Highly Aligned Graphene Aerogels for Multifunctional Composites
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 118
Abstract
Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
Highlights:
1 Aligned graphene building blocks take full advantages of the outstanding properties of graphene.
2 Comprehensive review of recent advancements in the utilization of highly aligned graphene aerogels for multifunctional applications.
3 By systematically summarizing the controlled assembly, aligned structural attributes, quantitative characterization methods, anisotropic properties, and multifunctional applications of graphene aerogels, this review enhances understanding of the material's potential for diverse applications, offering tailored properties and novel functionalities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr. et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010). https://doi.org/10.1021/ja1072299
- Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219–227 (2021). https://doi.org/10.1016/j.jmst.2020.12.051
- S. Xi, L. Wang, H. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage. ACS Nano 16, 3843–3851 (2022). https://doi.org/10.1021/acsnano.1c08581
- Z. Wang, X. Shen, N.M. Han, X. Liu, Y. Wu et al., Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 28, 6731–6741 (2016). https://doi.org/10.1021/acs.chemmater.6b03206
- Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. J. Mater. Chem. A 10, 22488–22499 (2022). https://doi.org/10.1039/D2TA06457J
- W. Zhan, S. Yu, L. Gao, F. Wang, X. Fu et al., Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup. ACS Appl. Mater. Interfaces 10, 1093–1103 (2018). https://doi.org/10.1021/acsami.7b15322
- W. Qian, H. Fu, Y. Sun, Z. Wang, H. Wu et al., Scalable assembly of high-quality graphene films via electrostatic-repulsion aligning. Adv. Mater. 34, e2206101 (2022). https://doi.org/10.1002/adma.202206101
- G. Yang, X. Zhang, R. Wang, X. Liu, J. Zhang et al., Ultra-stretchable graphene aerogels at ultralow temperatures. Mater. Horiz. 10, 1865–1874 (2023). https://doi.org/10.1039/d3mh00014a
- Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7, 5538–5549 (2015). https://doi.org/10.1021/acsami.5b00146
- M. Wu, H. Geng, Y. Hu, H. Ma, C. Yang et al., Superelastic graphene aerogel-based metamaterials. Nat. Commun. 13, 4561 (2022). https://doi.org/10.1038/s41467-022-32200-8
- Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10, 21565–21572 (2018). https://doi.org/10.1021/acsami.8b04689
- F. Zhang, L. Guo, Y. Shi, Z. Jin, Y. Cheng et al., Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches. Chem. Eng. J. 452, 139664 (2023). https://doi.org/10.1016/j.cej.2022.139664
- X. Guo, S. Cheng, B. Yan, Y. Li, R. Huang et al., Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature. J. Colloid Interface Sci. 608, 2407–2413 (2022). https://doi.org/10.1016/j.jcis.2021.10.134
- X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan et al., Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 (2013). https://doi.org/10.1038/srep02117
- X. Tong, W. Li, J. Li, S. Lu, B. Wang et al., In situ generation of TiO2 in graphene aerogel and its epoxy composite for electromagnetic interference shielding performance. J. Mater. Sci. Mater. Electron. 33, 5886–5898 (2022). https://doi.org/10.1007/s10854-022-07770-4
- G. Gorgolis, C. Galiotis, Graphene aerogels: a review. 2D Mater. 4, 032001 (2017). https://doi.org/10.1088/2053-1583/aa7883
- Z. Wang, L. Liu, Y. Zhang, Y. Huang, J. Liu et al., A review of graphene-based materials/polymer composite aerogels. Polymers 15, 1888 (2023). https://doi.org/10.3390/polym15081888
- G. Nassar, E. Daou, R. Najjar, M. Bassil, R. Habchi, A review on the current research on graphene-based aerogels and their applications. Carbon Trends 4, 100065 (2021). https://doi.org/10.1016/j.cartre.2021.100065
- Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112–137 (2023). https://doi.org/10.1016/j.carbon.2023.01.032
- X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
- J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018). https://doi.org/10.1039/C7EE03031B
- J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
- S. Yu, X. Shen, J.-K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 8, 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
- X. Shen, Q. Zheng, J.-K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
- M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11, 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
- B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28, 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
- H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7, 2101699 (2022). https://doi.org/10.1002/admt.202101699
- P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
- Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5, 2392–2401 (2011). https://doi.org/10.1021/nn200181e
- P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma et al., Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 30, 2006584 (2020). https://doi.org/10.1002/adfm.202006584
- H.-Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.-X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199–209 (2018). https://doi.org/10.1016/j.carbon.2018.02.033
- X. Jiang, Z. Zhao, S. Zhou, H. Zou, P. Liu, Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 45844–45852 (2022). https://doi.org/10.1021/acsami.2c13000
- P. Liu, X. Li, X. Chang, P. Min, C. Shu et al., Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon 178, 301–309 (2021). https://doi.org/10.1016/j.carbon.2021.03.014
- J. Dong, J. Zeng, B. Wang, Z. Cheng, J. Xu et al., Mechanically flexible carbon aerogel with wavy layers and springboard elastic supporting structure for selective oil/organic solvent recovery. ACS Appl. Mater. Interfaces 13, 15910–15924 (2021). https://doi.org/10.1021/acsami.1c02394
- Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9, 44010–44017 (2017). https://doi.org/10.1021/acsami.7b14604
- W. Chang, X.-Y. Zhang, J. Qu, Z. Chen, Y.-J. Zhang et al., Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 12, 41419–41428 (2020). https://doi.org/10.1021/acsami.0c11074
- Y. Lin, F. Liu, G. ano, R. Bhavsar, I.A. Kinloch et al., Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28, 7993–8000 (2016). https://doi.org/10.1002/adma.201602393
- J. Kim, A.P. Tiwari, M. Choi, Q. Chen, J. Lee et al., Boosting bifunctional oxygen electrocatalysis of graphitic C3N4 using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. J. Mater. Chem. A 10, 15689–15697 (2022). https://doi.org/10.1039/D2TA02031A
- Y. Ham, V. Ri, J. Kim, Y. Yoon, J. Lee et al., Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 14, 1382–1389 (2021). https://doi.org/10.1007/s12274-020-3187-9
- J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10, 37507–37516 (2018). https://doi.org/10.1021/acsami.8b13415
- J. Jia, C.-M. Kan, X. Lin, X. Shen, J.-K. Kim, Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77, 244–254 (2014). https://doi.org/10.1016/j.carbon.2014.05.027
- X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye et al., Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012). https://doi.org/10.1021/nn303904z
- Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5, 6039–6051 (2011). https://doi.org/10.1021/nn2018683
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010). https://doi.org/10.1002/smll.200901934
- D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
- K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010). https://doi.org/10.1002/adma.201000732
- Y. Ma, Y. Gu, Y. He, L. Wei, Y. Lian et al., Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 15, 9792–9799 (2022). https://doi.org/10.1007/s12274-022-4261-2
- J. Hu, J. Zhu, S. Ge, C. Jiang, T. Guo et al., Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil–water separation. Surf. Coat. Technol. 385, 125361 (2020). https://doi.org/10.1016/j.surfcoat.2020.125361
- L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11, 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
- M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao et al., A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1
- S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang et al., Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 8, 24853–24861 (2016). https://doi.org/10.1021/acsami.6b06012
- Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6, 7103–7113 (2012). https://doi.org/10.1021/nn3021772
- M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Directional freeze-ting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater. 22, 2000033 (2020). https://doi.org/10.1002/adem.202000033
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze ting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
- J.-H. Oh, J. Kim, H. Lee, Y. Kang, I.-K. Oh, Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Appl. Mater. Interfaces 10, 22650–22660 (2018). https://doi.org/10.1021/acsami.8b06361
- C. Wang, M. Huang, R.S. Ruoff, Graphene oxide aerogel ‘ink’ at room temperature, and ordered structures by freeze ting. Carbon 183, 620–627 (2021). https://doi.org/10.1016/j.carbon.2021.07.046
- J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: freeze-ting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
- D. Fan, X. Yang, J. Liu, P. Zhou, X. Zhang, Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing. Compos. Commun. 27, 100887 (2021). https://doi.org/10.1016/j.coco.2021.100887
- L. Quan, C. Wang, Y. Xu, J. Qiu, H. Zhang et al., Electromagnetic properties of graphene aerogels made by freeze-ting. Chem. Eng. J. 428, 131337 (2022). https://doi.org/10.1016/j.cej.2021.131337
- X. Zhu, C. Yang, P. Wu, Z. Ma, Y. Shang et al., Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 12, 4882–4894 (2020). https://doi.org/10.1039/c9nr07861d
- X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
- N.M. Han, Z. Wang, X. Shen, Y. Wu, X. Liu et al., Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites. ACS Appl. Mater. Interfaces 10, 6580–6592 (2018). https://doi.org/10.1021/acsami.7b19069
- W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze ting. RSC Adv. 7, 33600–33605 (2017). https://doi.org/10.1039/C7RA05557A
