Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 129
Abstract
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation. Featured by its exceptional thermal conductivity, graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management. Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities. Compared with conventional composite fabrications by directly mixing graphene with polymers, preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances, enabling high manufacturing flexibility and controllability. In this review, we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites. Subsequently, we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications. Finally, our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
Highlights:
1 Fundamental principles for designing high-performance thermally conductive graphene-based polymer composites are reviewed in detail.
2 The reasoning behind using the preconstructed graphene 3D networks for fabricating thermally conductive composites and recent progress are discussed in-depth.
3 Insight into the existing bottlenecks and opportunities in developing preconstructed 3D networks of graphene and their thermally conductive composites is also presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang et al., Thermal properties of graphene filled polymer composite thermal interface materials. Macromol. Mater. Eng. 302(9), 1700068 (2017). https://doi.org/10.1002/mame.201700068
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
- L. Lv, W. Dai, A. Li, C.T. Lin, Graphene-based thermal interface materials: an application-oriented perspective on architecture design. Polymers 10(11), 1201 (2018). https://doi.org/10.3390/polym10111201
- S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). https://doi.org/10.1039/c2cs35353a
- C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/c8tc05955a
- C. Amaral, R. Vicente, P.A.A.P. Marques, A. Barros-Timmons, Phase change materials and carbon nanostructures for thermal energy storage: a literature review. Renew. Sustain. Energy Rev. 79, 1212–1228 (2017). https://doi.org/10.1016/j.rser.2017.05.093
- A. Allahbakhsh, M. Arjmand, Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects. Carbon 148, 441–480 (2019). https://doi.org/10.1016/j.carbon.2019.04.009
- S. Kashyap, S. Kabra, B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems. J. Mater. Sci. 55(10), 4127–4156 (2020). https://doi.org/10.1007/s10853-019-04325-7
- L.S. Tang, J. Yang, R.Y. Bao, Z.Y. Liu, B.H. Xie et al., Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers. Manage. 146, 253–264 (2017). https://doi.org/10.1016/j.enconman.2017.05.037
- P. Ding, S. Su, N. Song, S. Tang, Y. Liu et al., Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66, 576–584 (2014). https://doi.org/10.1016/j.carbon.2013.09.041
- A.S. Patole, S.P. Patole, H. Kang, J.B. Yoo, T.H. Kim et al., A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J. Colloid Interface Sci. 350(2), 530–537 (2010). https://doi.org/10.1016/j.jcis.2010.01.035
- Z. Anwar, A. Kausar, I. Rafique, B. Muhammad, Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties: a review. Polym. Plast. Technol. Eng. 55(6), 643–662 (2016). https://doi.org/10.1080/03602559.2015.1098695
- J.H. Du, H.M. Cheng, The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012). https://doi.org/10.1002/macp.201200029
- X. Zeng, J. Yang, W. Yuan, Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur. Polym. J. 48(10), 1674–1682 (2012). https://doi.org/10.1016/j.eurpolymj.2012.07.011
- J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
- M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 12(6), 2959–2964 (2012). https://doi.org/10.1021/nl300662q
- Q.Q. Zhang, X. Xu, H. Li, G.P. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
- H. Fang, S.L. Bai, C.P. Wang, “White graphene”-hexagonal boron nitride based polymeric composites and their application in thermal management. Compos. Commun. 2, 19–24 (2016). https://doi.org/10.1016/j.coco.2016.10.002
- X. Shen, Z.Y. Wang, Y. Wu, X. Liu, J.K. Kim, Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon 108, 412–422 (2016). https://doi.org/10.1016/j.carbon.2016.07.042
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- J. Wang, P. Ren, F. Ren, G. Zhu, A. Sun et al., Preparation of highly thermally conductive epoxy composites via constructing a vertically aligned foam of cetyltrimethylammonium bromide-graphene@polydopamine-multi-walled carbon nanotubes. J. Mater. Sci. 56(13), 7951–7965 (2021). https://doi.org/10.1007/s10853-021-05795-4
- Y. Zhang, Y.J. Heo, Y.R. Son, I. In, K.H. An et al., Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142, 445–460 (2019). https://doi.org/10.1016/j.carbon.2018.10.077
- F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
- Y.H. Zhao, Y.F. Zhang, S.L. Bai, High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos. Part A Appl. Sci. Manuf. 85, 148–155 (2016). https://doi.org/10.1016/j.compositesa.2016.03.021
- N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie et al., Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11(5), 4777–4784 (2017). https://doi.org/10.1021/acsnano.7b01089
- H.H. Pu, S.H. Rhim, C.J. Hirschmugl, M. Gajdardziska-Josifovska, M. Weinert et al., Anisotropic thermal conductivity of semiconducting graphene monoxide. Appl. Phys. Lett. 102(22), 5 (2013). https://doi.org/10.1063/1.4808448
- S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika et al., Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 3 (2008). https://doi.org/10.1063/1.2907977
- S.K. Jaćimovski, M. Bukurov, J.P. Šetrajčić, D.I. Raković, Phonon thermal conductivity of graphene. Superlattices Microst. 88, 330–337 (2015). https://doi.org/10.1016/j.spmi.2015.09.027
- L.B. Seo, Effect of phonon scattering by substitutional and structural defects on thermal conductivity of two-dimensional graphene. J. Phys. Condens. Matter 30(29), 295302 (2018). https://doi.org/10.1088/1361-648x/aacabe
- C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014). https://doi.org/10.1039/c3cs60303b
- Y.S. Xie, S. Xu, Z.L. Xu, H.C. Wu, C. Deng et al., Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon 98, 381–390 (2016). https://doi.org/10.1016/j.carbon.2015.11.033
- K.R. Pyun, S.H. Ko, Graphene as a material for energy generation and control: recent progress in the control of graphene thermal conductivity by graphene defect engineering. Mater. Today Energy 12, 431–442 (2019). https://doi.org/10.1016/j.mtener.2019.04.008
- N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- M.H. Jin, T.H. Kim, S.C. Lim, D.L. Duong, H.J. Shin et al., Facile physical route to highly crystalline graphene. Adv. Funct. Mater. 21(18), 3496–3501 (2011). https://doi.org/10.1002/adfm.201101037
- X.H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
- F. An, X. Li, P. Min, P. Liu, Z. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
- X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
- J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee et al., Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017). https://doi.org/10.1016/j.nanoen.2017.03.019
- R. Su, X. Zhang, Size effect of thermal conductivity in monolayer graphene. Appl. Therm. Eng. 144, 488–494 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.062
- J. Gao, Q. Yan, L. Lv, X. Tan, J. Ying et al., Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem. Eng. J. 419(1), 129609 (2021). https://doi.org/10.1016/j.cej.2021.129609
- K. Wang, M. Li, J. Zhang, H. Lu, Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability. Carbon 144, 249–258 (2019). https://doi.org/10.1016/j.carbon.2018.12.027
- S. Ghosh, W. Bao, D. Nika, L.S. Subrina, E. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010). https://doi.org/10.1038/nmat2753
- S. Chinkanjanarot, J.M. Tomasi, J.A. King, G.M. Odegard, Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: multiscale modeling. Carbon 140, 653–663 (2018). https://doi.org/10.1016/j.carbon.2018.09.024
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- H.S. Kim, H.S. Bae, J. Yu, S.Y. Kim, Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 6, 26825 (2016). https://doi.org/10.1038/srep26825
- X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16(6), 3585–3593 (2016). https://doi.org/10.1021/acs.nanolett.6b00722
- Y. Liu, J.S. Huang, B. Yang, B.G. Sumpter, R. Qiao, Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon 75, 169–177 (2014). https://doi.org/10.1016/j.carbon.2014.03.050
