3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 22
Abstract
Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers, the resulting nanocomposites usually exhibit low through-plane thermal conductivities, limiting their application as thermal interface materials. Herein, lamellar-structured polyamic acid salt/graphene oxide (PAAS/GO) hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization. Subsequently, PAAS monomers are polymerized to polyimide (PI), while GO is converted to thermally reduced graphene oxide (RGO) during thermal annealing at 300 °C. Final graphitization at 2800 °C converts PI to graphitized carbon with the inductive effect of RGO, and simultaneously, RGO is thermally reduced and healed to high-quality graphene. Consequently, lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time, and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae. After vacuum-assisted impregnation with epoxy, the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m−1 K−1, 100 times of that of epoxy, with a record-high specific thermal conductivity enhancement of 4310%. Furthermore, the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness, ~ 1.71 times of that of epoxy.
Highlights:
1 Lamellar-structured graphene aerogels with vertically aligned and closely stacked high-quality graphene lamellae are fabricated.
2 The superior thermally conductive capacity of the aerogel endows epoxy with a high through-plane thermal conductivity of 20.0 W m−1 K−1 at 2.30 vol% of graphene content.
3 The nacre-like structure endows the epoxy composite with enhanced fracture toughness.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
- J. Zhang, W. Zhang, L. Wei, L. Pu, J. Liu et al., Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol. Mater. Eng. 304(12), 1900374 (2019). https://doi.org/10.1002/mame.201900374
- Z. Zhang, J. Zhang, S. Li, J. Liu, M. Dong et al., Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos. Part B Eng. 176, 1–9 (2019). https://doi.org/10.1016/j.compositesb.2019.107338
- J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li et al., The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99–105 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.059
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- M. Li, Y. Xiao, Z. Zhang, J. Yu, Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 7(17), 9157–9168 (2015). https://doi.org/10.1021/acsami.5b01341
- K.L. Chan, M. Mariatti, Z. Lockman, L.C. Sim, Effects of the size and filler loading on the properties of copper- and silver-nanoparticle-filled epoxy composites. J. Appl. Polym. Sci. 121(6), 3145–3152 (2011). https://doi.org/10.1002/app.33798
- F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018). https://doi.org/10.1016/j.carbon.2017.10.011
- F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
- F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
- C.T. Hsieh, C.E. Lee, Y.F. Chen, J.K. Chang, H.S. Teng, Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets. Nanoscale 7(44), 18663–18670 (2015). https://doi.org/10.1039/c5nr04993h
- C. Feng, H. Ni, J. Chen, W. Yang, Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl. Mater. Interfaces 8(30), 19732–19738 (2016). https://doi.org/10.1021/acsami.6b03723
- C.-P. Feng, L. Bai, Y. Shao, R.-Y. Bao, Z.-Y. Liu et al., A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces 5(2), 1700946 (2018). https://doi.org/10.1002/admi.201700946
- O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc et al., A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon 101, 239–244 (2016). https://doi.org/10.1016/j.carbon.2016.01.095
- P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng et al., Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon 99, 222–228 (2016). https://doi.org/10.1016/j.carbon.2015.12.026
- Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
- F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang et al., Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale 12(6), 4005–4017 (2020). https://doi.org/10.1039/c9nr10696k
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
- A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis et al., Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv. Mater. 20(24), 4740–4744 (2008). https://doi.org/10.1002/adma.200800401
- S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
- D. Yan, X. Li, Y. Jiang, H.-B. Zhang, B.-B. Jia et al., Thermally conductive phenol formaldehyde composites filled with carbon fillers. Mater. Lett. 118, 212–216 (2014). https://doi.org/10.1016/j.matlet.2013.12.080
- H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
- Z. Wu, C. Xu, C. Ma, Z. Liu, H.M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31(19), 1900199 (2019). https://doi.org/10.1002/adma.201900199
- J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
- J. Yang, X. Li, S. Han, Y. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
- H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Bai, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
- J. Yang, G.-Q. Qi, R.-Y. Bao, K. Yi, M. Li et al., Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 13, 88–95 (2018). https://doi.org/10.1016/j.ensm.2017.12.028
- G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- J. Yang, X. Li, S. Han, R. Yang, P. Min et al., High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6(14), 5880–5886 (2018). https://doi.org/10.1039/c8ta00078f