- U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Biomaterials by freeze ting. Philos. Trans. A Math. Phys. Eng. Sci. 368, 2099–2121 (2010). https://doi.org/10.1098/rsta.2010.0014
- U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089
- L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011). https://doi.org/10.1021/ja200244s
- J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009). https://doi.org/10.1002/adma.200803606
- Z. He, M. Qin, C. Han, X. Bai, Y. Wu et al., Pectin/graphene oxide aerogel with bamboo-like structure for enhanced dyes adsorption. Colloids Surf. A Physicochem. Eng. Aspects 652, 129837 (2022). https://doi.org/10.1016/j.colsurfa.2022.129837
- S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020). https://doi.org/10.1016/j.carbon.2019.11.065
- V. Rodríguez-Mata, González-Domı́nguez JM, Benito AM, Maser WK, García-Bordejé E, Reduced graphene oxide aerogels with controlled continuous microchannels for environmental remediation. ACS Appl. Nano Mater. 2, 1210–1222 (2019). https://doi.org/10.1021/acsanm.8b02101
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28, 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5, 11708–11716 (2017). https://doi.org/10.1039/C7TC03846A
- Z. Lin, W. Jiang, Z. Chen, L. Zhong, C. Liu, Shape-memory and anisotropic carbon aerogel from biomass and graphene oxide. Molecules 26, 5715 (2021). https://doi.org/10.3390/molecules26185715
- M. Farbod, M. Madadi Jaberi, Fabrication of graphene aerogel and graphene/carbon nanotube composite aerogel by freeze ting under ambient pressure and comparison of their properties. Fuller. Nanotub. Carbon Nanostruct. 29, 244–250 (2021). https://doi.org/10.1080/1536383x.2020.1832995
- Z. He, X. Li, H. Wang, F. Su, D. Wang et al., Synergistic regulation of the microstructure for multifunctional graphene aerogels by a dual template method. ACS Appl. Mater. Interfaces 14, 22544–22553 (2022). https://doi.org/10.1021/acsami.2c00525
- X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe2O4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222–34231 (2019). https://doi.org/10.1021/acsami.9b10287
- B. Jiang, K. Liang, Z. Yang, K. Guo, F. Shaik et al., FeCoNiB@Boron-doped vertically aligned graphene arrays: a self-supported electrocatalyst for overall water splitting in a wide pH range. Electrochim. Acta 386, 138459 (2021). https://doi.org/10.1016/j.electacta.2021.138459
- P. Yang, G. Tontini, J. Wang, I.A. Kinloch, S. Barg, Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Nanotechnology 32, 205601 (2021). https://doi.org/10.1088/1361-6528/abdf8f
- S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu et al., Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 433, 133619 (2022). https://doi.org/10.1016/j.cej.2021.133619
- Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, e2202047 (2022). https://doi.org/10.1002/smll.202202047
- L. Liu, J. Zhang, G. Shi, H. Zhang, B. Wang et al., An elastic and lamellar piezoresistive graphene/MXene aerogel. J. Mater. Sci. 57, 11202–11214 (2022). https://doi.org/10.1007/s10853-022-07356-9
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- P. Feng, X. Wang, J. Yang, Biomimetic, highly reusable and hydrophobic graphene/polyvinyl alcohol/cellulose nanofiber aerogels as oil-removing absorbents. Polymers 14, 1077 (2022). https://doi.org/10.3390/polym14061077
- P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 (2021). https://doi.org/10.1002/adfm.202103703
- M. Cao, S.-L. Li, J.-B. Cheng, A.-N. Zhang, Y.-Z. Wang et al., Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J. Hazard. Mater. 403, 123977 (2021). https://doi.org/10.1016/j.jhazmat.2020.123977
- M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu, Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose 25, 7329–7340 (2018). https://doi.org/10.1007/s10570-018-2080-0
- Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- Q. Xu, X. Chang, Z. Zhu, L. Xu, X. Chen et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv. 11, 11760–11770 (2021). https://doi.org/10.1039/D0RA10929K
- Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
- G. Xu, M. Li, T. Wu, C. Teng, Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React. Funct. Polym. 154, 104672 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104672
- J. Yang, Y. Chen, K. Gao, Y. Li, S. Wang et al., Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydr. Polym. 272, 118527 (2021). https://doi.org/10.1016/j.carbpol.2021.118527
- H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015). https://doi.org/10.1126/sciadv.1500849
- K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie et al., Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv. 10, 2150–2159 (2020). https://doi.org/10.1039/c9ra08653f
- W. Ma, Z. Ma, Y. Cai, R. Du, Z. Xu et al., Elastic aerogel with tunable wettability for self-cleaning electronic skin. ACS Mater. Lett. 2, 1575–1582 (2020). https://doi.org/10.1021/acsmaterialslett.0c00464
- W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019). https://doi.org/10.1021/acsnano.9b02331
- C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-ting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
- F. Su, J. Mok, J. McKittrick, Radial-concentric freeze ting inspired by porcupine fish spines. Ceramics 2, 161–179 (2019). https://doi.org/10.3390/ceramics2010015
- L. Fan, J.-L. Li, Z. Cai, X. Wang, Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano 12, 5780–5790 (2018). https://doi.org/10.1021/acsnano.8b01648
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu et al., Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 9, 21809–21819 (2017). https://doi.org/10.1021/acsami.7b04655
- A. Ouyang, A. Cao, S. Hu, Y. Li, R. Xu et al., Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 8, 11179–11187 (2016). https://doi.org/10.1021/acsami.6b01965
- Y. Liu, D. Yang, Y. Shi, L. Song, R. Yu et al., Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustain. Chem. Eng. 7, 11228–11240 (2019). https://doi.org/10.1021/acssuschemeng.9b00561
- B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin et al., Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 7, 11154–11159 (2011). https://doi.org/10.1039/C1SM06418E
- R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28, 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
- R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, J.M. Razal et al., Formation and processability of liquid crystalline dispersions of graphene oxide. Mater. Horiz. 1, 87–91 (2014). https://doi.org/10.1039/C3MH00050H
- K.E. Lee, J.E. Kim, U.N. Maiti, J. Lim, J.O. Hwang et al., Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 8, 9073–9080 (2014). https://doi.org/10.1021/nn5024544
- J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn et al., Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011). https://doi.org/10.1002/anie.201004692
- S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem. Soc. Rev. 47, 6013–6045 (2018). https://doi.org/10.1039/C8CS00299A
- Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011). https://doi.org/10.1021/nn200069w
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
- S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94, 224–242 (2015). https://doi.org/10.1016/j.carbon.2015.06.030
- E. Garcia-Bordejé, A.M. Benito, W.K. Maser, Graphene aerogels via hydrothermal gelation of graphene oxide colloids: fine-tuning of its porous and chemical properties and catalytic applications. Adv. Colloid Interface Sci. 292, 102420 (2021). https://doi.org/10.1016/j.cis.2021.102420
- X. Wu, K. Hou, J. Huang, J. Wang, S. Yang, Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals. J. Mater. Chem. C 6, 8717–8725 (2018). https://doi.org/10.1039/C8TC01853G
- Y. Liu, Q. Shi, C. Hou, Q. Zhang, Y. Li et al., Versatile mechanically strong and highly conductive chemically converted graphene aerogels. Carbon 125, 352–359 (2017). https://doi.org/10.1016/j.carbon.2017.09.072
- J.D. Afroze, M.J. Abden, Z. Yuan, C. Wang, L. Wei et al., Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 162, 365–374 (2020). https://doi.org/10.1016/j.carbon.2020.02.057
- Q. Meng, H. Wan, W. Zhu, T. Duan, W. Yao, Naturally dried, double nitrogen-doped 3D graphene aerogels modified by plant extracts for multifunctional applications. ACS Sustain. Chem. Eng. 6, 1172–1181 (2018). https://doi.org/10.1021/acssuschemeng.7b03460
- W. Zhan, X. Fu, F. Wang, W. Zhang, G. Bai et al., Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites. J. Mater. Sci. 55, 10558–10571 (2020). https://doi.org/10.1007/s10853-020-04746-9
- J.-K. Xiao, J.-Z. Gong, M. Dai, Y.-F. Zhang, S.-G. Wang et al., Reduced graphene oxide/Ag nanop aerogel for efficient solar water evaporation. J. Alloys Compd. 930, 167404 (2023). https://doi.org/10.1016/j.jallcom.2022.167404
- D. Dai, Y. Zhou, W. Xiao, Z. Hao, H. Zhang et al., Multiple functional base-induced highly ordered graphene aerogels. J. Mater. Chem. C 9, 8849–8854 (2021). https://doi.org/10.1039/D1TC01985F
- W. Deng, Q. Fang, H. Huang, X. Zhou, J. Ma et al., Oriented arrangement: the origin of versatility for porous graphene materials. Small 13, 1701231 (2017). https://doi.org/10.1002/smll.201701231
- Y. Jiang, H. Shao, C. Li, T. Xu, Y. Zhao et al., Versatile graphene oxide putty-like material. Adv. Mater. 28, 10287–10292 (2016). https://doi.org/10.1002/adma.201603284
- Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015). https://doi.org/10.1002/adma.201501983
- Z. Tang, S. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603–4607 (2010). https://doi.org/10.1002/anie.201000270
- P. Kumar, U.N. Maiti, K.E. Lee, S.O. Kim, Rheological properties of graphene oxide liquid crystal. Carbon 80, 453–461 (2014). https://doi.org/10.1016/j.carbon.2014.08.085
- P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux et al., Superflexibility of graphene oxide. Proc. Natl. Acad. Sci. U.S.A. 113, 11088–11093 (2016). https://doi.org/10.1073/pnas.1605121113
- Y.H. Shim, H. Ahn, S. Lee, S.O. Kim, S.Y. Kim, Universal alignment of graphene oxide in suspensions and fibers. ACS Nano 15, 13453–13462 (2021). https://doi.org/10.1021/acsnano.1c03954