- F. Cai, Y. Luo, W. Yang, X. Ye, H. Zhang et al., Study on the thermal and dielectric properties of covalently modified GO/XNBR composites. Mater. Des. 198(15), 109335 (2021). https://doi.org/10.1016/j.matdes.2020.109335
- S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
- B. Mu, M. Li, Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials. Sci. Rep. 8(1), 8878 (2018). https://doi.org/10.1038/s41598-018-27038-4
- X. Li, L. Shao, N. Song, L. Shi, P. Ding, Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos. Part A Appl. Sci. Manuf. 88, 305–314 (2016). https://doi.org/10.1016/j.compositesa.2016.06.007
- Y. Shi, W. Ma, L. Wu, D. Hu, J. Mo et al., Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites. J. Appl. Polym. Sci. 136(37), 47951 (2019). https://doi.org/10.1002/app.47951
- B. Li, S. Dong, X. Wu, C. Wang, X. Wang et al., Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos. Sci. Technol. 147, 52–61 (2017). https://doi.org/10.1016/j.compscitech.2017.05.006
- H. Yan, R. Wang, Y. Li, W. Long, Thermal conductivity of magnetically aligned graphene-polymer composites with Fe3O4-decorated graphene nanosheets. J. Electron. Mater. 44(2), 658–666 (2015). https://doi.org/10.1007/s11664-014-3561-z
- G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- Z. Bo, H.R. Zhu, C.Y. Ying, H.C. Yang, S.H. Wu et al., Tree-inspired radially aligned, bimodal graphene frameworks for highly efficient and isotropic thermal transport. Nanoscale 11(44), 21249–21258 (2019). https://doi.org/10.1039/c9nr07279a
- X. Liang, F. Dai, Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Appl. Mater. Interfaces 12(2), 3051–3058 (2020). https://doi.org/10.1021/acsami.9b20189
- K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r
- F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri et al., Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J. Phys. Chem. C 115(17), 8753–8758 (2011). https://doi.org/10.1021/jp200838s
- M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
- A. Li, C. Zhang, Y.F. Zhang, Graphene nanosheets-filled epoxy composites prepared by a fast dispersion method. J. Appl. Polym. Sci. 134(36), 45152 (2017). https://doi.org/10.1002/app.45152
- S. Chen, Q. Liu, L. Gorbatikh, D. Seveno, Does thermal percolation exist in graphene-reinforced polymer composites? A molecular dynamics answer. J. Phys. Chem. C 125(1), 1018–1028 (2021). https://doi.org/10.1021/acs.jpcc.0c09249
- X. Wei, F. Xue, X.D. Qi, J.H. Yang, Z.W. Zhou et al., Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl. Energy 236, 70–80 (2019). https://doi.org/10.1016/j.apenergy.2018.11.091
- W. Ren, L. Cao, D. Zhang, Composite phase change material based on reduced graphene oxide/expanded graphite aerogel with improved thermal properties and shape-stability. Int. J. Energy Res. 44(1), 242–256 (2019). https://doi.org/10.1002/er.4900
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
- G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10(3), 802–813 (2016). https://doi.org/10.1007/s12274-016-1333-1
- G.Q. Tang, Z.G. Jiang, X.F. Li, H.B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
- Y.R. Li, J. Chen, L. Huang, C. Li, J.D. Hong et al., Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26(28), 4789–4793 (2014). https://doi.org/10.1002/adma.201400657
- Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49(27), 4603–4607 (2010). https://doi.org/10.1002/anie.201000270
- Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31(19), 8 (2019). https://doi.org/10.1002/adma.201900199
- M.A. Worsley, S. Charnvanichborikarn, E. Montalvo, S.J. Shin, E.D. Tylski et al., Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Adv. Funct. Mater. 24(27), 4259–4264 (2014). https://doi.org/10.1002/adfm.201400316
- J. Yang, X.F. Li, S. Han, Y.T. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
- Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10(25), 21565–21572 (2018). https://doi.org/10.1021/acsami.8b04689
- Y. Tao, X. Xie, W. Lv, D.M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
- X.B. Wang, J.Q. Li, Y.J. Luo, Effect of drying methods on the structure and thermal decomposition behavior of ammonium perchlorate/graphene composites. Acta Phys. Chim. Sin. 29(10), 2079–2086 (2013). https://doi.org/10.3866/pku.Whxb201305021
- J.P. Vareda, A. Lamy-Mendes, L. Duraes, A reconsideration on the definition of the term aerogel based on current drying trends. Micropor. Mesopor. Mater. 258, 211–216 (2018). https://doi.org/10.1016/j.micromeso.2017.09.016
- C.W. Li, L. Qiu, B.Q. Zhang, D. Li, C.Y. Liu, Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv. Mater. 28(7), 1510–1516 (2016). https://doi.org/10.1002/adma.201504317
- X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu et al., Naturally dried graphene aerogels with superelasticity and tunable poisson’s ratio. Adv. Mater. 28(41), 9223–9230 (2016). https://doi.org/10.1002/adma.201603079
- J. Yang, X.F. Li, S. Han, R.Z. Yang, P. Min et al., High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6(14), 5880–5886 (2018). https://doi.org/10.1039/c8ta00078f
- A. Li, C. Zhang, Y.F. Zhang, Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9(9), 437 (2017). https://doi.org/10.3390/polym9090437
- T. Luo, J.R. Lloyd, Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv. Funct. Mater. 22(12), 2495–2502 (2012). https://doi.org/10.1002/adfm.201103048
- L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004
- S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco et al., Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites. Polymer 102, 292–300 (2016). https://doi.org/10.1016/j.polymer.2016.09.032
- Q.R. Yang, Z.L. Zhang, X.F. Gong, E.R. Yao, T. Liu et al., Thermal conductivity of graphene-polymer composites: implications for thermal management. Heat Mass Trans. 56(6), 1931–1945 (2020). https://doi.org/10.1007/s00231-020-02821-0
- J. Chen, X. Chen, F. Meng, D. Li, X. Tian et al., Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Perform. Polym. 29(5), 585–594 (2017). https://doi.org/10.1177/0954008316655861
- H. Liu, Y. Liu, W.Q. Liu, J.L. Pan, S.Q. Huang et al., Preparation and properties of modified graphene oxide/polyurethane composites. Integr. Ferroelectr. 206(1), 1–9 (2020). https://doi.org/10.1080/10584587.2020.1728617
- Y. Liu, K. Wu, F. Luo, M. Lu, F. Xiao et al., Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 117, 134–143 (2019). https://doi.org/10.1016/j.compositesa.2018.11.015
- E.E. Tkalya, M. Ghislandi, G. With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225–231 (2012). https://doi.org/10.1016/j.cocis.2012.03.001
- L. Guardia, M.J. Fernandez-Merino, J.I. Paredes, P. Solis-Fernandez, S. Villar-Rodil et al., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5), 1653–1662 (2011). https://doi.org/10.1016/j.carbon.2010.12.049
- C. Liu, C. Chen, H. Wang, M. Chen, D. Zhou et al., Synergistic effect of irregular shaped ps and graphene on the thermal conductivity of epoxy composites. Polym. Compos. 40(S2), E1294–E1300 (2018). https://doi.org/10.1002/pc.24968
- J. Jiang, S. Yang, L. Li, S. Bai, High thermal conductivity polylactic acid composite for 3D printing: synergistic effect of graphene and alumina. Polym. Adv. Technol. 31(6), 1291–1299 (2020). https://doi.org/10.1002/pat.4858
- J. Yu, H.K. Choi, H.S. Kim, S.Y. Kim, Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Compos. Part A Appl. Sci. Manuf. 88, 79–85 (2016). https://doi.org/10.1016/j.compositesa.2016.05.022
- A. Dasari, Z.Z. Yu, Y.W. Mai, Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009). https://doi.org/10.1016/j.polymer.2009.06.026
- J. Hu, H.B. Zhang, S. Hong, Z.G. Jiang, C.X. Gui et al., Simultaneous improvement in both electrical conductivity and toughness of polyamide 6 nanocomposites filled with elastomer and carbon black ps. Ind. Eng. Chem. Res. 53(6), 2270–2276 (2014). https://doi.org/10.1021/ie4035785
- D. Yan, X.F. Li, H.L. Ma, X.Z. Tang, Z. Zhang et al., Effect of compounding sequence on localization of carbon nanotubes and electrical properties of ternary nanocomposites. Compos. Part A Appl. Sci. Manuf. 49, 35–41 (2013). https://doi.org/10.1016/j.compositesa.2013.02.002
- W.Y. Si, J.Y. Sun, X.X. He, Y. Huang, J. Zhuang et al., Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J. Mater. Chem. C 8(10), 3463–3475 (2020). https://doi.org/10.1039/c9tc06968b
- J.R. Huang, N. Li, L.H. Xiao, H.Q. Liu, Y.G. Wang et al., Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold via self-assembly. J. Mater. Chem. A 7(26), 15731–15740 (2019). https://doi.org/10.1039/c9ta04256c
