. Cai, J.L. Yang, T. Liu, S.X. Zhao, G.Z. Cao, Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries. Nano Energy 89(25), 106452 (2021). https://doi.org/10.1016/j.nanoen.2021.106452
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for li-s batteries. Adv. Mater. 33(44), 2105947 (2021). https://doi.org/10.1002/adma.202105947
By.A. Bewic, M. Fleischm, H.R. Thirs, Kinetics of the electrocrystallization of thin films of calomel. Trans. Faraday Soc. 2200 (1962)
S. Waluś, C. Barchasz, R. Bouchet, J.-C. Leprêtre, J.-F. Colin et al., Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5(16), 1500165 (2015). https://doi.org/10.1002/aenm.201500165
C. Ma, Y. Zhang, Y. Feng, N. Wang, L. Zhou et al., Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 33(30), 2100171 (2021). https://doi.org/10.1002/adma.202100171
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a mott–schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
L. Lin, F. Liu, Y. Zhang, C. Ke, H. Zheng et al., Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS Nano 16(8), 13101–13110 (2022). https://doi.org/10.1021/acsnano.2c05832
Z. Jiang, H. Guo, Z. Zeng, Z. Han, W. Hu et al., Reconfiguring organosulfur cathode by over-lithiation to enable ultrathick lithium metal anode toward practical lithium-sulfur batteries. ACS Nano 14(10), 13784–13793 (2020). https://doi.org/10.1021/acsnano.0c06133
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
G. Zhou, H. Chen, Y. Cui Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow ps toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29(6), 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004