- Y. Jiang, F. Guo, J. Zhang, Z. Xu, F. Wang et al., Aligning curved stacking bands to simultaneously strengthen and toughen lamellar materials. Mater. Horiz. 10, 556–565 (2023). https://doi.org/10.1039/d2mh01023b
- Y. Jiang, F. Guo, Z. Xu, W. Gao, C. Gao, Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 10, 4111 (2019). https://doi.org/10.1038/s41467-019-11941-z
- D.K. Maurya, S. Deo, D.Y. Khanukaeva, Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Methods Appl. Sci. 44, 6647–6665 (2021). https://doi.org/10.1002/mma.7214
- Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47, 1267–1276 (2014). https://doi.org/10.1021/ar4002813
- F. Wang, Y. Jiang, Y. Liu, F. Guo, W. Fang et al., Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon 159, 166–174 (2020). https://doi.org/10.1016/j.carbon.2019.12.039
- L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou et al., Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale 7, 1616–1622 (2015). https://doi.org/10.1039/C4NR06008C
- L.C. Geonzon, M. Kobayashi, Y. Adachi, Effect of shear flow on the hydrodynamic drag force of a spherical p near a wall evaluated using optical tweezers and microfluidics. Soft Matter 17, 7914–7920 (2021). https://doi.org/10.1039/d1sm00876e
- M. Cao, Z. Li, J. Lu, B. Wang, H. Lai et al., Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, e2300077 (2023). https://doi.org/10.1002/adma.202300077
- J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14, 2336–2344 (2020). https://doi.org/10.1021/acsnano.9b09503
- H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017). https://doi.org/10.1002/anie.201609230
- X. Zhang, P. Liu, Y. Duan, M. Jiang, J. Zhang, Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv. 7, 16467–16473 (2017). https://doi.org/10.1039/C6RA28178H
- F. Gong, W. Wang, H. Li, D.D. Xia, Q. Dai et al., Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energy 261, 114410 (2020). https://doi.org/10.1016/j.apenergy.2019.114410
- J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13, 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
- C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7, 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
- X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation. ACS Sustain. Chem. Eng. 8, 4955–4965 (2020). https://doi.org/10.1021/acssuschemeng.0c00853
- C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
- Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018). https://doi.org/10.1002/adfm.201707024
- X. Zhao, W. Gao, W. Yao, Y. Jiang, Z. Xu et al., Ion diffusion-directed assembly approach to ultrafast coating of graphene oxide thick multilayers. ACS Nano 11, 9663–9670 (2017). https://doi.org/10.1021/acsnano.7b03480
- G. Shao, X. Shen, X. Huang, Multilevel structural design and heterointerface engineering of a host–guest binary aerogel toward multifunctional broadband microwave absorption. ACS Mater. Lett. 4, 1787–1797 (2022). https://doi.org/10.1021/acsmaterialslett.2c00634
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
- H. Yang, T. Zhang, M. Jiang, Y. Duan, J. Zhang, Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 3, 19268–19272 (2015). https://doi.org/10.1039/C5TA06452J
- Z.-L. Yu, N. Yang, L.-C. Zhou, Z.-Y. Ma, Y.-B. Zhu et al., Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018). https://doi.org/10.1126/sciadv.aat7223
- K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J. Environ. Sci. (China) 79, 174–199 (2019). https://doi.org/10.1016/j.jes.2018.11.023
- W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
- Y. Wang, B. Yao, H. Chen, H. Wang, C. Li et al., Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. Eur. Polym. J. 112, 487–492 (2019). https://doi.org/10.1016/j.eurpolymj.2019.01.036
- H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
- Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
- F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 (2020). https://doi.org/10.1002/adfm.201910826
- G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4, 17042–17049 (2016). https://doi.org/10.1039/C6TA07587H
- G. Li, Z. Chu, X. Gong, M. Xiao, Q. Dong et al., A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021 (2022). https://doi.org/10.1002/admt.202101021
- N. Ni, S. Barg, E. Garcia-Tunon, F.M. Perez, M. Miranda et al., Understanding mechanical response of elastomeric graphene networks. Sci. Rep. 5, 13712 (2015). https://doi.org/10.1038/srep13712
- T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
- Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1, 4895–4903 (2019). https://doi.org/10.1039/c9na00444k
- X. Zhao, W. Wu, D. Drummer, Y. Wang, S. Cui et al., SiC nanowires bridged graphene aerogels with a vertically aligned structure for highly thermal conductive epoxy resin composites and their mechanism. ACS Appl. Electron. Mater. 5, 2548–2557 (2023). https://doi.org/10.1021/acsaelm.3c00015
- F. An, X. Li, P. Min, P. Liu, Z.-G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10, 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
- X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018). https://doi.org/10.1021/acsnano.8b00304
- W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
- X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8, 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12, 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132, 41744 (2015). https://doi.org/10.1002/app.41744
- R. Taherian, Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26–M38 (2014). https://doi.org/10.1149/2.023406jss
- J. Li, J.-K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007). https://doi.org/10.1016/j.compscitech.2006.11.010
- P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu et al., Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 353, 364–367 (2016). https://doi.org/10.1126/science.aaf4362
- J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai et al., Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8, 5774–5783 (2014). https://doi.org/10.1021/nn500590g
- L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou et al., Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 26, 3333–3337 (2014). https://doi.org/10.1002/adma.201305359
- H. Hosseini, M. Kokabi, S.M. Mousavi, BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer 137, 82–96 (2018). https://doi.org/10.1016/j.polymer.2017.12.068
- N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis et al., Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406–417 (2013). https://doi.org/10.1016/j.carbon.2013.03.034
- N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif et al., Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J. Mater. Chem. 22, 12709–12717 (2012). https://doi.org/10.1039/C2JM30590A
- A.S. Wajid, H.S. Tanvir Ahmed, S. Das, F. Irin, A.F. Jankowski et al., High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013). https://doi.org/10.1002/mame.201200043
- J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
- C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 6, 12252–12260 (2014). https://doi.org/10.1021/am501843s
- D. Wang, X. Zhang, J.-W. Zha, J. Zhao, Z.-M. Dang et al., Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013). https://doi.org/10.1016/j.polymer.2013.02.012
- H. Pang, T. Chen, G. Zhang, B. Zeng, Z.-M. Li, An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 64, 2226–2229 (2010). https://doi.org/10.1016/j.matlet.2010.07.001
- L. Yang, Z. Wang, Y. Ji, J. Wang, G. Xue, Highly ordered 3D graphene-based polymer composite materials fabricated by “p-constructing” method and their outstanding conductivity. Macromolecules 47, 1749–1756 (2014). https://doi.org/10.1021/ma402364r
- P. Wang, H. Chong, J. Zhang, H. Lu, Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl. Mater. Interfaces 9, 22006–22017 (2017). https://doi.org/10.1021/acsami.7b07328
- D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
- G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
- Z. Fan, F. Gong, S.T. Nguyen, H.M. Duong, Advanced multifunctional graphene aerogel–Poly (methyl methacrylate) composites: experiments and modeling. Carbon 81, 396–404 (2015). https://doi.org/10.1016/j.carbon.2014.09.072
- R. Ram, M. Rahaman, A. Aldalbahi, D. Khastgir, Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polym. Int. 66, 573–582 (2017). https://doi.org/10.1002/pi.5294
- X. Liu, X. Sun, Z. Wang, X. Shen, Y. Wu et al., Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 7, 21455–21464 (2015). https://doi.org/10.1021/acsami.5b06476
- X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5, 275–284 (2018). https://doi.org/10.1039/C7MH00984D
- X.-Y. Qi, D. Yan, Z. Jiang, Y.-K. Cao, Z.-Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011). https://doi.org/10.1021/am200628c
- X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20, 9032–9036 (2010). https://doi.org/10.1039/C0JM01852J
- F.-Y. Yuan, H.-B. Zhang, X. Li, H.-L. Ma, X.-Z. Li et al., In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68, 653–661 (2014). https://doi.org/10.1016/j.carbon.2013.11.046
- L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 (2020). https://doi.org/10.1016/j.cej.2019.123126
- V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, J.S. Chung, Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl. Mater. Interfaces 4, 2630–2636 (2012). https://doi.org/10.1021/am300297j
- P. Yang, S. Ghosh, T. Xia, J. Wang, M.A. Bissett et al., Joule heating and mechanical properties of epoxy/graphene based aerogel composite. Compos. Sci. Technol. 218, 109199 (2022). https://doi.org/10.1016/j.compscitech.2021.109199
- C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-ting. Angew. Chem. Int. Ed. Engl. 58, 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
- L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013). https://doi.org/10.1016/j.carbon.2013.03.050
- M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu et al., Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 20, 9635–9643 (2010). https://doi.org/10.1039/C0JM01620A
