Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 56
Abstract
Mn-based rechargeable aqueous zinc-ion batteries (ZIBs) are highly promising because of their high operating voltages, attractive energy densities, and eco-friendliness. However, the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling. Herein, we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O (NMOH) for high-performance aqueous ZIBs. A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time. Na+ and crystal water enlarge the interlayer distance to enhance the insertion of Zn2+, and some sodium ions are replaced with Zn2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn2+/H+ insertion/extraction, resulting in exceptional specific capacities and satisfactory structural stabilities. Additionally, a pseudo-capacitance derived from the surface-adsorbed Na+ also contributes to the electrochemical performances. The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g−1 at current densities of 200 and 1500 mA g−1, respectively, but also maintains a good long-cycling performance of 201.6 mA h g−1 at a high current density of 500 mA g−1 after 400 cycles, which makes the NMOH cathode competitive for practical applications.
Highlights:
1 A layered sodium-ion/crystal water co-intercalated Na0.55Mn2O4·0.57H2O (NMOH) cathode is synthesized successfully with a selectively etching method for zinc-ion batteries.
2 A displacement/intercalation mechanism is confirmed in the Mn-based cathode for the first time.
3 The NMOH cathode delivers a competitive reversible capacity of 201.6 mA h g−1 at 500 mA g−1 after 400 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- C.-X. Gui, S.-M. Hao, Y. Liu, J. Qu, C. Yang, Y. Yu, Q.-Q. Wang, Z.-Z. Yu, Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. J. Mater. Chem. A 3(32), 16551–16559 (2015). https://doi.org/10.1039/c5ta03408f
- H. Ye, Z.-J. Zheng, H.-R. Yao, S.-C. Liu, T.-T. Zuo et al., Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Nano Energy 58(4), 1094–1099 (2019). https://doi.org/10.1002/anie.201811955
- L.H. Zhang, T. Wei, Z.M. Jiang, C.Q. Liu, H. Jiang et al., Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48, 238–247 (2018). https://doi.org/10.1016/j.nanoen.2018.03.053
- W.-H. Li, Q.-L. Ning, X.-T. Xi, B.-H. Hou, J.-Z. Guo, Y. Yang, B. Chen, X.-L. Wu, Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv. Mater. 31(4), 1804766 (2019). https://doi.org/10.1002/adma.201804766
- Y.-Q. Jing, J. Qu, W. Chang, Q.-Y. Ji, H.-J. Liu, T.-T. Zhang, Z.-Z. Yu, Cobalt hydroxide carbonate/reduced graphene oxide anodes enabled by a confined step-by-step electrochemical catalytic conversion process for high lithium storage capacity and excellent cyclability with a low variance coefficient. ACS Appl. Mater. Interfaces. 11(36), 33091–33101 (2019). https://doi.org/10.1021/acsami.9b12088
- W. Chang, J. Qu, S.-M. Hao, Y.-J. Zhang, Z.-G. Jiang, Z.-Z. Yu, Effects of graphene quality on lithium storage performances of Fe3O4/thermally reduced graphene oxide hybrid anodes. ChemElectroChem 6(6), 1853–1860 (2019). https://doi.org/10.1002/celc.201900015
- W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162), 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
- M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
- Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu et al., A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- K. Lu, B. Song, Y. Zhang, H. Ma, J. Zhang, Encapsulation of Zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J. Mater. Chem. A 5(45), 23628–23633 (2017). https://doi.org/10.1039/c7ta07834j
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
- J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7(22), 13727–13735 (2019). https://doi.org/10.1039/C9TA03541A
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
- W. Qiu, Y. Li, A. You, Z. Zhang, G. Li, X. Lu, Y. Tong, High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 5(28), 14838–14846 (2017). https://doi.org/10.1039/c7ta03274a
- S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim et al., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5(44), 23299–23309 (2017). https://doi.org/10.1039/c7ta07170a
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
- C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, Investigation of the intercalation of polyvalent Cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014). https://doi.org/10.1016/j.electacta.2013.11.090
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
- X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A. 5(34), 17990–17997 (2017). https://doi.org/10.1039/c7ta00100b
- V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo et al., Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 3(8), 1998–2004 (2018). https://doi.org/10.1021/acsenergylett.8b01105
- C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu, Y. Qian, Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta 304, 370–377 (2019). https://doi.org/10.1016/j.electacta.2019.03.008
- M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham et al., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
- S.-D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
- R.A. Aziz, R. Jose, Charge storage capability of tunnel MnO2 and alkaline layered Na-MnO2 as anode material for aqueous asymmetry supercapacitor. J. Electrochem. Soc. 799, 538–546 (2017). https://doi.org/10.1016/j.jelechem.2017.06.014