- F. An, X. Li, P. Min, P. Liu, Z.G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
- G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S.Y. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
- G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
- T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
- H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
- R.E.O. William, S. Hummers, Preparation of graphitic Oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size la of nanographite by raman spectroscopy. Appl. Phys. Lett. 88(16), 163106 (2006). https://doi.org/10.1063/1.2196057
- H.L. Gao, S.M. Chen, L.B. Mao, Z.Q. Song, H.B. Yao et al., Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8(1), 287 (2017). https://doi.org/10.1038/s41467-017-00392-z
- L.B. Mao, H.L. Gao, H.B. Yao, L. Liu, H. Colfen et al., Synthetic nacre by predesigned matrix-directed mineralization. Science 354(6308), 107–110 (2016). https://doi.org/10.1126/science.aaf8991
- M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
- C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58(23), 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
- H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56(4), 997–1001 (2017). https://doi.org/10.1002/anie.201609230
- Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8), 1686–1695 (2007). https://doi.org/10.1016/j.carbon.2007.03.038
- P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
- X.L. Pei, B. Shen, L.H. Zhang, W.T. Zhai, W.G. Zheng, Accelerating the graphitization process of polyimide by addition of graphene. J. Appl. Polym. Sci. 132(2), 41274 (2015). https://doi.org/10.1002/App.41274
- B.V. Cunning, B. Wang, T.J. Shin, R.S. Ruoff, Structure-directing effect of single crystal graphene film on polymer carbonization and graphitization. Mater. Horiz. 6(4), 796–801 (2019). https://doi.org/10.1039/c8mh01507d
- H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan et al., Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy. Carbon 126, 319–327 (2018). https://doi.org/10.1016/j.carbon.2017.10.044
- G.Y. Xin, T. Sun, H. Scott, S.M. Shao, D. Wang et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), 1500849 (2015). https://doi.org/10.1126/sciadv.1500849
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
- Y.-F. Zhang, D. Han, Y.-H. Zhao, S.-L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
- M. Qin, Y. Xu, R. Cao, W. Feng, L. Chen, Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 28(45), 1805053 (2018). https://doi.org/10.1002/adfm.201805053
- S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
- J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
- G. Xin, H. Sun, S.M. Scott, T. Yao, F. Lu et al., Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl. Mater. Interfaces 6(17), 15262–15271 (2014). https://doi.org/10.1021/am503619a
- H. Jung, S. Yu, N.S. Bae, S.M. Cho, R.H. Kim et al., High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS Appl. Mater. Interfaces 7(28), 15256–15262 (2015). https://doi.org/10.1021/acsami.5b02681
- J. Peng, C. Huang, C. Cao, E. Saiz, Y. Du et al., Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2(8), 220–232 (2019). https://doi.org/10.1016/j.matt.2019.08.013
- X. Du, H. Zhou, W. Sun, H.-Y. Liu, G. Zhou et al., Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 140, 123–133 (2017). https://doi.org/10.1016/j.compscitech.2016.12.028
- O.T. Picot, V.G. Rocha, C. Ferraro, N. Ni, E. D’elia et al., Using graphene networks to build bioinspired self-monitoring ceramics. Nat. Commun. 8, 14425 (2017). https://doi.org/10.1038/ncomms14425
- S.-M. Chen, H.-L. Gao, Y.-B. Zhu, H.-B. Yao, L.-B. Mao et al., Biomimetic twisted plywood structural materials. Natl. Sci. Rev. 5(5), 703–714 (2018). https://doi.org/10.1093/nsr/nwy080
References
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
J. Zhang, W. Zhang, L. Wei, L. Pu, J. Liu et al., Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol. Mater. Eng. 304(12), 1900374 (2019). https://doi.org/10.1002/mame.201900374
Z. Zhang, J. Zhang, S. Li, J. Liu, M. Dong et al., Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos. Part B Eng. 176, 1–9 (2019). https://doi.org/10.1016/j.compositesb.2019.107338
J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li et al., The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99–105 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.059
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
M. Li, Y. Xiao, Z. Zhang, J. Yu, Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 7(17), 9157–9168 (2015). https://doi.org/10.1021/acsami.5b01341
K.L. Chan, M. Mariatti, Z. Lockman, L.C. Sim, Effects of the size and filler loading on the properties of copper- and silver-nanoparticle-filled epoxy composites. J. Appl. Polym. Sci. 121(6), 3145–3152 (2011). https://doi.org/10.1002/app.33798
F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018). https://doi.org/10.1016/j.carbon.2017.10.011
F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
C.T. Hsieh, C.E. Lee, Y.F. Chen, J.K. Chang, H.S. Teng, Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets. Nanoscale 7(44), 18663–18670 (2015). https://doi.org/10.1039/c5nr04993h
C. Feng, H. Ni, J. Chen, W. Yang, Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl. Mater. Interfaces 8(30), 19732–19738 (2016). https://doi.org/10.1021/acsami.6b03723