- S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler et al., Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014). https://doi.org/10.1016/j.compscitech.2014.03.014
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017). https://doi.org/10.1002/adma.201700589
- P. Liu, F. An, X. Lu, X. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201, 108492 (2021). https://doi.org/10.1016/j.compscitech.2020.108492
- G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28, 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
- J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
- K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861–867 (2012). https://doi.org/10.1021/nl203906r
- X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16, 3585–3593 (2016). https://doi.org/10.1021/acs.nanolett.6b00722
- M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27, 2100–2106 (2015). https://doi.org/10.1021/cm504550e
- A. Li, C. Zhang, Y.-F. Zhang, RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 101, 108–114 (2017). https://doi.org/10.1016/j.compositesa.2017.06.009
- A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao et al., Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos. Part A Appl. Sci. Manuf. 122, 1–7 (2019). https://doi.org/10.1016/j.compositesa.2019.04.019
- K.H. Kim, J.U. Jang, G.Y. Yoo, S.H. Kim, M.J. Oh et al., Enhanced electrical and thermal conductivities of polymer composites with a segregated network of graphene nanoplatelets. Materials 16, 5329 (2023). https://doi.org/10.3390/ma16155329
- N. Song, D. Cao, X. Luo, Q. Wang, P. Ding et al., Highly thermally conductive polypropylene/graphene composites for thermal management. Compos. Part A Appl. Sci. Manuf. 135, 105912 (2020). https://doi.org/10.1016/j.compositesa.2020.105912
- H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7, 1185–1192 (2014). https://doi.org/10.1039/C3EE42573H
- Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14, 11171–11178 (2022). https://doi.org/10.1039/d2nr02265f
- J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
- C. Shu, H.-Y. Zhao, S. Zhao, W. Deng, P. Min et al., Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Compos. Part B Eng. 248, 110367 (2023). https://doi.org/10.1016/j.compositesb.2022.110367
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681–5688 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.005
- I.C. Parrag, P.W. Zandstra, K.A. Woodhouse, Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol. Bioeng. 109, 813–822 (2012). https://doi.org/10.1002/bit.23353
- S.H. McGee, R.L. McCullough, Characterization of fiber orientation in short-fiber composites. J. Appl. Phys. 55, 1394–1403 (1984). https://doi.org/10.1063/1.333230
- M. Guc, S. Levcenko, I.V. Bodnar, V. Izquierdo-Roca, X. Fontane et al., Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Sci. Rep. 6, 19414 (2016). https://doi.org/10.1038/srep19414
- Z. Zhang, C.-S. Lee, W. Zhang, Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 (2017). https://doi.org/10.1002/aenm.201700678
- Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu et al., Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon 89, 102–112 (2015). https://doi.org/10.1016/j.carbon.2015.02.074
- K. Chu, F. Wang, X.-H. Wang, D.-J. Huang, Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater. Sci. Eng. A 713, 269–277 (2018). https://doi.org/10.1016/j.msea.2017.12.080
- Z. Li, R.J. Young, N.R. Wilson, I.A. Kinloch, C. Vallés et al., Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 123, 125–133 (2016). https://doi.org/10.1016/j.compscitech.2015.12.005
- Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden et al., Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88, 215–224 (2015). https://doi.org/10.1016/j.carbon.2015.02.072
- H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong et al., Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422–429 (2013). https://doi.org/10.1016/j.carbon.2013.06.027
- T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Oriented single-walled carbon nanotubes–poly(ethylene oxide) nanocomposites. Macromolecules 45, 9357–9363 (2012). https://doi.org/10.1021/ma301476r
- R. Pérez, S. Banda, Z. Ounaies, Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J. Appl. Phys. 103, 074302 (2008). https://doi.org/10.1063/1.2885347
- T. Liu, S. Kumar, Quantitative characterization of SWNT orientation by polarized Raman spectroscopy. Chem. Phys. Lett. 378, 257–262 (2003). https://doi.org/10.1016/s0009-2614(03)01287-9
- C.-S. Tsao, E.-W. Huang, M.-H. Wen, T.-Y. Kuo, S.-L. Jeng et al., Phase transformation and precipitation of an Al–Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloys Compd. 579, 138–146 (2013). https://doi.org/10.1016/j.jallcom.2013.04.201
- S.A. Pabit, A.M. Katz, I.S. Tolokh, A. Drozdetski, N. Baker et al., Understanding nucleic acid structural changes by comparing wide-angle X-ray scattering (WAXS) experiments to molecular dynamics simulations. J. Chem. Phys. 144, 205102 (2016). https://doi.org/10.1063/1.4950814
- J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 (2020). https://doi.org/10.1016/j.cej.2020.126218
- S. Ansari, A. Kelarakis, L. Estevez, E.P. Giannelis, Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6, 205–209 (2010). https://doi.org/10.1002/smll.200900765
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
- Y. Cheng, G. Cui, C. Liu, Z. Liu, L. Yan et al., Electric Current aligning component units during graphene fiber joule heating. Adv. Funct. Mater. 32, 2103493 (2022). https://doi.org/10.1002/adfm.202103493
- J.J. Hermans, P.H. Hermans, D. Vermaas, A. Weidinger, Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas 65, 427–447 (1946). https://doi.org/10.1002/recl.19460650605
- S. Lin, J. Tang, K. Zhang, T.S. Suzuki, Q. Wei et al., High-rate supercapacitor using magnetically aligned graphene. J. Power. Sources 482, 228995 (2021). https://doi.org/10.1016/j.jpowsour.2020.228995
- X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker et al., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 114, E9793–E9801 (2017). https://doi.org/10.1073/pnas.1710996114
- L. Wu, M. Ohtani, M. Takata, A. Saeki, S. Seki et al., Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation. ACS Nano 8, 4640–4649 (2014). https://doi.org/10.1021/nn5003908
- X. Wang, W. Yu, L. Wang, H. Xie, Vertical orientation graphene/MXene hybrid phase change materials with anisotropic properties, high enthalpy, and photothermal conversion. Sci. China Technol. Sci. 65, 882–892 (2022). https://doi.org/10.1007/s11431-021-1997-4
- C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar–thermal–electrical energy conversion. ACS Sustain. Chem. Eng. 11, 11991–12003 (2023). https://doi.org/10.1021/acssuschemeng.3c02154
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
- K.-T. Lin, H. Lin, T. Yang, B. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020). https://doi.org/10.1038/s41467-020-15116-z
- K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 (2021). https://doi.org/10.1016/j.cej.2021.129637
- Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 (2023). https://doi.org/10.1002/adfm.202212032
- G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017). https://doi.org/10.1007/s12274-016-1333-1
- J. Feng, X. Liu, F. Lin, S. Duan, K. Zeng et al., Aligned channel Gelatin@nanoGraphite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage. Carbon 201, 756–764 (2023). https://doi.org/10.1016/j.carbon.2022.09.064
- X. Wu, L. Tang, S. Zheng, Y. Huang, J. Yang et al., Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power. Sources 397, 189–195 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.031
- Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou et al., Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17, e2007676 (2021). https://doi.org/10.1002/smll.202007676
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15, e1805389 (2019). https://doi.org/10.1002/smll.201805389
- K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475
- G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures. Nano Lett. 17, 2959–2966 (2017). https://doi.org/10.1021/acs.nanolett.7b00207
- J. Zhou, M. Xie, F. Wu, G. Wei, Y. Mei et al., Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chem. Eng. J. 427, 130967 (2022). https://doi.org/10.1016/j.cej.2021.130967
- L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 (2020). https://doi.org/10.1016/j.nanoen.2020.104482
- H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
- S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021). https://doi.org/10.1016/j.nanoen.2021.105973
- J.D. Afroze, L. Tong, M.J. Abden, Y. Chen, Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 6, 18 (2022). https://doi.org/10.1007/s42114-022-00594-0
- P.-X. Li, G.-Z. Guan, X. Shi, L. Lu, Y.-C. Fan et al., Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249–1260 (2023). https://doi.org/10.1007/s12598-022-02189-6
- Y. Zhao, Y. Alsaid, B. Yao, Y. Zhang, B. Zhang et al., Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors. Adv. Funct. Mater. 30, 1909133 (2020). https://doi.org/10.1002/adfm.201909133
- Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014). https://doi.org/10.1021/nn500150j
- Z. Peng, C. Yu, W. Zhong, Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor. ACS Appl. Mater. Interfaces 14, 17739–17753 (2022). https://doi.org/10.1021/acsami.2c00987
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 (2022). https://doi.org/10.1002/adfm.202270149
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31, e1901403 (2019). https://doi.org/10.1002/adma.201901403
- J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
- E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106–1113 (2023). https://doi.org/10.1007/s40843-022-2208-x
- T. Chen, M. Li, L. Zhou, X. Ding, D. Lin et al., Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil–water separation. ACS Sustain. Chem. Eng. 8, 6458–6465 (2020). https://doi.org/10.1021/acssuschemeng.0c00910
- C. Dai, W. Sun, Z. Xu, J. Liu, J. Chen et al., Assembly of ultralight dual network graphene aerogel with applications for selective oil absorption. Langmuir 36, 13698–13707 (2020).