- O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc et al., A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon 101, 239–244 (2016). https://doi.org/10.1016/j.carbon.2016.01.095
- X.Y. Qi, D. Yan, Z.G. Jiang, Y.K. Cao, Z.Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3(8), 3130–3133 (2011). https://doi.org/10.1021/am200628c
- S. Salimian, A. Zadhoush, M. Naeimirad, R. Kotek, S. Ramakrishna, A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym. Compos. 39(10), 3383–3408 (2018). https://doi.org/10.1002/pc.24412
- C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). https://doi.org/10.1039/c2nr31467c
- E. Barrios, D. Fox, Y.Y.L. Sip, R. Catarata, J.E. Calderon et al., Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11(4), 41 (2019). https://doi.org/10.3390/polym11040726
- P. Dai, Y. Jiao, H. Ma, X. Zeng, Y. Lu et al., Radiation synthesis of polysilane-modified graphene oxide for improving thermal conductivity and mechanical properties of silicone rubber. J. Appl. Polym. Sci. 136(29), 47776 (2019). https://doi.org/10.1002/app.47776
- X. Huang, Y.X. Lin, G. Fang, Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells. Sol. Energy 161, 187–193 (2018). https://doi.org/10.1016/j.solener.2017.12.051
- F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta00750g
- Z.H. Tang, H.L. Kang, Z.L. Shen, B.C. Guo, L.Q. Zhang et al., Grafting of polyester onto graphene for electrically and thermally conductive composites. Macromolecules 45(8), 3444–3451 (2012). https://doi.org/10.1021/ma300450t
- H. Yuan, Y. Wang, T. Li, Y. Wang, P. Ma et al., Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. Nanoscale 11(23), 11360–11368 (2019). https://doi.org/10.1039/c9nr02491c
- E.C. Cho, J.H. Huang, C.P. Li, C.W. Chang-Jian, K.C. Lee et al., Graphene-based thermoplastic composites and their application for led thermal management. Carbon 10, 66–73 (2016). https://doi.org/10.1016/j.carbon.2016.01.097
- Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213(8), 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
- W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
- J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
- T. Yang, Z. Jiang, H. Han, X. Cai, Y. Liu et al., Welding dopamine modified graphene nanosheets onto graphene foam for high thermal conductive composites. Compos. Part B Eng. 205(15), 108509 (2021). https://doi.org/10.1016/j.compositesb.2020.108509
- H. Liao, W. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos. Sci. Technol. 189(22), 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
- R. Wang, L.X. Wu, D.X. Zhuo, J.H. Zhang, Y.D. Zheng, Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content. Ind. Eng. Chem. Res. 57(32), 10967–10976 (2018). https://doi.org/10.1021/acs.iecr.8b01070
- Y. Li, W. Wei, Y. Wang, N. Kadhim, Y. Mei et al., Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity. J. Mater. Chem. C 7(38), 11783–11789 (2019). https://doi.org/10.1039/c9tc02937k
- Z. Liu, Y. Chen, Y. Li, W. Dai, Q. Yan et al., Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11(38), 17600–17606 (2019). https://doi.org/10.1039/c9nr03968f
- Y.J. Zhong, M. Zhou, F.Q. Huang, T.Q. Lin, D.Y. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 113, 195–200 (2013). https://doi.org/10.1016/j.solmat.2013.01.046
- Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010). https://doi.org/10.1021/nn101187z
- H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219–2223 (2013). https://doi.org/10.1002/adma.201204530
- Y. Gong, S. Yang, Z. Liu, L. Ma, R. Vajtai et al., Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 25(29), 3979–3984 (2013). https://doi.org/10.1002/adma.201301051
- H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012). https://doi.org/10.1021/nn300082k
- J. Liu, Y. Liu, H.B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
- Y.Q. Sun, Q. Wu, G.Q. Shi, Supercapacitors based on self-assembled graphene organogel. Phys. Chem. Chem. Phys. 13(38), 17249–17254 (2011). https://doi.org/10.1039/c1cp22409c
- Y.L. He, J.H. Li, L.F. Li, J.B. Chen, J.Y. Li, The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution. Nucl. Sci. Tech. 27(3), 8 (2016). https://doi.org/10.1007/s41365-016-0068-8
- L. Zhang, P. He, K. Song, J. Zhang, B. Zhang et al., Three-dimensional graphene hybrid SiO2 hierarchical dual-network aerogel with low thermal conductivity and high elasticity. Coatings 10(5), 455 (2020). https://doi.org/10.3390/coatings10050455
- S.Y. Dong, L.J. Xia, T. Guo, F.Y. Zhang, L.F. Cui et al., Controlled synthesis of flexible graphene aerogels macroscopic monolith as versatile agents for wastewater treatment. Appl. Surf. Sci. 445(1), 30–38 (2018). https://doi.org/10.1016/j.apsusc.2018.03.132
- K.X. Sheng, Y.X. Xu, C. Li, G.Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26(1), 9–15 (2011). https://doi.org/10.1016/s1872-5805(11)60062-0
- W.C. Wan, F. Zhang, S. Yu, R.Y. Zhang, Y. Zhou, Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J. Chem. 40(4), 3040–3046 (2016). https://doi.org/10.1039/c5nj03086b
- S. Yan, G.Z. Zhang, F.B. Li, L. Zhang, S.T. Wang et al., Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM2.5 and PM10) capture. Nanoscale 11(21), 10372–10380 (2019). https://doi.org/10.1039/c9nr02071c
- C.M. Zhang, Y.J. Chen, H. Li, H.Z. Liu, Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties. RSC Adv. 8(48), 27390–27399 (2018). https://doi.org/10.1039/c8ra04718a
- Y.X. Xu, G.Q. Shi, X.F. Duan, Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48(6), 1666–1675 (2015). https://doi.org/10.1021/acs.accounts.5b00117
- X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo et al., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21(18), 6494–6497 (2011). https://doi.org/10.1039/c1jm10239g
- Y.P. Xia, W.W. Cui, H.Z. Zhang, F. Xu, L.X. Sun et al., Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity. J. Mater. Chem. A 5(29), 15191–15199 (2017). https://doi.org/10.1039/c7ta03432f
- W.Y. Zhang, Q.Q. Kong, Z.C. Tao, J.C. Wei, L.J. Xie et al., 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 8 (2019). https://doi.org/10.1002/admi.201900147
- Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
- X.C. Dong, X.W. Wang, L.H. Wang, H. Song, H. Zhang et al., 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 4(6), 3129–3133 (2012). https://doi.org/10.1021/am300459m
- W. Li, S. Gao, L. Wu, S.Q. Qiu, Y.F. Guo et al., High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 3, 2125 (2013). https://doi.org/10.1038/srep02125
- H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
- X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang et al., Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22), 3163–3168 (2011). https://doi.org/10.1002/smll.201100990
- X. Xie, G.H. Yu, N. Liu, Z.N. Bao, C.S. Criddle et al., Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5(5), 6862–6866 (2012). https://doi.org/10.1039/c2ee03583a
- D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5(7), 7908–7912 (2012). https://doi.org/10.1039/c2ee21848h
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- J. Yang, G.Q. Qi, R.Y. Bao, K. Yi, M. Li et al., Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 13, 88–95 (2018). https://doi.org/10.1016/j.ensm.2017.12.028
- F. Xue, Y. Lu, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 365, 20–29 (2019). https://doi.org/10.1016/j.cej.2019.02.023
- C. Wu, X. Huang, G. Wang, L. Lv, G. Chen et al., Correction: highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23(4), 403–403 (2013). https://doi.org/10.1002/adfm.201390000
- B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012). https://doi.org/10.1021/nn3003345
- H. Fang, S.L. Bai, C.P. Wong, Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. Manuf. 112, 216–238 (2018). https://doi.org/10.1016/j.compositesa.2018.06.010
- C. Zhu, T.Y. Liu, F. Qian, W. Chen, S. Chandrasekaran et al., 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017). https://doi.org/10.1016/j.nantod.2017.06.007
- E. Garcia-Tunon, S. Barg, J. Franco, R. Bell, S. Eslava et al., Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015). https://doi.org/10.1002/adma.201405046
- Y.G. Yao, K.K. Fu, C.Y. Yan, J.Q. Dai, Y.N. Chen et al., Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5), 5272–5279 (2016). https://doi.org/10.1021/acsnano.6b01059
- S. Dul, L. Fambri, A. Pegoretti, Fused deposition modelling with ABS-graphene nanocomposites. Compos. Part A Appl. Sci. Manuf. 85, 181–191 (2016). https://doi.org/10.1016/j.compositesa.2016.03.013
- N. Nguyen, J.G. Park, S.L. Zhang, R. Liang, Recent advances on 3D printing technique for thermal-related applications. Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201700876