C.-P. Feng, L. Bai, Y. Shao, R.-Y. Bao, Z.-Y. Liu et al., A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces 5(2), 1700946 (2018). https://doi.org/10.1002/admi.201700946
O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc et al., A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon 101, 239–244 (2016). https://doi.org/10.1016/j.carbon.2016.01.095
P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng et al., Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon 99, 222–228 (2016). https://doi.org/10.1016/j.carbon.2015.12.026
Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang et al., Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale 12(6), 4005–4017 (2020). https://doi.org/10.1039/c9nr10696k
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis et al., Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv. Mater. 20(24), 4740–4744 (2008). https://doi.org/10.1002/adma.200800401
S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
D. Yan, X. Li, Y. Jiang, H.-B. Zhang, B.-B. Jia et al., Thermally conductive phenol formaldehyde composites filled with carbon fillers. Mater. Lett. 118, 212–216 (2014). https://doi.org/10.1016/j.matlet.2013.12.080
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
Z. Wu, C. Xu, C. Ma, Z. Liu, H.M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31(19), 1900199 (2019). https://doi.org/10.1002/adma.201900199
J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
J. Yang, X. Li, S. Han, Y. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Bai, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
J. Yang, G.-Q. Qi, R.-Y. Bao, K. Yi, M. Li et al., Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 13, 88–95 (2018). https://doi.org/10.1016/j.ensm.2017.12.028
G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
J. Yang, X. Li, S. Han, R. Yang, P. Min et al., High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6(14), 5880–5886 (2018). https://doi.org/10.1039/c8ta00078f
F. An, X. Li, P. Min, P. Liu, Z.G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S.Y. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
R.E.O. William, S. Hummers, Preparation of graphitic Oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size la of nanographite by raman spectroscopy. Appl. Phys. Lett. 88(16), 163106 (2006). https://doi.org/10.1063/1.2196057
H.L. Gao, S.M. Chen, L.B. Mao, Z.Q. Song, H.B. Yao et al., Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8(1), 287 (2017). https://doi.org/10.1038/s41467-017-00392-z
L.B. Mao, H.L. Gao, H.B. Yao, L. Liu, H. Colfen et al., Synthetic nacre by predesigned matrix-directed mineralization. Science 354(6308), 107–110 (2016). https://doi.org/10.1126/science.aaf8991
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58(23), 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56(4), 997–1001 (2017). https://doi.org/10.1002/anie.201609230
Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8), 1686–1695 (2007). https://doi.org/10.1016/j.carbon.2007.03.038
P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
X.L. Pei, B. Shen, L.H. Zhang, W.T. Zhai, W.G. Zheng, Accelerating the graphitization process of polyimide by addition of graphene. J. Appl. Polym. Sci. 132(2), 41274 (2015). https://doi.org/10.1002/App.41274
B.V. Cunning, B. Wang, T.J. Shin, R.S. Ruoff, Structure-directing effect of single crystal graphene film on polymer carbonization and graphitization. Mater. Horiz. 6(4), 796–801 (2019). https://doi.org/10.1039/c8mh01507d
H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan et al., Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy. Carbon 126, 319–327 (2018). https://doi.org/10.1016/j.carbon.2017.10.044
G.Y. Xin, T. Sun, H. Scott, S.M. Shao, D. Wang et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), 1500849 (2015). https://doi.org/10.1126/sciadv.1500849
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
Y.-F. Zhang, D. Han, Y.-H. Zhao, S.-L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
M. Qin, Y. Xu, R. Cao, W. Feng, L. Chen, Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 28(45), 1805053 (2018). https://doi.org/10.1002/adfm.201805053
S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
G. Xin, H. Sun, S.M. Scott, T. Yao, F. Lu et al., Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl. Mater. Interfaces 6(17), 15262–15271 (2014). https://doi.org/10.1021/am503619a
H. Jung, S. Yu, N.S. Bae, S.M. Cho, R.H. Kim et al., High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS Appl. Mater. Interfaces 7(28), 15256–15262 (2015). https://doi.org/10.1021/acsami.5b02681
J. Peng, C. Huang, C. Cao, E. Saiz, Y. Du et al., Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2(8), 220–232 (2019). https://doi.org/10.1016/j.matt.2019.08.013
X. Du, H. Zhou, W. Sun, H.-Y. Liu, G. Zhou et al., Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 140, 123–133 (2017). https://doi.org/10.1016/j.compscitech.2016.12.028
O.T. Picot, V.G. Rocha, C. Ferraro, N. Ni, E. D’elia et al., Using graphene networks to build bioinspired self-monitoring ceramics. Nat. Commun. 8, 14425 (2017). https://doi.org/10.1038/ncomms14425
S.-M. Chen, H.-L. Gao, Y.-B. Zhu, H.-B. Yao, L.-B. Mao et al., Biomimetic twisted plywood structural materials. Natl. Sci. Rev. 5(5), 703–714 (2018). https://doi.org/10.1093/nsr/nwy080