References
C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr. et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010). https://doi.org/10.1021/ja1072299
Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219–227 (2021). https://doi.org/10.1016/j.jmst.2020.12.051
S. Xi, L. Wang, H. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage. ACS Nano 16, 3843–3851 (2022). https://doi.org/10.1021/acsnano.1c08581
Z. Wang, X. Shen, N.M. Han, X. Liu, Y. Wu et al., Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 28, 6731–6741 (2016). https://doi.org/10.1021/acs.chemmater.6b03206
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. J. Mater. Chem. A 10, 22488–22499 (2022). https://doi.org/10.1039/D2TA06457J
W. Zhan, S. Yu, L. Gao, F. Wang, X. Fu et al., Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup. ACS Appl. Mater. Interfaces 10, 1093–1103 (2018). https://doi.org/10.1021/acsami.7b15322
W. Qian, H. Fu, Y. Sun, Z. Wang, H. Wu et al., Scalable assembly of high-quality graphene films via electrostatic-repulsion aligning. Adv. Mater. 34, e2206101 (2022). https://doi.org/10.1002/adma.202206101
G. Yang, X. Zhang, R. Wang, X. Liu, J. Zhang et al., Ultra-stretchable graphene aerogels at ultralow temperatures. Mater. Horiz. 10, 1865–1874 (2023). https://doi.org/10.1039/d3mh00014a
Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7, 5538–5549 (2015). https://doi.org/10.1021/acsami.5b00146
M. Wu, H. Geng, Y. Hu, H. Ma, C. Yang et al., Superelastic graphene aerogel-based metamaterials. Nat. Commun. 13, 4561 (2022). https://doi.org/10.1038/s41467-022-32200-8
Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10, 21565–21572 (2018). https://doi.org/10.1021/acsami.8b04689
F. Zhang, L. Guo, Y. Shi, Z. Jin, Y. Cheng et al., Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches. Chem. Eng. J. 452, 139664 (2023). https://doi.org/10.1016/j.cej.2022.139664
X. Guo, S. Cheng, B. Yan, Y. Li, R. Huang et al., Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature. J. Colloid Interface Sci. 608, 2407–2413 (2022). https://doi.org/10.1016/j.jcis.2021.10.134
X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan et al., Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 (2013). https://doi.org/10.1038/srep02117
X. Tong, W. Li, J. Li, S. Lu, B. Wang et al., In situ generation of TiO2 in graphene aerogel and its epoxy composite for electromagnetic interference shielding performance. J. Mater. Sci. Mater. Electron. 33, 5886–5898 (2022). https://doi.org/10.1007/s10854-022-07770-4
G. Gorgolis, C. Galiotis, Graphene aerogels: a review. 2D Mater. 4, 032001 (2017). https://doi.org/10.1088/2053-1583/aa7883
Z. Wang, L. Liu, Y. Zhang, Y. Huang, J. Liu et al., A review of graphene-based materials/polymer composite aerogels. Polymers 15, 1888 (2023). https://doi.org/10.3390/polym15081888
G. Nassar, E. Daou, R. Najjar, M. Bassil, R. Habchi, A review on the current research on graphene-based aerogels and their applications. Carbon Trends 4, 100065 (2021). https://doi.org/10.1016/j.cartre.2021.100065
Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112–137 (2023). https://doi.org/10.1016/j.carbon.2023.01.032
X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018). https://doi.org/10.1039/C7EE03031B
J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
S. Yu, X. Shen, J.-K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 8, 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
X. Shen, Q. Zheng, J.-K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11, 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28, 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7, 2101699 (2022). https://doi.org/10.1002/admt.202101699
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5, 2392–2401 (2011). https://doi.org/10.1021/nn200181e
P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma et al., Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 30, 2006584 (2020). https://doi.org/10.1002/adfm.202006584
H.-Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.-X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199–209 (2018). https://doi.org/10.1016/j.carbon.2018.02.033
X. Jiang, Z. Zhao, S. Zhou, H. Zou, P. Liu, Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 45844–45852 (2022). https://doi.org/10.1021/acsami.2c13000
P. Liu, X. Li, X. Chang, P. Min, C. Shu et al., Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon 178, 301–309 (2021). https://doi.org/10.1016/j.carbon.2021.03.014
J. Dong, J. Zeng, B. Wang, Z. Cheng, J. Xu et al., Mechanically flexible carbon aerogel with wavy layers and springboard elastic supporting structure for selective oil/organic solvent recovery. ACS Appl. Mater. Interfaces 13, 15910–15924 (2021). https://doi.org/10.1021/acsami.1c02394
Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9, 44010–44017 (2017). https://doi.org/10.1021/acsami.7b14604
W. Chang, X.-Y. Zhang, J. Qu, Z. Chen, Y.-J. Zhang et al., Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 12, 41419–41428 (2020). https://doi.org/10.1021/acsami.0c11074
Y. Lin, F. Liu, G. ano, R. Bhavsar, I.A. Kinloch et al., Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28, 7993–8000 (2016). https://doi.org/10.1002/adma.201602393
J. Kim, A.P. Tiwari, M. Choi, Q. Chen, J. Lee et al., Boosting bifunctional oxygen electrocatalysis of graphitic C3N4 using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. J. Mater. Chem. A 10, 15689–15697 (2022). https://doi.org/10.1039/D2TA02031A
Y. Ham, V. Ri, J. Kim, Y. Yoon, J. Lee et al., Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 14, 1382–1389 (2021). https://doi.org/10.1007/s12274-020-3187-9
J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10, 37507–37516 (2018). https://doi.org/10.1021/acsami.8b13415
J. Jia, C.-M. Kan, X. Lin, X. Shen, J.-K. Kim, Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77, 244–254 (2014). https://doi.org/10.1016/j.carbon.2014.05.027
X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye et al., Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012). https://doi.org/10.1021/nn303904z
Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5, 6039–6051 (2011). https://doi.org/10.1021/nn2018683
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010). https://doi.org/10.1002/smll.200901934
D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010). https://doi.org/10.1002/adma.201000732
Y. Ma, Y. Gu, Y. He, L. Wei, Y. Lian et al., Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 15, 9792–9799 (2022). https://doi.org/10.1007/s12274-022-4261-2
J. Hu, J. Zhu, S. Ge, C. Jiang, T. Guo et al., Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil–water separation. Surf. Coat. Technol. 385, 125361 (2020). https://doi.org/10.1016/j.surfcoat.2020.125361
L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11, 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao et al., A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1
S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang et al., Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 8, 24853–24861 (2016). https://doi.org/10.1021/acsami.6b06012
Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6, 7103–7113 (2012). https://doi.org/10.1021/nn3021772
M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Directional freeze-ting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater. 22, 2000033 (2020). https://doi.org/10.1002/adem.202000033
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze ting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
J.-H. Oh, J. Kim, H. Lee, Y. Kang, I.-K. Oh, Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Appl. Mater. Interfaces 10, 22650–22660 (2018). https://doi.org/10.1021/acsami.8b06361
C. Wang, M. Huang, R.S. Ruoff, Graphene oxide aerogel ‘ink’ at room temperature, and ordered structures by freeze ting. Carbon 183, 620–627 (2021). https://doi.org/10.1016/j.carbon.2021.07.046
J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: freeze-ting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
D. Fan, X. Yang, J. Liu, P. Zhou, X. Zhang, Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing. Compos. Commun. 27, 100887 (2021). https://doi.org/10.1016/j.coco.2021.100887
L. Quan, C. Wang, Y. Xu, J. Qiu, H. Zhang et al., Electromagnetic properties of graphene aerogels made by freeze-ting. Chem. Eng. J. 428, 131337 (2022). https://doi.org/10.1016/j.cej.2021.131337
X. Zhu, C. Yang, P. Wu, Z. Ma, Y. Shang et al., Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 12, 4882–4894 (2020). https://doi.org/10.1039/c9nr07861d
X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
N.M. Han, Z. Wang, X. Shen, Y. Wu, X. Liu et al., Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites. ACS Appl. Mater. Interfaces 10, 6580–6592 (2018). https://doi.org/10.1021/acsami.7b19069
W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze ting. RSC Adv. 7, 33600–33605 (2017). https://doi.org/10.1039/C7RA05557A
U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Biomaterials by freeze ting. Philos. Trans. A Math. Phys. Eng. Sci. 368, 2099–2121 (2010). https://doi.org/10.1098/rsta.2010.0014
U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089
L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011). https://doi.org/10.1021/ja200244s
J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009). https://doi.org/10.1002/adma.200803606
Z. He, M. Qin, C. Han, X. Bai, Y. Wu et al., Pectin/graphene oxide aerogel with bamboo-like structure for enhanced dyes adsorption. Colloids Surf. A Physicochem. Eng. Aspects 652, 129837 (2022). https://doi.org/10.1016/j.colsurfa.2022.129837