- J. Ma, P. Wang, L. Dong, Y. Ruan, H. Lu, Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide. J. Colloid Interface Sci. 534, 12–19 (2019). https://doi.org/10.1016/j.jcis.2018.08.096
- Q.Q. Zhang, F. Zhang, X. Xu, C. Zhou, D. Lin, Three-dimensional printing hollow polymer template-mediated graphene lattices with tailorable architectures and multifunctional properties. ACS Nano 12(2), 1096–1106 (2018). https://doi.org/10.1021/acsnano.7b06095
- C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
- J.J. Moyano, J. Mosa, M. Aparicio, D. Perez-Coll, M. Belmonte et al., Strong and light cellular silicon carbonitride-reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Addit. Manuf. 30, 100849 (2019). https://doi.org/10.1016/j.addma.2019.100849
- J.H. Huang, B.N. Zhang, P. Valdiserri, X. Huang, G.Q. Yin et al., Thermal flow self-assembled anisotropic chemically derived graphene aerogels and their thermal conductivity enhancement. Nanomaterials 9(9), 15 (2019). https://doi.org/10.3390/nano9091226
- N. Burger, A. Laachachi, B. Mortazavi, M. Ferriol, M. Lutz et al., Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Transf. 89, 505–513 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.065
- X.J. Tian, M.E. Itkis, E.B. Bekyarova, R.C. Haddon, Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Sci. Rep. 3(1), 6 (2013). https://doi.org/10.1038/srep01710
- W.F. Zhao, J. Kong, H. Liu, Q. Zhuang, J.W. Gu et al., Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8(48), 19984–19993 (2016). https://doi.org/10.1039/c6nr06622d
- J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
- F. Conrado, M. Pavese, A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites. J. Nanomater. 2017, 1–11 (2017). https://doi.org/10.1155/2017/8974174
- K. Wu, D. Liu, C. Lei, S. Xue, Q. Fu, Is filler orientation always good for thermal management performance: a visualized study from experimental results to simulative analysis. Chem. Eng. J. 394(15), 124929 (2020). https://doi.org/10.1016/j.cej.2020.124929
- Z. Xu, Y. Zhang, P.G. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). https://doi.org/10.1021/nn3021772
- L. Onsager, The effects of shape on the interaction of colloidal ps. Ann. New York Acad. Sci. 51(4), 627–639 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
- R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28(16), 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
- F. Guo, F. Kim, T.H. Han, V.B. Shenoy, J.X. Huang et al., Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 5(10), 8019–8025 (2011). https://doi.org/10.1021/nn2025644
- Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5(4), 2908–2915 (2011). https://doi.org/10.1021/nn200069w
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
- B.W. Yao, J. Chen, L. Huang, Q.Q. Zhou, G.Q. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
- Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7(9), 5538–5549 (2015). https://doi.org/10.1021/acsami.5b00146
- X.W. Yang, L. Qiu, C. Cheng, Y.Z. Wu, Z.F. Ma et al., Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. 50(32), 7325–7328 (2011). https://doi.org/10.1002/anie.201100723
- K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen et al., Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5(8), 6601–6609 (2011). https://doi.org/10.1021/nn202040c
- L. Kou, Z. Liu, T.Q. Huang, B.N. Zheng, Z.Y. Tian et al., Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes. Nanoscale 7(9), 4080–4087 (2015). https://doi.org/10.1039/c4nr07038k
- G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4(43), 17042–17049 (2016). https://doi.org/10.1039/c6ta07587h
- G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901403
- K. Huang, J. Yang, S. Dong, Q. Feng, X. Zhang et al., Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon 130, 1–10 (2018). https://doi.org/10.1016/j.carbon.2017.12.120
- Y.C. Jia, H. He, Y. Geng, B. Huang, X.D. Peng, High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017). https://doi.org/10.1016/j.compscitech.2017.03.035
- J. Huang, Z. Li, X. Wu, J. Wang, S. Yang, Poly(vinyl alcohol)-mediated graphene aerogels with tailorable architectures and advanced properties for anisotropic sensing. J. Phys. Chem. C 123(6), 3781–3789 (2019). https://doi.org/10.1021/acs.jpcc.8b11327
- J. Huang, X. Huang, M. He, B. Zhang, G. Feng et al., Control of graphene aerogel self-assembly in strongly acidic solution via solution polarity tuning. RSC Adv. 9(37), 21155–21163 (2019). https://doi.org/10.1039/c9ra02658d
- E. Garcia-Bordeje, S. Victor-Roman, O. Sanahuja-Parejo, A.M. Benito, W.K. Maser, Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale 10(7), 3526–3539 (2018). https://doi.org/10.1039/c7nr08732b
- H. Zhang, A.I. Cooper, Aligned porous structures by directional freezing. Adv. Mater. 19(11), 1529–1533 (2007). https://doi.org/10.1002/adma.200700154
- Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- T. Liu, M.L. Huang, X.F. Li, C.J. Wang, C.X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
- X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Lium et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisturepowered information storage. Adv. Mater. 29(3), 1604972 (2017). https://doi.org/10.1002/adma.201604972
- P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5), 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y.Z. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10(43), 37507–37516 (2018). https://doi.org/10.1021/acsami.8b13415
- L.J. Zhou, S.C. Zhai, Y.M. Chen, Z.Y. Xu, Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers 11(4), 15 (2019). https://doi.org/10.3390/polym11040712
- H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
- C.J. Huang, J.S. Peng, Y.R. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy-graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/c8ta10725d
- W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
- H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. (2015). https://doi.org/10.1126/sciadv.1500849
- C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
- Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou et al., 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016). https://doi.org/10.1002/smll.201503524
- J. Kuang, L.Q. Liu, Y. Gao, D. Zhou, Z. Chen et al., A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5(24), 12171–12177 (2013). https://doi.org/10.1039/c3nr03379a
- M. Li, W. Tao, S. Lu, C. Zhao, Porous 3-D scaffolds from regenerated antheraea pernyi silk fibroin. Polym. Adv. Technol. 19(3), 207–212 (2008). https://doi.org/10.1002/pat.998
- J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. J. Mater. Chem. A 4(48), 18841–18851 (2016). https://doi.org/10.1039/c6ta08454k
- W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 7(53), 33600–33605 (2017). https://doi.org/10.1039/c7ra05557a
- L.J. Zhou, Z.Y. Xu, Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mater. 388(15), 121804 (2020). https://doi.org/10.1016/j.jhazmat.2019.121804
- C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58(23), 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
- Y.X. Liu, N. Fang, B. Liu, L.N. Song, B.Y. Wen et al., Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Mater. Lett. 233, 78–81 (2018). https://doi.org/10.1016/j.matlet.2018.08.108
- H.Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199–209 (2018). https://doi.org/10.1016/j.carbon.2018.02.033
- L. Wang, M. Fang, Y.J. Xia, J.X. Hou, X.R. Nan et al., Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Adv. 10(17), 10118–10128 (2020). https://doi.org/10.1039/c9ra09710d
- C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5(45), 11708–11716 (2017). https://doi.org/10.1039/c7tc03846a
- C. Li, J. Yu, S.L. Xue, Z. Cheng, G. Sun et al., Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries. Carbon 139, 522–530 (2018). https://doi.org/10.1016/j.carbon.2018.07.023
- Z.D. Liu, Y.P. Chen, W. Dai, Y.M. Wu, M.J. Wang et al., Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC Adv. 8(2), 1065–1070 (2018). https://doi.org/10.1039/c7ra11574a
- H.N. Huang, H. Bi, M. Zhou, F. Xu, T.Q. Lin et al., A three-dimensional elastic macroscopic graphene network for thermal management application. J. Mater. Chem. A 2(43), 18215–18218 (2014). https://doi.org/10.1039/c4ta03801k
- H. Bi, I.W. Chen, T.Q. Lin, F.Q. Huang, A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 27(39), 5943–5949 (2015). https://doi.org/10.1002/adma.201502682