- W.-J. Shi, Y.-W. Yan, C. Chi, X.-T. Ma, D. Zhang et al., Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. J. Power Sources 427, 129–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.038
- H. Xia, X. Zhu, J. Liu, Q. Liu, S. Lan et al., A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9(1), 5100 (2018). https://doi.org/10.1038/s41467-018-07595-y
- K.W. Nam, S. Kim, E. Yang, Y. Jung, E. Levi, D. Aurbach, J.W. Choi, Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem. Mater. 27(10), 3721–3725 (2015). https://doi.org/10.1021/acs.chemmater.5b00869
- K.W. Nam, H. Kim, J.H. Choi, J.W. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12(6), 1999–2009 (2019). https://doi.org/10.1039/C9EE00718K
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- J. Zhang, T. He, W. Zhang, J. Sheng, I.S. Amiinu et al., Na-Mn-O nanocrystals as a high capacity and long life anode material for Li-ion batteries. Adv. Energy Mater. 7(5), 1602092 (2017). https://doi.org/10.1002/aenm.201602092
- Y. Park, S. Woo Lee, K.H. Kim, B.K. Min, A. Kumar Nayak, D. Pradhan, Y. Sohn, Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires. Sci Rep. 5, 18275 (2015). https://doi.org/10.1038/srep18275
- M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
- M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
- J. Li, J. Yu, I.S. Amiinu, J. Zhang, J. Sheng et al., Na–Mn–O@C yolk–shell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. J. Mater. Chem. A 5(35), 18509–18517 (2017). https://doi.org/10.1039/c7ta06046g
- S.-M. Hao, M.-Y. Yu, Y.-J. Zhang, Y. Abdelkrim, J. Qu, Hierarchical mesoporous cobalt silicate architectures as high-performance sulfate-radical-based advanced oxidization catalysts. J. Colloid Interface Sci. 545, 128–137 (2019). https://doi.org/10.1016/j.jcis.2019.03.017
- S.-M. Hao, J. Qu, W. Chang, Y.-J. Zhang, Y. Tang, Z.-Z. Yu, A high-performance dual-ion battery enabled by conversion-type manganese silicate anodes with enhanced ion accessibility. ChemElectroChem 6(4), 1040–1046 (2019). https://doi.org/10.1002/celc.201801675
- D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Preparation of activated carbons from spanish anthracite: I. Activation by KOH. Carbon 39(5), 741–749 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8
- Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23(19), 2436–2444 (2013). https://doi.org/10.1002/adfm.201202623
- S.M. Hao, J. Qu, J. Yang, C.X. Gui, Q.Q. Wang, Q.J. Li, X. Li, Z.Z. Yu, K2Mn4O8/reduced graphene oxide nanocomposites for excellent lithium storage and adsorption of lead ions. Chem. Eur. J. 22(10), 3397–3404 (2016). https://doi.org/10.1002/chem.201504785
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- L. Chen, Z. Yang, H. Qin, X. Zeng, J. Meng, Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources 425, 162–169 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.010
- R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- T. Wei, Q. Li, G. Yang, C. Wang, Pseudo-Zn–air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Adv. Energy Mater. 9(34), 1901480 (2019). https://doi.org/10.1002/aenm.201901480
- Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11(1), 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11(1), 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
- Q. Zhang, M.D. Levi, Q. Dou, Y. Lu, Y. Chai et al., The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes. Adv. Energy Mater. 9(3), 1802707 (2019). https://doi.org/10.1002/aenm.201802707
- Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J. Power Sources 194(2), 1222–1225 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.068
- B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen, Y.P. Wu, R. Holze, Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J. Power Sources 253, 98–103 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.011
References
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
C.-X. Gui, S.-M. Hao, Y. Liu, J. Qu, C. Yang, Y. Yu, Q.-Q. Wang, Z.-Z. Yu, Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. J. Mater. Chem. A 3(32), 16551–16559 (2015). https://doi.org/10.1039/c5ta03408f
H. Ye, Z.-J. Zheng, H.-R. Yao, S.-C. Liu, T.-T. Zuo et al., Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Nano Energy 58(4), 1094–1099 (2019). https://doi.org/10.1002/anie.201811955
L.H. Zhang, T. Wei, Z.M. Jiang, C.Q. Liu, H. Jiang et al., Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48, 238–247 (2018). https://doi.org/10.1016/j.nanoen.2018.03.053
W.-H. Li, Q.-L. Ning, X.-T. Xi, B.-H. Hou, J.-Z. Guo, Y. Yang, B. Chen, X.-L. Wu, Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv. Mater. 31(4), 1804766 (2019). https://doi.org/10.1002/adma.201804766
Y.-Q. Jing, J. Qu, W. Chang, Q.-Y. Ji, H.-J. Liu, T.-T. Zhang, Z.-Z. Yu, Cobalt hydroxide carbonate/reduced graphene oxide anodes enabled by a confined step-by-step electrochemical catalytic conversion process for high lithium storage capacity and excellent cyclability with a low variance coefficient. ACS Appl. Mater. Interfaces. 11(36), 33091–33101 (2019). https://doi.org/10.1021/acsami.9b12088
W. Chang, J. Qu, S.-M. Hao, Y.-J. Zhang, Z.-G. Jiang, Z.-Z. Yu, Effects of graphene quality on lithium storage performances of Fe3O4/thermally reduced graphene oxide hybrid anodes. ChemElectroChem 6(6), 1853–1860 (2019). https://doi.org/10.1002/celc.201900015
W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162), 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu et al., A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