S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020). https://doi.org/10.1016/j.carbon.2019.11.065
V. Rodríguez-Mata, González-Domı́nguez JM, Benito AM, Maser WK, García-Bordejé E, Reduced graphene oxide aerogels with controlled continuous microchannels for environmental remediation. ACS Appl. Nano Mater. 2, 1210–1222 (2019). https://doi.org/10.1021/acsanm.8b02101
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28, 1805365 (2018). https://doi.org/10.1002/adfm.201805365
C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5, 11708–11716 (2017). https://doi.org/10.1039/C7TC03846A
Z. Lin, W. Jiang, Z. Chen, L. Zhong, C. Liu, Shape-memory and anisotropic carbon aerogel from biomass and graphene oxide. Molecules 26, 5715 (2021). https://doi.org/10.3390/molecules26185715
M. Farbod, M. Madadi Jaberi, Fabrication of graphene aerogel and graphene/carbon nanotube composite aerogel by freeze ting under ambient pressure and comparison of their properties. Fuller. Nanotub. Carbon Nanostruct. 29, 244–250 (2021). https://doi.org/10.1080/1536383x.2020.1832995
Z. He, X. Li, H. Wang, F. Su, D. Wang et al., Synergistic regulation of the microstructure for multifunctional graphene aerogels by a dual template method. ACS Appl. Mater. Interfaces 14, 22544–22553 (2022). https://doi.org/10.1021/acsami.2c00525
X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe2O4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222–34231 (2019). https://doi.org/10.1021/acsami.9b10287
B. Jiang, K. Liang, Z. Yang, K. Guo, F. Shaik et al., FeCoNiB@Boron-doped vertically aligned graphene arrays: a self-supported electrocatalyst for overall water splitting in a wide pH range. Electrochim. Acta 386, 138459 (2021). https://doi.org/10.1016/j.electacta.2021.138459
P. Yang, G. Tontini, J. Wang, I.A. Kinloch, S. Barg, Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Nanotechnology 32, 205601 (2021). https://doi.org/10.1088/1361-6528/abdf8f
S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu et al., Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 433, 133619 (2022). https://doi.org/10.1016/j.cej.2021.133619
Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, e2202047 (2022). https://doi.org/10.1002/smll.202202047
L. Liu, J. Zhang, G. Shi, H. Zhang, B. Wang et al., An elastic and lamellar piezoresistive graphene/MXene aerogel. J. Mater. Sci. 57, 11202–11214 (2022). https://doi.org/10.1007/s10853-022-07356-9
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
P. Feng, X. Wang, J. Yang, Biomimetic, highly reusable and hydrophobic graphene/polyvinyl alcohol/cellulose nanofiber aerogels as oil-removing absorbents. Polymers 14, 1077 (2022). https://doi.org/10.3390/polym14061077
P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 (2021). https://doi.org/10.1002/adfm.202103703
M. Cao, S.-L. Li, J.-B. Cheng, A.-N. Zhang, Y.-Z. Wang et al., Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J. Hazard. Mater. 403, 123977 (2021). https://doi.org/10.1016/j.jhazmat.2020.123977
M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu, Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose 25, 7329–7340 (2018). https://doi.org/10.1007/s10570-018-2080-0
Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
Q. Xu, X. Chang, Z. Zhu, L. Xu, X. Chen et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv. 11, 11760–11770 (2021). https://doi.org/10.1039/D0RA10929K
Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
G. Xu, M. Li, T. Wu, C. Teng, Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React. Funct. Polym. 154, 104672 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104672
J. Yang, Y. Chen, K. Gao, Y. Li, S. Wang et al., Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydr. Polym. 272, 118527 (2021). https://doi.org/10.1016/j.carbpol.2021.118527
H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015). https://doi.org/10.1126/sciadv.1500849
K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie et al., Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv. 10, 2150–2159 (2020). https://doi.org/10.1039/c9ra08653f
W. Ma, Z. Ma, Y. Cai, R. Du, Z. Xu et al., Elastic aerogel with tunable wettability for self-cleaning electronic skin. ACS Mater. Lett. 2, 1575–1582 (2020). https://doi.org/10.1021/acsmaterialslett.0c00464
W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019). https://doi.org/10.1021/acsnano.9b02331
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-ting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
F. Su, J. Mok, J. McKittrick, Radial-concentric freeze ting inspired by porcupine fish spines. Ceramics 2, 161–179 (2019). https://doi.org/10.3390/ceramics2010015
L. Fan, J.-L. Li, Z. Cai, X. Wang, Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano 12, 5780–5790 (2018). https://doi.org/10.1021/acsnano.8b01648
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu et al., Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 9, 21809–21819 (2017). https://doi.org/10.1021/acsami.7b04655
A. Ouyang, A. Cao, S. Hu, Y. Li, R. Xu et al., Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 8, 11179–11187 (2016). https://doi.org/10.1021/acsami.6b01965
Y. Liu, D. Yang, Y. Shi, L. Song, R. Yu et al., Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustain. Chem. Eng. 7, 11228–11240 (2019). https://doi.org/10.1021/acssuschemeng.9b00561
B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin et al., Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 7, 11154–11159 (2011). https://doi.org/10.1039/C1SM06418E
R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28, 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, J.M. Razal et al., Formation and processability of liquid crystalline dispersions of graphene oxide. Mater. Horiz. 1, 87–91 (2014). https://doi.org/10.1039/C3MH00050H
K.E. Lee, J.E. Kim, U.N. Maiti, J. Lim, J.O. Hwang et al., Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 8, 9073–9080 (2014). https://doi.org/10.1021/nn5024544
J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn et al., Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011). https://doi.org/10.1002/anie.201004692
S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem. Soc. Rev. 47, 6013–6045 (2018). https://doi.org/10.1039/C8CS00299A
Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011). https://doi.org/10.1021/nn200069w
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94, 224–242 (2015). https://doi.org/10.1016/j.carbon.2015.06.030
E. Garcia-Bordejé, A.M. Benito, W.K. Maser, Graphene aerogels via hydrothermal gelation of graphene oxide colloids: fine-tuning of its porous and chemical properties and catalytic applications. Adv. Colloid Interface Sci. 292, 102420 (2021). https://doi.org/10.1016/j.cis.2021.102420
X. Wu, K. Hou, J. Huang, J. Wang, S. Yang, Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals. J. Mater. Chem. C 6, 8717–8725 (2018). https://doi.org/10.1039/C8TC01853G
Y. Liu, Q. Shi, C. Hou, Q. Zhang, Y. Li et al., Versatile mechanically strong and highly conductive chemically converted graphene aerogels. Carbon 125, 352–359 (2017). https://doi.org/10.1016/j.carbon.2017.09.072
J.D. Afroze, M.J. Abden, Z. Yuan, C. Wang, L. Wei et al., Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 162, 365–374 (2020). https://doi.org/10.1016/j.carbon.2020.02.057
Q. Meng, H. Wan, W. Zhu, T. Duan, W. Yao, Naturally dried, double nitrogen-doped 3D graphene aerogels modified by plant extracts for multifunctional applications. ACS Sustain. Chem. Eng. 6, 1172–1181 (2018). https://doi.org/10.1021/acssuschemeng.7b03460
W. Zhan, X. Fu, F. Wang, W. Zhang, G. Bai et al., Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites. J. Mater. Sci. 55, 10558–10571 (2020). https://doi.org/10.1007/s10853-020-04746-9
J.-K. Xiao, J.-Z. Gong, M. Dai, Y.-F. Zhang, S.-G. Wang et al., Reduced graphene oxide/Ag nanop aerogel for efficient solar water evaporation. J. Alloys Compd. 930, 167404 (2023). https://doi.org/10.1016/j.jallcom.2022.167404
D. Dai, Y. Zhou, W. Xiao, Z. Hao, H. Zhang et al., Multiple functional base-induced highly ordered graphene aerogels. J. Mater. Chem. C 9, 8849–8854 (2021). https://doi.org/10.1039/D1TC01985F
W. Deng, Q. Fang, H. Huang, X. Zhou, J. Ma et al., Oriented arrangement: the origin of versatility for porous graphene materials. Small 13, 1701231 (2017). https://doi.org/10.1002/smll.201701231
Y. Jiang, H. Shao, C. Li, T. Xu, Y. Zhao et al., Versatile graphene oxide putty-like material. Adv. Mater. 28, 10287–10292 (2016). https://doi.org/10.1002/adma.201603284
Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015). https://doi.org/10.1002/adma.201501983
Z. Tang, S. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603–4607 (2010). https://doi.org/10.1002/anie.201000270
P. Kumar, U.N. Maiti, K.E. Lee, S.O. Kim, Rheological properties of graphene oxide liquid crystal. Carbon 80, 453–461 (2014). https://doi.org/10.1016/j.carbon.2014.08.085
P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux et al., Superflexibility of graphene oxide. Proc. Natl. Acad. Sci. U.S.A. 113, 11088–11093 (2016). https://doi.org/10.1073/pnas.1605121113
Y.H. Shim, H. Ahn, S. Lee, S.O. Kim, S.Y. Kim, Universal alignment of graphene oxide in suspensions and fibers. ACS Nano 15, 13453–13462 (2021). https://doi.org/10.1021/acsnano.1c03954
Y. Jiang, F. Guo, J. Zhang, Z. Xu, F. Wang et al., Aligning curved stacking bands to simultaneously strengthen and toughen lamellar materials. Mater. Horiz. 10, 556–565 (2023). https://doi.org/10.1039/d2mh01023b