- H. Bi, T. Lin, F. Xu, Y. Tang, Z. Liu et al., New graphene form of nanoporous monolith for excellent energy storage. Nano Lett. 16(1), 349–354 (2016). https://doi.org/10.1021/acs.nanolett.5b03923
- X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5(2), 275–284 (2018). https://doi.org/10.1039/c7mh00984d
- G.B. Xue, K. Liu, Q. Chen, P.H. Yang, J. Li et al., Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9(17), 15052–15057 (2017). https://doi.org/10.1021/acsami.7b01992
- L. Chen, N. Song, L.Y. Shi, P. Ding, Anisotropic thermally conductive composite with wood-derived carbon scaffolds. Compos. Part A Appl. Sci. Manuf. 112, 18–24 (2018). https://doi.org/10.1016/j.compositesa.2018.05.023
- C. Wan, Y. Jiao, S. Wei, X. Li, W. Tian et al., Scalable top-to-bottom design on low tortuosity of anisotropic carbon aerogels for fast and reusable passive capillary absorption and separation of organic leakages. ACS Appl. Mater. Interfaces 11(51), 47846–47857 (2019). https://doi.org/10.1021/acsami.9b13686
- Y. Li, K.K. Fu, C. Chen, W. Luo, T. Gao et al., Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 11(5), 4801–4807 (2017). https://doi.org/10.1021/acsnano.7b01172
- Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin et al., Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(25), 21371–21381 (2017). https://doi.org/10.1021/acsami.7b04523
- C. Wang, Y. Ding, Y. Yuan, X. He, S. Wu et al., Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 3(45), 11893–11901 (2015). https://doi.org/10.1039/c5tc03127c
- H.M. Fang, Y.H. Zhao, Y.F. Zhang, Y.J. Ren, S.L. Baio, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
- D. Han, Y.H. Zhao, Y.F. Zhang, S.L. Bai, Vertically and compactly rolled-up reduced graphene oxide film/epoxy composites: a two-stage reduction method for graphene-based thermal interfacial materials. RSC Adv. 5(114), 94426–94435 (2015). https://doi.org/10.1039/c5ra16780a
- Y.F. Zhang, Y.J. Ren, H.C. Guo, S.L. Bai, Enhanced thermal properties of pdms composites containing vertically aligned graphene tubes. Appl. Therm. Eng. 150, 840–848 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.029
- Y.F. Zhang, D. Han, Y.H. Zhao, S.L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
- J. Yang, G.Q. Qi, Y. Liu, R.Y. Bao, Z.Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
- F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018). https://doi.org/10.1016/j.carbon.2017.10.011
- J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z. Liu et al., Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain. Chem. Eng. 6(5), 6761–6770 (2018). https://doi.org/10.1021/acssuschemeng.8b00565
- Y. Guo, J. He, H. Wang, Z. Su, Q. Qu et al., Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation. Polym. Compos. 40(2), 1600–1611 (2019). https://doi.org/10.1002/pc.25095
- Q. Chen, X. Yan, L. Wu, Y. Xiao, S. Wang et al., Small-nanostructure-size-limited phonon transport within composite films made of single-wall carbon nanotubes and reduced graphene oxides. ACS Appl. Mater. Interfaces 13(4), 5435–5444 (2021). https://doi.org/10.1021/acsami.0c20551
- Z. Ali, X. Kong, M. Li, X. Hou, L. Li et al., Ultrahigh thermal conductivity of epoxy composites with hybrid carbon fiber and graphene filler. Fibers Polym. 23, 463–470 (2021). https://doi.org/10.1007/s12221-021-3164-2
- X. Wei, X.Z. Jin, N. Zhang, X.D. Qi, J.H. Yang et al., Constructing cellulose nanocrystal/graphene nanoplatelet networks in phase change materials toward intelligent thermal management. Carbohydr. Polym. 253(1), 117290 (2021). https://doi.org/10.1016/j.carbpol.2020.117290
- X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- Z.G. Wang, Y.L. Yang, R.T. Lan, K. Dai, H.J. Duan et al., Significantly enhanced thermal conductivity and flame retardance by silicon carbide nanowires/graphene oxide hybrid network. Compos. Part A Appl. Sci. Manuf. 139, 106093 (2020). https://doi.org/10.1016/j.compositesa.2020.106093
- G.Q. Qi, J. Yang, R.Y. Bao, Z.Y. Liu, W. Yang et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88, 196–205 (2015). https://doi.org/10.1016/j.carbon.2015.03.009
- I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi et al., Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013). https://doi.org/10.1021/nl304060g
- Y.K. Kim, J.Y. Chung, J.G. Lee, Y.K. Baek, P.W. Shin, Synergistic effect of spherical Al2O3 ps and bn nanoplates on the thermal transport properties of polymer composites. Compos. Part A Appl. Sci. Manuf. 98, 184–191 (2017). https://doi.org/10.1016/j.compositesa.2017.03.030
- J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J. 315, 481–490 (2017). https://doi.org/10.1016/j.cej.2017.01.045
- S. Vinod, C.S. Tiwary, P.A.D. Autreto, J. Taha-Tijerina, S. Ozden et al., Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 5, 4541 (2014). https://doi.org/10.1038/ncomms5541
- Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044
- T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng et al., Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Adv. 6(42), 35847–35854 (2016). https://doi.org/10.1039/c5ra27315c
- T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng et al., A novel h-BN-RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density. RSC Adv. 7(38), 23355–23362 (2017). https://doi.org/10.1039/c6ra28503a
- L.B. Shao, L.Y. Shi, X.H. Li, N. Song, P. Ding, Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos. Sci. Technol. 135, 83–91 (2016). https://doi.org/10.1016/j.compscitech.2016.09.013
- X.L. Cui, P. Ding, N. Zhuang, L.Y. Shi, N. Song et al., Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl. Mater. 7(34), 19068–19075 (2015). https://doi.org/10.1021/acsami.5b04444
- E. Pop, D. Mann, Q. Wang, K.E. Goodson, H.J. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006). https://doi.org/10.1021/nl052145f
- E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001). https://doi.org/10.1016/s0266-3538(01)00094-x
- G.J. Chen, Y.P. Su, D.Y. Jiang, L.J. Pan, S. Li, An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications. Appl. Energy 264(15), 114786 (2020). https://doi.org/10.1016/j.apenergy.2020.114786
- H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576
- Y.J. Xiao, W.Y. Wang, X.J. Chen, T. Lin, Y.T. Zhang et al., Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 90, 614–625 (2016). https://doi.org/10.1016/j.compositesa.2016.08.029
- X. Dong, Y. Ma, G. Zhu, Y. Huang, J. Wang et al., Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J. Mater. Chem. 22(33), 17044–17048 (2012). https://doi.org/10.1039/c2jm33286h
- Y.P. Chen, X. Hou, R.Y. Kang, Y. Liang, L.C. Guo et al., Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity. J. Mater. Chem. C 6(46), 12739–12745 (2018). https://doi.org/10.1039/c8tc04859b
- A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin et al., Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl. Mater. Interfaces 5(13), 5969–5975 (2013). https://doi.org/10.1021/am400171y
- X. Du, M. Zhou, S. Deng, Z. Du, X. Cheng et al., Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency. Cellulose 27(8), 4679–4690 (2020). https://doi.org/10.1007/s10570-020-03110-z
- J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
- F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang et al., Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale 12, 4005–4017 (2020). https://doi.org/10.1039/c9nr10696k
- H. Wu, S. Deng, Y. Shao, J. Yang, X. Qi et al., Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl. Mater. Interfaces 11(50), 46851–46863 (2019). https://doi.org/10.1021/acsami.9b16612
- S. Yang, Y. Ji, Y. Wu, J. Ma, Z. Zou et al., Air-dried graphene-based sponge for water/oil separation and strain sensing. Colloids Surf. A 555, 358–364 (2018). https://doi.org/10.1016/j.colsurfa.2018.07.018
- C.Z. Liu, S.B. Ye, J.C. Feng, The preparation of compressible and fire-resistant sponge-supported reduced graphene oxide aerogel for electromagnetic interference shielding. Chem. Asian J. 11(18), 2586–2593 (2016). https://doi.org/10.1002/asia.201600905
- W.L. Liu, H.B. Jiang, Y. Ru, X.H. Zhang, J.L. Qiao, Conductive graphene-melamine sponge prepared via microwave irradiation. ACS Appl. Mater. Interfaces 10(29), 24776–24783 (2018). https://doi.org/10.1021/acsami.8b06070
- S. Li, Y. Li, X. Han, X. Zhao, Y. Zhao, High-efficiency enhancement on thermal and electrical properties of epoxy nanocomposites with core-shell carbon foam template-coated graphene. Compos. Part A Appl. Sci. Manuf. 120, 95–105 (2019). https://doi.org/10.1016/j.compositesa.2019.01.032