K. Lu, B. Song, Y. Zhang, H. Ma, J. Zhang, Encapsulation of Zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J. Mater. Chem. A 5(45), 23628–23633 (2017). https://doi.org/10.1039/c7ta07834j
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7(22), 13727–13735 (2019). https://doi.org/10.1039/C9TA03541A
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
W. Qiu, Y. Li, A. You, Z. Zhang, G. Li, X. Lu, Y. Tong, High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 5(28), 14838–14846 (2017). https://doi.org/10.1039/c7ta03274a
S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim et al., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5(44), 23299–23309 (2017). https://doi.org/10.1039/c7ta07170a
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, Investigation of the intercalation of polyvalent Cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014). https://doi.org/10.1016/j.electacta.2013.11.090
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A. 5(34), 17990–17997 (2017). https://doi.org/10.1039/c7ta00100b
V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo et al., Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 3(8), 1998–2004 (2018). https://doi.org/10.1021/acsenergylett.8b01105
C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu, Y. Qian, Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta 304, 370–377 (2019). https://doi.org/10.1016/j.electacta.2019.03.008
M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham et al., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
S.-D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
R.A. Aziz, R. Jose, Charge storage capability of tunnel MnO2 and alkaline layered Na-MnO2 as anode material for aqueous asymmetry supercapacitor. J. Electrochem. Soc. 799, 538–546 (2017). https://doi.org/10.1016/j.jelechem.2017.06.014
W.-J. Shi, Y.-W. Yan, C. Chi, X.-T. Ma, D. Zhang et al., Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. J. Power Sources 427, 129–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.038
H. Xia, X. Zhu, J. Liu, Q. Liu, S. Lan et al., A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9(1), 5100 (2018). https://doi.org/10.1038/s41467-018-07595-y
K.W. Nam, S. Kim, E. Yang, Y. Jung, E. Levi, D. Aurbach, J.W. Choi, Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem. Mater. 27(10), 3721–3725 (2015). https://doi.org/10.1021/acs.chemmater.5b00869
K.W. Nam, H. Kim, J.H. Choi, J.W. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12(6), 1999–2009 (2019). https://doi.org/10.1039/C9EE00718K
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
J. Zhang, T. He, W. Zhang, J. Sheng, I.S. Amiinu et al., Na-Mn-O nanocrystals as a high capacity and long life anode material for Li-ion batteries. Adv. Energy Mater. 7(5), 1602092 (2017). https://doi.org/10.1002/aenm.201602092
Y. Park, S. Woo Lee, K.H. Kim, B.K. Min, A. Kumar Nayak, D. Pradhan, Y. Sohn, Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires. Sci Rep. 5, 18275 (2015). https://doi.org/10.1038/srep18275
M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
J. Li, J. Yu, I.S. Amiinu, J. Zhang, J. Sheng et al., Na–Mn–O@C yolk–shell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. J. Mater. Chem. A 5(35), 18509–18517 (2017). https://doi.org/10.1039/c7ta06046g
S.-M. Hao, M.-Y. Yu, Y.-J. Zhang, Y. Abdelkrim, J. Qu, Hierarchical mesoporous cobalt silicate architectures as high-performance sulfate-radical-based advanced oxidization catalysts. J. Colloid Interface Sci. 545, 128–137 (2019). https://doi.org/10.1016/j.jcis.2019.03.017
S.-M. Hao, J. Qu, W. Chang, Y.-J. Zhang, Y. Tang, Z.-Z. Yu, A high-performance dual-ion battery enabled by conversion-type manganese silicate anodes with enhanced ion accessibility. ChemElectroChem 6(4), 1040–1046 (2019). https://doi.org/10.1002/celc.201801675
D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Preparation of activated carbons from spanish anthracite: I. Activation by KOH. Carbon 39(5), 741–749 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8
Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23(19), 2436–2444 (2013). https://doi.org/10.1002/adfm.201202623
S.M. Hao, J. Qu, J. Yang, C.X. Gui, Q.Q. Wang, Q.J. Li, X. Li, Z.Z. Yu, K2Mn4O8/reduced graphene oxide nanocomposites for excellent lithium storage and adsorption of lead ions. Chem. Eur. J. 22(10), 3397–3404 (2016). https://doi.org/10.1002/chem.201504785
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
L. Chen, Z. Yang, H. Qin, X. Zeng, J. Meng, Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources 425, 162–169 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.010
R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
T. Wei, Q. Li, G. Yang, C. Wang, Pseudo-Zn–air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Adv. Energy Mater. 9(34), 1901480 (2019). https://doi.org/10.1002/aenm.201901480
Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11(1), 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11(1), 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
Q. Zhang, M.D. Levi, Q. Dou, Y. Lu, Y. Chai et al., The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes. Adv. Energy Mater. 9(3), 1802707 (2019). https://doi.org/10.1002/aenm.201802707
Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J. Power Sources 194(2), 1222–1225 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.068
B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen, Y.P. Wu, R. Holze, Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J. Power Sources 253, 98–103 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.011