Y. Jiang, F. Guo, Z. Xu, W. Gao, C. Gao, Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 10, 4111 (2019). https://doi.org/10.1038/s41467-019-11941-z
D.K. Maurya, S. Deo, D.Y. Khanukaeva, Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Methods Appl. Sci. 44, 6647–6665 (2021). https://doi.org/10.1002/mma.7214
Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47, 1267–1276 (2014). https://doi.org/10.1021/ar4002813
F. Wang, Y. Jiang, Y. Liu, F. Guo, W. Fang et al., Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon 159, 166–174 (2020). https://doi.org/10.1016/j.carbon.2019.12.039
L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou et al., Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale 7, 1616–1622 (2015). https://doi.org/10.1039/C4NR06008C
L.C. Geonzon, M. Kobayashi, Y. Adachi, Effect of shear flow on the hydrodynamic drag force of a spherical p near a wall evaluated using optical tweezers and microfluidics. Soft Matter 17, 7914–7920 (2021). https://doi.org/10.1039/d1sm00876e
M. Cao, Z. Li, J. Lu, B. Wang, H. Lai et al., Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, e2300077 (2023). https://doi.org/10.1002/adma.202300077
J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14, 2336–2344 (2020). https://doi.org/10.1021/acsnano.9b09503
H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017). https://doi.org/10.1002/anie.201609230
X. Zhang, P. Liu, Y. Duan, M. Jiang, J. Zhang, Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv. 7, 16467–16473 (2017). https://doi.org/10.1039/C6RA28178H
F. Gong, W. Wang, H. Li, D.D. Xia, Q. Dai et al., Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energy 261, 114410 (2020). https://doi.org/10.1016/j.apenergy.2019.114410
J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13, 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7, 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation. ACS Sustain. Chem. Eng. 8, 4955–4965 (2020). https://doi.org/10.1021/acssuschemeng.0c00853
C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018). https://doi.org/10.1002/adfm.201707024
X. Zhao, W. Gao, W. Yao, Y. Jiang, Z. Xu et al., Ion diffusion-directed assembly approach to ultrafast coating of graphene oxide thick multilayers. ACS Nano 11, 9663–9670 (2017). https://doi.org/10.1021/acsnano.7b03480
G. Shao, X. Shen, X. Huang, Multilevel structural design and heterointerface engineering of a host–guest binary aerogel toward multifunctional broadband microwave absorption. ACS Mater. Lett. 4, 1787–1797 (2022). https://doi.org/10.1021/acsmaterialslett.2c00634
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
H. Yang, T. Zhang, M. Jiang, Y. Duan, J. Zhang, Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 3, 19268–19272 (2015). https://doi.org/10.1039/C5TA06452J
Z.-L. Yu, N. Yang, L.-C. Zhou, Z.-Y. Ma, Y.-B. Zhu et al., Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018). https://doi.org/10.1126/sciadv.aat7223
K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J. Environ. Sci. (China) 79, 174–199 (2019). https://doi.org/10.1016/j.jes.2018.11.023
W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
Y. Wang, B. Yao, H. Chen, H. Wang, C. Li et al., Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. Eur. Polym. J. 112, 487–492 (2019). https://doi.org/10.1016/j.eurpolymj.2019.01.036
H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 (2020). https://doi.org/10.1002/adfm.201910826
G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4, 17042–17049 (2016). https://doi.org/10.1039/C6TA07587H
G. Li, Z. Chu, X. Gong, M. Xiao, Q. Dong et al., A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021 (2022). https://doi.org/10.1002/admt.202101021
N. Ni, S. Barg, E. Garcia-Tunon, F.M. Perez, M. Miranda et al., Understanding mechanical response of elastomeric graphene networks. Sci. Rep. 5, 13712 (2015). https://doi.org/10.1038/srep13712
T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1, 4895–4903 (2019). https://doi.org/10.1039/c9na00444k
X. Zhao, W. Wu, D. Drummer, Y. Wang, S. Cui et al., SiC nanowires bridged graphene aerogels with a vertically aligned structure for highly thermal conductive epoxy resin composites and their mechanism. ACS Appl. Electron. Mater. 5, 2548–2557 (2023). https://doi.org/10.1021/acsaelm.3c00015
F. An, X. Li, P. Min, P. Liu, Z.-G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10, 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018). https://doi.org/10.1021/acsnano.8b00304
W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8, 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12, 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132, 41744 (2015). https://doi.org/10.1002/app.41744
R. Taherian, Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26–M38 (2014). https://doi.org/10.1149/2.023406jss
J. Li, J.-K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007). https://doi.org/10.1016/j.compscitech.2006.11.010
P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu et al., Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 353, 364–367 (2016). https://doi.org/10.1126/science.aaf4362
J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai et al., Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8, 5774–5783 (2014). https://doi.org/10.1021/nn500590g
L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou et al., Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 26, 3333–3337 (2014). https://doi.org/10.1002/adma.201305359
H. Hosseini, M. Kokabi, S.M. Mousavi, BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer 137, 82–96 (2018). https://doi.org/10.1016/j.polymer.2017.12.068
N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis et al., Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406–417 (2013). https://doi.org/10.1016/j.carbon.2013.03.034
N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif et al., Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J. Mater. Chem. 22, 12709–12717 (2012). https://doi.org/10.1039/C2JM30590A
A.S. Wajid, H.S. Tanvir Ahmed, S. Das, F. Irin, A.F. Jankowski et al., High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013). https://doi.org/10.1002/mame.201200043
J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 6, 12252–12260 (2014). https://doi.org/10.1021/am501843s
D. Wang, X. Zhang, J.-W. Zha, J. Zhao, Z.-M. Dang et al., Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013). https://doi.org/10.1016/j.polymer.2013.02.012
H. Pang, T. Chen, G. Zhang, B. Zeng, Z.-M. Li, An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 64, 2226–2229 (2010). https://doi.org/10.1016/j.matlet.2010.07.001
L. Yang, Z. Wang, Y. Ji, J. Wang, G. Xue, Highly ordered 3D graphene-based polymer composite materials fabricated by “p-constructing” method and their outstanding conductivity. Macromolecules 47, 1749–1756 (2014). https://doi.org/10.1021/ma402364r
P. Wang, H. Chong, J. Zhang, H. Lu, Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl. Mater. Interfaces 9, 22006–22017 (2017). https://doi.org/10.1021/acsami.7b07328
D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809
Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
Z. Fan, F. Gong, S.T. Nguyen, H.M. Duong, Advanced multifunctional graphene aerogel–Poly (methyl methacrylate) composites: experiments and modeling. Carbon 81, 396–404 (2015). https://doi.org/10.1016/j.carbon.2014.09.072
R. Ram, M. Rahaman, A. Aldalbahi, D. Khastgir, Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polym. Int. 66, 573–582 (2017). https://doi.org/10.1002/pi.5294
X. Liu, X. Sun, Z. Wang, X. Shen, Y. Wu et al., Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 7, 21455–21464 (2015). https://doi.org/10.1021/acsami.5b06476
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5, 275–284 (2018). https://doi.org/10.1039/C7MH00984D
X.-Y. Qi, D. Yan, Z. Jiang, Y.-K. Cao, Z.-Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011). https://doi.org/10.1021/am200628c
X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20, 9032–9036 (2010). https://doi.org/10.1039/C0JM01852J
F.-Y. Yuan, H.-B. Zhang, X. Li, H.-L. Ma, X.-Z. Li et al., In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68, 653–661 (2014). https://doi.org/10.1016/j.carbon.2013.11.046
L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 (2020). https://doi.org/10.1016/j.cej.2019.123126
V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, J.S. Chung, Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl. Mater. Interfaces 4, 2630–2636 (2012). https://doi.org/10.1021/am300297j
P. Yang, S. Ghosh, T. Xia, J. Wang, M.A. Bissett et al., Joule heating and mechanical properties of epoxy/graphene based aerogel composite. Compos. Sci. Technol. 218, 109199 (2022). https://doi.org/10.1016/j.compscitech.2021.109199
C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-ting. Angew. Chem. Int. Ed. Engl. 58, 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013). https://doi.org/10.1016/j.carbon.2013.03.050
M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu et al., Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 20, 9635–9643 (2010). https://doi.org/10.1039/C0JM01620A
S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler et al., Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014). https://doi.org/10.1016/j.compscitech.2014.03.014
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017). https://doi.org/10.1002/adma.201700589