- H.Y. Wu, S.T. Li, Y.W. Shao, X.Z. Jin, X.D. Qi et al., Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chem. Eng. J. 379(1), 122373 (2020). https://doi.org/10.1016/j.cej.2019.122373
- F. Nazeer, Z. Ma, L. Gao, F. Wang, M.A. Khan et al., Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Compos. Part B Eng. 163, 77–85 (2019). https://doi.org/10.1016/j.compositesb.2018.11.004
- J. Chen, X. Gao, Directional dependence of electrical and thermal properties in graphene-nanoplatelet-based composite materials. Results Phys. 15, 102608 (2019). https://doi.org/10.1016/j.rinp.2019.102608
- J. Shen, P. Zhang, L.X. Song, J.P. Li, B.Q. Ji et al., Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos. Part B Eng. 179, 10 (2019). https://doi.org/10.1016/j.compositesb.2019.107545
- P.F. Liu, F. An, X.Y. Lu, X.F. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201(5), 108492 (2021). https://doi.org/10.1016/j.compscitech.2020.108492
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- T. Du, Z. Xiong, L. Delgado, W. Liao, J. Peoples et al., Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat. Commun. 12, 4915 (2021). https://doi.org/10.1038/s41467-021-25083-8
- C.P. Feng, L.B. Chen, G.L. Tian, L. Bai, R.Y. Bao et al., Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm-1k-1. Chem. Eng. J. 392(15), 123784 (2020). https://doi.org/10.1016/j.cej.2019.123784
- H. Hou, W. Dai, Q.W. Yan, L. Lv, F.E. Alam et al., Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 6(25), 12091–12097 (2018). https://doi.org/10.1039/c8ta03937b
- J.N. Shi, M.D. Ger, Y.M. Liu, Y.C. Fan, N
References
P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang et al., Thermal properties of graphene filled polymer composite thermal interface materials. Macromol. Mater. Eng. 302(9), 1700068 (2017). https://doi.org/10.1002/mame.201700068
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
L. Lv, W. Dai, A. Li, C.T. Lin, Graphene-based thermal interface materials: an application-oriented perspective on architecture design. Polymers 10(11), 1201 (2018). https://doi.org/10.3390/polym10111201
S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). https://doi.org/10.1039/c2cs35353a
C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/c8tc05955a
C. Amaral, R. Vicente, P.A.A.P. Marques, A. Barros-Timmons, Phase change materials and carbon nanostructures for thermal energy storage: a literature review. Renew. Sustain. Energy Rev. 79, 1212–1228 (2017). https://doi.org/10.1016/j.rser.2017.05.093
A. Allahbakhsh, M. Arjmand, Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects. Carbon 148, 441–480 (2019). https://doi.org/10.1016/j.carbon.2019.04.009
S. Kashyap, S. Kabra, B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems. J. Mater. Sci. 55(10), 4127–4156 (2020). https://doi.org/10.1007/s10853-019-04325-7
L.S. Tang, J. Yang, R.Y. Bao, Z.Y. Liu, B.H. Xie et al., Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers. Manage. 146, 253–264 (2017). https://doi.org/10.1016/j.enconman.2017.05.037
P. Ding, S. Su, N. Song, S. Tang, Y. Liu et al., Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66, 576–584 (2014). https://doi.org/10.1016/j.carbon.2013.09.041
A.S. Patole, S.P. Patole, H. Kang, J.B. Yoo, T.H. Kim et al., A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J. Colloid Interface Sci. 350(2), 530–537 (2010). https://doi.org/10.1016/j.jcis.2010.01.035
Z. Anwar, A. Kausar, I. Rafique, B. Muhammad, Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties: a review. Polym. Plast. Technol. Eng. 55(6), 643–662 (2016). https://doi.org/10.1080/03602559.2015.1098695
J.H. Du, H.M. Cheng, The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012). https://doi.org/10.1002/macp.201200029
X. Zeng, J. Yang, W. Yuan, Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur. Polym. J. 48(10), 1674–1682 (2012). https://doi.org/10.1016/j.eurpolymj.2012.07.011
J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 12(6), 2959–2964 (2012). https://doi.org/10.1021/nl300662q
Q.Q. Zhang, X. Xu, H. Li, G.P. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015). https://doi.org/10.1016/j.carbon.2015.05.102
H. Fang, S.L. Bai, C.P. Wang, “White graphene”-hexagonal boron nitride based polymeric composites and their application in thermal management. Compos. Commun. 2, 19–24 (2016). https://doi.org/10.1016/j.coco.2016.10.002
X. Shen, Z.Y. Wang, Y. Wu, X. Liu, J.K. Kim, Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon 108, 412–422 (2016). https://doi.org/10.1016/j.carbon.2016.07.042
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
J. Wang, P. Ren, F. Ren, G. Zhu, A. Sun et al., Preparation of highly thermally conductive epoxy composites via constructing a vertically aligned foam of cetyltrimethylammonium bromide-graphene@polydopamine-multi-walled carbon nanotubes. J. Mater. Sci. 56(13), 7951–7965 (2021). https://doi.org/10.1007/s10853-021-05795-4
Y. Zhang, Y.J. Heo, Y.R. Son, I. In, K.H. An et al., Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142, 445–460 (2019). https://doi.org/10.1016/j.carbon.2018.10.077
F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
Y.H. Zhao, Y.F. Zhang, S.L. Bai, High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos. Part A Appl. Sci. Manuf. 85, 148–155 (2016). https://doi.org/10.1016/j.compositesa.2016.03.021
N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie et al., Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11(5), 4777–4784 (2017). https://doi.org/10.1021/acsnano.7b01089
H.H. Pu, S.H. Rhim, C.J. Hirschmugl, M. Gajdardziska-Josifovska, M. Weinert et al., Anisotropic thermal conductivity of semiconducting graphene monoxide. Appl. Phys. Lett. 102(22), 5 (2013). https://doi.org/10.1063/1.4808448
S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika et al., Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 3 (2008). https://doi.org/10.1063/1.2907977
S.K. Jaćimovski, M. Bukurov, J.P. Šetrajčić, D.I. Raković, Phonon thermal conductivity of graphene. Superlattices Microst. 88, 330–337 (2015). https://doi.org/10.1016/j.spmi.2015.09.027
L.B. Seo, Effect of phonon scattering by substitutional and structural defects on thermal conductivity of two-dimensional graphene. J. Phys. Condens. Matter 30(29), 295302 (2018). https://doi.org/10.1088/1361-648x/aacabe
C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014). https://doi.org/10.1039/c3cs60303b
Y.S. Xie, S. Xu, Z.L. Xu, H.C. Wu, C. Deng et al., Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon 98, 381–390 (2016). https://doi.org/10.1016/j.carbon.2015.11.033
K.R. Pyun, S.H. Ko, Graphene as a material for energy generation and control: recent progress in the control of graphene thermal conductivity by graphene defect engineering. Mater. Today Energy 12, 431–442 (2019). https://doi.org/10.1016/j.mtener.2019.04.008
N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
M.H. Jin, T.H. Kim, S.C. Lim, D.L. Duong, H.J. Shin et al., Facile physical route to highly crystalline graphene. Adv. Funct. Mater. 21(18), 3496–3501 (2011). https://doi.org/10.1002/adfm.201101037
X.H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
F. An, X. Li, P. Min, P. Liu, Z. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee et al., Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017). https://doi.org/10.1016/j.nanoen.2017.03.019
R. Su, X. Zhang, Size effect of thermal conductivity in monolayer graphene. Appl. Therm. Eng. 144, 488–494 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.062
J. Gao, Q. Yan, L. Lv, X. Tan, J. Ying et al., Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem. Eng. J. 419(1), 129609 (2021). https://doi.org/10.1016/j.cej.2021.129609
K. Wang, M. Li, J. Zhang, H. Lu, Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability. Carbon 144, 249–258 (2019). https://doi.org/10.1016/j.carbon.2018.12.027
S. Ghosh, W. Bao, D. Nika, L.S. Subrina, E. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010). https://doi.org/10.1038/nmat2753
S. Chinkanjanarot, J.M. Tomasi, J.A. King, G.M. Odegard, Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: multiscale modeling. Carbon 140, 653–663 (2018). https://doi.org/10.1016/j.carbon.2018.09.024
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
H.S. Kim, H.S. Bae, J. Yu, S.Y. Kim, Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 6, 26825 (2016). https://doi.org/10.1038/srep26825
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16(6), 3585–3593 (2016). https://doi.org/10.1021/acs.nanolett.6b00722
Y. Liu, J.S. Huang, B. Yang, B.G. Sumpter, R. Qiao, Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon 75, 169–177 (2014). https://doi.org/10.1016/j.carbon.2014.03.050