P. Liu, F. An, X. Lu, X. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201, 108492 (2021). https://doi.org/10.1016/j.compscitech.2020.108492
G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28, 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861–867 (2012). https://doi.org/10.1021/nl203906r
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16, 3585–3593 (2016). https://doi.org/10.1021/acs.nanolett.6b00722
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27, 2100–2106 (2015). https://doi.org/10.1021/cm504550e
A. Li, C. Zhang, Y.-F. Zhang, RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 101, 108–114 (2017). https://doi.org/10.1016/j.compositesa.2017.06.009
A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao et al., Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos. Part A Appl. Sci. Manuf. 122, 1–7 (2019). https://doi.org/10.1016/j.compositesa.2019.04.019
K.H. Kim, J.U. Jang, G.Y. Yoo, S.H. Kim, M.J. Oh et al., Enhanced electrical and thermal conductivities of polymer composites with a segregated network of graphene nanoplatelets. Materials 16, 5329 (2023). https://doi.org/10.3390/ma16155329
N. Song, D. Cao, X. Luo, Q. Wang, P. Ding et al., Highly thermally conductive polypropylene/graphene composites for thermal management. Compos. Part A Appl. Sci. Manuf. 135, 105912 (2020). https://doi.org/10.1016/j.compositesa.2020.105912
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7, 1185–1192 (2014). https://doi.org/10.1039/C3EE42573H
Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14, 11171–11178 (2022). https://doi.org/10.1039/d2nr02265f
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
C. Shu, H.-Y. Zhao, S. Zhao, W. Deng, P. Min et al., Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Compos. Part B Eng. 248, 110367 (2023). https://doi.org/10.1016/j.compositesb.2022.110367
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681–5688 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.005
I.C. Parrag, P.W. Zandstra, K.A. Woodhouse, Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol. Bioeng. 109, 813–822 (2012). https://doi.org/10.1002/bit.23353
S.H. McGee, R.L. McCullough, Characterization of fiber orientation in short-fiber composites. J. Appl. Phys. 55, 1394–1403 (1984). https://doi.org/10.1063/1.333230
M. Guc, S. Levcenko, I.V. Bodnar, V. Izquierdo-Roca, X. Fontane et al., Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Sci. Rep. 6, 19414 (2016). https://doi.org/10.1038/srep19414
Z. Zhang, C.-S. Lee, W. Zhang, Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 (2017). https://doi.org/10.1002/aenm.201700678
Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu et al., Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon 89, 102–112 (2015). https://doi.org/10.1016/j.carbon.2015.02.074
K. Chu, F. Wang, X.-H. Wang, D.-J. Huang, Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater. Sci. Eng. A 713, 269–277 (2018). https://doi.org/10.1016/j.msea.2017.12.080
Z. Li, R.J. Young, N.R. Wilson, I.A. Kinloch, C. Vallés et al., Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 123, 125–133 (2016). https://doi.org/10.1016/j.compscitech.2015.12.005
Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden et al., Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88, 215–224 (2015). https://doi.org/10.1016/j.carbon.2015.02.072
H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong et al., Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422–429 (2013). https://doi.org/10.1016/j.carbon.2013.06.027
T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Oriented single-walled carbon nanotubes–poly(ethylene oxide) nanocomposites. Macromolecules 45, 9357–9363 (2012). https://doi.org/10.1021/ma301476r
R. Pérez, S. Banda, Z. Ounaies, Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J. Appl. Phys. 103, 074302 (2008). https://doi.org/10.1063/1.2885347
T. Liu, S. Kumar, Quantitative characterization of SWNT orientation by polarized Raman spectroscopy. Chem. Phys. Lett. 378, 257–262 (2003). https://doi.org/10.1016/s0009-2614(03)01287-9
C.-S. Tsao, E.-W. Huang, M.-H. Wen, T.-Y. Kuo, S.-L. Jeng et al., Phase transformation and precipitation of an Al–Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloys Compd. 579, 138–146 (2013). https://doi.org/10.1016/j.jallcom.2013.04.201
S.A. Pabit, A.M. Katz, I.S. Tolokh, A. Drozdetski, N. Baker et al., Understanding nucleic acid structural changes by comparing wide-angle X-ray scattering (WAXS) experiments to molecular dynamics simulations. J. Chem. Phys. 144, 205102 (2016). https://doi.org/10.1063/1.4950814
J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 (2020). https://doi.org/10.1016/j.cej.2020.126218
S. Ansari, A. Kelarakis, L. Estevez, E.P. Giannelis, Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6, 205–209 (2010). https://doi.org/10.1002/smll.200900765
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
Y. Cheng, G. Cui, C. Liu, Z. Liu, L. Yan et al., Electric Current aligning component units during graphene fiber joule heating. Adv. Funct. Mater. 32, 2103493 (2022). https://doi.org/10.1002/adfm.202103493
J.J. Hermans, P.H. Hermans, D. Vermaas, A. Weidinger, Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas 65, 427–447 (1946). https://doi.org/10.1002/recl.19460650605
S. Lin, J. Tang, K. Zhang, T.S. Suzuki, Q. Wei et al., High-rate supercapacitor using magnetically aligned graphene. J. Power. Sources 482, 228995 (2021). https://doi.org/10.1016/j.jpowsour.2020.228995
X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker et al., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 114, E9793–E9801 (2017). https://doi.org/10.1073/pnas.1710996114
L. Wu, M. Ohtani, M. Takata, A. Saeki, S. Seki et al., Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation. ACS Nano 8, 4640–4649 (2014). https://doi.org/10.1021/nn5003908
X. Wang, W. Yu, L. Wang, H. Xie, Vertical orientation graphene/MXene hybrid phase change materials with anisotropic properties, high enthalpy, and photothermal conversion. Sci. China Technol. Sci. 65, 882–892 (2022). https://doi.org/10.1007/s11431-021-1997-4
C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar–thermal–electrical energy conversion. ACS Sustain. Chem. Eng. 11, 11991–12003 (2023). https://doi.org/10.1021/acssuschemeng.3c02154
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
K.-T. Lin, H. Lin, T. Yang, B. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020). https://doi.org/10.1038/s41467-020-15116-z
K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 (2021). https://doi.org/10.1016/j.cej.2021.129637
Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 (2023). https://doi.org/10.1002/adfm.202212032
G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017). https://doi.org/10.1007/s12274-016-1333-1
J. Feng, X. Liu, F. Lin, S. Duan, K. Zeng et al., Aligned channel Gelatin@nanoGraphite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage. Carbon 201, 756–764 (2023). https://doi.org/10.1016/j.carbon.2022.09.064
X. Wu, L. Tang, S. Zheng, Y. Huang, J. Yang et al., Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power. Sources 397, 189–195 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.031
Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou et al., Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17, e2007676 (2021). https://doi.org/10.1002/smll.202007676
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15, e1805389 (2019). https://doi.org/10.1002/smll.201805389
K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475
G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures. Nano Lett. 17, 2959–2966 (2017). https://doi.org/10.1021/acs.nanolett.7b00207
J. Zhou, M. Xie, F. Wu, G. Wei, Y. Mei et al., Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chem. Eng. J. 427, 130967 (2022). https://doi.org/10.1016/j.cej.2021.130967
L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 (2020). https://doi.org/10.1016/j.nanoen.2020.104482
H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021). https://doi.org/10.1016/j.nanoen.2021.105973
J.D. Afroze, L. Tong, M.J. Abden, Y. Chen, Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 6, 18 (2022). https://doi.org/10.1007/s42114-022-00594-0
P.-X. Li, G.-Z. Guan, X. Shi, L. Lu, Y.-C. Fan et al., Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249–1260 (2023). https://doi.org/10.1007/s12598-022-02189-6
Y. Zhao, Y. Alsaid, B. Yao, Y. Zhang, B. Zhang et al., Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors. Adv. Funct. Mater. 30, 1909133 (2020). https://doi.org/10.1002/adfm.201909133
Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014). https://doi.org/10.1021/nn500150j
Z. Peng, C. Yu, W. Zhong, Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor. ACS Appl. Mater. Interfaces 14, 17739–17753 (2022). https://doi.org/10.1021/acsami.2c00987
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 (2022). https://doi.org/10.1002/adfm.202270149
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31, e1901403 (2019). https://doi.org/10.1002/adma.201901403
J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106–1113 (2023). https://doi.org/10.1007/s40843-022-2208-x
T. Chen, M. Li, L. Zhou, X. Ding, D. Lin et al., Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil–water separation. ACS Sustain. Chem. Eng. 8, 6458–6465 (2020). https://doi.org/10.1021/acssuschemeng.0c00910
C. Dai, W. Sun, Z. Xu, J. Liu, J. Chen et al., Assembly of ultralight dual network graphene aerogel with applications for selective oil absorption. Langmuir 36, 13698–13707 (2020).