F. Cai, Y. Luo, W. Yang, X. Ye, H. Zhang et al., Study on the thermal and dielectric properties of covalently modified GO/XNBR composites. Mater. Des. 198(15), 109335 (2021). https://doi.org/10.1016/j.matdes.2020.109335
S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
B. Mu, M. Li, Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials. Sci. Rep. 8(1), 8878 (2018). https://doi.org/10.1038/s41598-018-27038-4
X. Li, L. Shao, N. Song, L. Shi, P. Ding, Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos. Part A Appl. Sci. Manuf. 88, 305–314 (2016). https://doi.org/10.1016/j.compositesa.2016.06.007
Y. Shi, W. Ma, L. Wu, D. Hu, J. Mo et al., Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites. J. Appl. Polym. Sci. 136(37), 47951 (2019). https://doi.org/10.1002/app.47951
B. Li, S. Dong, X. Wu, C. Wang, X. Wang et al., Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos. Sci. Technol. 147, 52–61 (2017). https://doi.org/10.1016/j.compscitech.2017.05.006
H. Yan, R. Wang, Y. Li, W. Long, Thermal conductivity of magnetically aligned graphene-polymer composites with Fe3O4-decorated graphene nanosheets. J. Electron. Mater. 44(2), 658–666 (2015). https://doi.org/10.1007/s11664-014-3561-z
G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
Z. Bo, H.R. Zhu, C.Y. Ying, H.C. Yang, S.H. Wu et al., Tree-inspired radially aligned, bimodal graphene frameworks for highly efficient and isotropic thermal transport. Nanoscale 11(44), 21249–21258 (2019). https://doi.org/10.1039/c9nr07279a
X. Liang, F. Dai, Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Appl. Mater. Interfaces 12(2), 3051–3058 (2020). https://doi.org/10.1021/acsami.9b20189
K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r
F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri et al., Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J. Phys. Chem. C 115(17), 8753–8758 (2011). https://doi.org/10.1021/jp200838s
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
A. Li, C. Zhang, Y.F. Zhang, Graphene nanosheets-filled epoxy composites prepared by a fast dispersion method. J. Appl. Polym. Sci. 134(36), 45152 (2017). https://doi.org/10.1002/app.45152
S. Chen, Q. Liu, L. Gorbatikh, D. Seveno, Does thermal percolation exist in graphene-reinforced polymer composites? A molecular dynamics answer. J. Phys. Chem. C 125(1), 1018–1028 (2021). https://doi.org/10.1021/acs.jpcc.0c09249
X. Wei, F. Xue, X.D. Qi, J.H. Yang, Z.W. Zhou et al., Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl. Energy 236, 70–80 (2019). https://doi.org/10.1016/j.apenergy.2018.11.091
W. Ren, L. Cao, D. Zhang, Composite phase change material based on reduced graphene oxide/expanded graphite aerogel with improved thermal properties and shape-stability. Int. J. Energy Res. 44(1), 242–256 (2019). https://doi.org/10.1002/er.4900
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10(3), 802–813 (2016). https://doi.org/10.1007/s12274-016-1333-1
G.Q. Tang, Z.G. Jiang, X.F. Li, H.B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
Y.R. Li, J. Chen, L. Huang, C. Li, J.D. Hong et al., Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26(28), 4789–4793 (2014). https://doi.org/10.1002/adma.201400657
Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49(27), 4603–4607 (2010). https://doi.org/10.1002/anie.201000270
Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31(19), 8 (2019). https://doi.org/10.1002/adma.201900199
M.A. Worsley, S. Charnvanichborikarn, E. Montalvo, S.J. Shin, E.D. Tylski et al., Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Adv. Funct. Mater. 24(27), 4259–4264 (2014). https://doi.org/10.1002/adfm.201400316
J. Yang, X.F. Li, S. Han, Y.T. Zhang, P. Min et al., Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 4(46), 18067–18074 (2016). https://doi.org/10.1039/c6ta07869a
Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10(25), 21565–21572 (2018). https://doi.org/10.1021/acsami.8b04689
Y. Tao, X. Xie, W. Lv, D.M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
X.B. Wang, J.Q. Li, Y.J. Luo, Effect of drying methods on the structure and thermal decomposition behavior of ammonium perchlorate/graphene composites. Acta Phys. Chim. Sin. 29(10), 2079–2086 (2013). https://doi.org/10.3866/pku.Whxb201305021
J.P. Vareda, A. Lamy-Mendes, L. Duraes, A reconsideration on the definition of the term aerogel based on current drying trends. Micropor. Mesopor. Mater. 258, 211–216 (2018). https://doi.org/10.1016/j.micromeso.2017.09.016
C.W. Li, L. Qiu, B.Q. Zhang, D. Li, C.Y. Liu, Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv. Mater. 28(7), 1510–1516 (2016). https://doi.org/10.1002/adma.201504317
X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu et al., Naturally dried graphene aerogels with superelasticity and tunable poisson’s ratio. Adv. Mater. 28(41), 9223–9230 (2016). https://doi.org/10.1002/adma.201603079
J. Yang, X.F. Li, S. Han, R.Z. Yang, P. Min et al., High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6(14), 5880–5886 (2018). https://doi.org/10.1039/c8ta00078f
A. Li, C. Zhang, Y.F. Zhang, Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9(9), 437 (2017). https://doi.org/10.3390/polym9090437
T. Luo, J.R. Lloyd, Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv. Funct. Mater. 22(12), 2495–2502 (2012). https://doi.org/10.1002/adfm.201103048
L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004
S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco et al., Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites. Polymer 102, 292–300 (2016). https://doi.org/10.1016/j.polymer.2016.09.032
Q.R. Yang, Z.L. Zhang, X.F. Gong, E.R. Yao, T. Liu et al., Thermal conductivity of graphene-polymer composites: implications for thermal management. Heat Mass Trans. 56(6), 1931–1945 (2020). https://doi.org/10.1007/s00231-020-02821-0
J. Chen, X. Chen, F. Meng, D. Li, X. Tian et al., Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Perform. Polym. 29(5), 585–594 (2017). https://doi.org/10.1177/0954008316655861
H. Liu, Y. Liu, W.Q. Liu, J.L. Pan, S.Q. Huang et al., Preparation and properties of modified graphene oxide/polyurethane composites. Integr. Ferroelectr. 206(1), 1–9 (2020). https://doi.org/10.1080/10584587.2020.1728617
Y. Liu, K. Wu, F. Luo, M. Lu, F. Xiao et al., Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 117, 134–143 (2019). https://doi.org/10.1016/j.compositesa.2018.11.015
E.E. Tkalya, M. Ghislandi, G. With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225–231 (2012). https://doi.org/10.1016/j.cocis.2012.03.001
L. Guardia, M.J. Fernandez-Merino, J.I. Paredes, P. Solis-Fernandez, S. Villar-Rodil et al., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5), 1653–1662 (2011). https://doi.org/10.1016/j.carbon.2010.12.049
C. Liu, C. Chen, H. Wang, M. Chen, D. Zhou et al., Synergistic effect of irregular shaped ps and graphene on the thermal conductivity of epoxy composites. Polym. Compos. 40(S2), E1294–E1300 (2018). https://doi.org/10.1002/pc.24968
J. Jiang, S. Yang, L. Li, S. Bai, High thermal conductivity polylactic acid composite for 3D printing: synergistic effect of graphene and alumina. Polym. Adv. Technol. 31(6), 1291–1299 (2020). https://doi.org/10.1002/pat.4858
J. Yu, H.K. Choi, H.S. Kim, S.Y. Kim, Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Compos. Part A Appl. Sci. Manuf. 88, 79–85 (2016). https://doi.org/10.1016/j.compositesa.2016.05.022
A. Dasari, Z.Z. Yu, Y.W. Mai, Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009). https://doi.org/10.1016/j.polymer.2009.06.026
J. Hu, H.B. Zhang, S. Hong, Z.G. Jiang, C.X. Gui et al., Simultaneous improvement in both electrical conductivity and toughness of polyamide 6 nanocomposites filled with elastomer and carbon black ps. Ind. Eng. Chem. Res. 53(6), 2270–2276 (2014). https://doi.org/10.1021/ie4035785
D. Yan, X.F. Li, H.L. Ma, X.Z. Tang, Z. Zhang et al., Effect of compounding sequence on localization of carbon nanotubes and electrical properties of ternary nanocomposites. Compos. Part A Appl. Sci. Manuf. 49, 35–41 (2013). https://doi.org/10.1016/j.compositesa.2013.02.002
W.Y. Si, J.Y. Sun, X.X. He, Y. Huang, J. Zhuang et al., Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J. Mater. Chem. C 8(10), 3463–3475 (2020). https://doi.org/10.1039/c9tc06968b
J.R. Huang, N. Li, L.H. Xiao, H.Q. Liu, Y.G. Wang et al., Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold via self-assembly. J. Mater. Chem. A 7(26), 15731–15740 (2019). https://doi.org/10.1039/c9ta04256c
O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc et al., A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon 101, 239–244 (2016). https://doi.org/10.1016/j.carbon.2016.01.095
X.Y. Qi, D. Yan, Z.G. Jiang, Y.K. Cao, Z.Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3(8), 3130–3133 (2011). https://doi.org/10.1021/am200628c
S. Salimian, A. Zadhoush, M. Naeimirad, R. Kotek, S. Ramakrishna, A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym. Compos. 39(10), 3383–3408 (2018). https://doi.org/10.1002/pc.24412
C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). https://doi.org/10.1039/c2nr31467c
E. Barrios, D. Fox, Y.Y.L. Sip, R. Catarata, J.E. Calderon et al., Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11(4), 41 (2019). https://doi.org/10.3390/polym11040726
P. Dai, Y. Jiao, H. Ma, X. Zeng, Y. Lu et al., Radiation synthesis of polysilane-modified graphene oxide for improving thermal conductivity and mechanical properties of silicone rubber. J. Appl. Polym. Sci. 136(29), 47776 (2019). https://doi.org/10.1002/app.47776
X. Huang, Y.X. Lin, G. Fang, Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells. Sol. Energy 161, 187–193 (2018). https://doi.org/10.1016/j.solener.2017.12.051
F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta00750g
Z.H. Tang, H.L. Kang, Z.L. Shen, B.C. Guo, L.Q. Zhang et al., Grafting of polyester onto graphene for electrically and thermally conductive composites. Macromolecules 45(8), 3444–3451 (2012). https://doi.org/10.1021/ma300450t
H. Yuan, Y. Wang, T. Li, Y. Wang, P. Ma et al., Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. Nanoscale 11(23), 11360–11368 (2019). https://doi.org/10.1039/c9nr02491c
E.C. Cho, J.H. Huang, C.P. Li, C.W. Chang-Jian, K.C. Lee et al., Graphene-based thermoplastic composites and their application for led thermal management. Carbon 10, 66–73 (2016). https://doi.org/10.1016/j.carbon.2016.01.097
Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213(8), 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
T. Yang, Z. Jiang, H. Han, X. Cai, Y. Liu et al., Welding dopamine modified graphene nanosheets onto graphene foam for high thermal conductive composites. Compos. Part B Eng. 205(15), 108509 (2021). https://doi.org/10.1016/j.compositesb.2020.108509
H. Liao, W. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos. Sci. Technol. 189(22), 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
R. Wang, L.X. Wu, D.X. Zhuo, J.H. Zhang, Y.D. Zheng, Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content. Ind. Eng. Chem. Res. 57(32), 10967–10976 (2018). https://doi.org/10.1021/acs.iecr.8b01070
Y. Li, W. Wei, Y. Wang, N. Kadhim, Y. Mei et al., Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity. J. Mater. Chem. C 7(38), 11783–11789 (2019). https://doi.org/10.1039/c9tc02937k
Z. Liu, Y. Chen, Y. Li, W. Dai, Q. Yan et al., Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11(38), 17600–17606 (2019). https://doi.org/10.1039/c9nr03968f
Y.J. Zhong, M. Zhou, F.Q. Huang, T.Q. Lin, D.Y. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 113, 195–200 (2013). https://doi.org/10.1016/j.solmat.2013.01.046
Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010). https://doi.org/10.1021/nn101187z
H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219–2223 (2013). https://doi.org/10.1002/adma.201204530
Y. Gong, S. Yang, Z. Liu, L. Ma, R. Vajtai et al., Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 25(29), 3979–3984 (2013). https://doi.org/10.1002/adma.201301051
H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012). https://doi.org/10.1021/nn300082k
J. Liu, Y. Liu, H.B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
Y.Q. Sun, Q. Wu, G.Q. Shi, Supercapacitors based on self-assembled graphene organogel. Phys. Chem. Chem. Phys. 13(38), 17249–17254 (2011). https://doi.org/10.1039/c1cp22409c
Y.L. He, J.H. Li, L.F. Li, J.B. Chen, J.Y. Li, The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution. Nucl. Sci. Tech. 27(3), 8 (2016). https://doi.org/10.1007/s41365-016-0068-8
L. Zhang, P. He, K. Song, J. Zhang, B. Zhang et al., Three-dimensional graphene hybrid SiO2 hierarchical dual-network aerogel with low thermal conductivity and high elasticity. Coatings 10(5), 455 (2020). https://doi.org/10.3390/coatings10050455
S.Y. Dong, L.J. Xia, T. Guo, F.Y. Zhang, L.F. Cui et al., Controlled synthesis of flexible graphene aerogels macroscopic monolith as versatile agents for wastewater treatment. Appl. Surf. Sci. 445(1), 30–38 (2018). https://doi.org/10.1016/j.apsusc.2018.03.132
K.X. Sheng, Y.X. Xu, C. Li, G.Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26(1), 9–15 (2011). https://doi.org/10.1016/s1872-5805(11)60062-0
W.C. Wan, F. Zhang, S. Yu, R.Y. Zhang, Y. Zhou, Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J. Chem. 40(4), 3040–3046 (2016). https://doi.org/10.1039/c5nj03086b
S. Yan, G.Z. Zhang, F.B. Li, L. Zhang, S.T. Wang et al., Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM2.5 and PM10) capture. Nanoscale 11(21), 10372–10380 (2019). https://doi.org/10.1039/c9nr02071c
C.M. Zhang, Y.J. Chen, H. Li, H.Z. Liu, Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties. RSC Adv. 8(48), 27390–27399 (2018). https://doi.org/10.1039/c8ra04718a
Y.X. Xu, G.Q. Shi, X.F. Duan, Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48(6), 1666–1675 (2015). https://doi.org/10.1021/acs.accounts.5b00117
X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo et al., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21(18), 6494–6497 (2011). https://doi.org/10.1039/c1jm10239g
Y.P. Xia, W.W. Cui, H.Z. Zhang, F. Xu, L.X. Sun et al., Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity. J. Mater. Chem. A 5(29), 15191–15199 (2017). https://doi.org/10.1039/c7ta03432f
W.Y. Zhang, Q.Q. Kong, Z.C. Tao, J.C. Wei, L.J. Xie et al., 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 8 (2019). https://doi.org/10.1002/admi.201900147
Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
X.C. Dong, X.W. Wang, L.H. Wang, H. Song, H. Zhang et al., 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 4(6), 3129–3133 (2012). https://doi.org/10.1021/am300459m
W. Li, S. Gao, L. Wu, S.Q. Qiu, Y.F. Guo et al., High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 3, 2125 (2013). https://doi.org/10.1038/srep02125
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang et al., Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22), 3163–3168 (2011). https://doi.org/10.1002/smll.201100990
X. Xie, G.H. Yu, N. Liu, Z.N. Bao, C.S. Criddle et al., Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5(5), 6862–6866 (2012). https://doi.org/10.1039/c2ee03583a
D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5(7), 7908–7912 (2012). https://doi.org/10.1039/c2ee21848h
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
J. Yang, G.Q. Qi, R.Y. Bao, K. Yi, M. Li et al., Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 13, 88–95 (2018). https://doi.org/10.1016/j.ensm.2017.12.028
F. Xue, Y. Lu, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 365, 20–29 (2019). https://doi.org/10.1016/j.cej.2019.02.023
C. Wu, X. Huang, G. Wang, L. Lv, G. Chen et al., Correction: highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23(4), 403–403 (2013). https://doi.org/10.1002/adfm.201390000
B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012). https://doi.org/10.1021/nn3003345
H. Fang, S.L. Bai, C.P. Wong, Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. Manuf. 112, 216–238 (2018). https://doi.org/10.1016/j.compositesa.2018.06.010
C. Zhu, T.Y. Liu, F. Qian, W. Chen, S. Chandrasekaran et al., 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017). https://doi.org/10.1016/j.nantod.2017.06.007
E. Garcia-Tunon, S. Barg, J. Franco, R. Bell, S. Eslava et al., Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015). https://doi.org/10.1002/adma.201405046
Y.G. Yao, K.K. Fu, C.Y. Yan, J.Q. Dai, Y.N. Chen et al., Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5), 5272–5279 (2016). https://doi.org/10.1021/acsnano.6b01059
S. Dul, L. Fambri, A. Pegoretti, Fused deposition modelling with ABS-graphene nanocomposites. Compos. Part A Appl. Sci. Manuf. 85, 181–191 (2016). https://doi.org/10.1016/j.compositesa.2016.03.013
N. Nguyen, J.G. Park, S.L. Zhang, R. Liang, Recent advances on 3D printing technique for thermal-related applications. Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201700876
J. Ma, P. Wang, L. Dong, Y. Ruan, H. Lu, Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide. J. Colloid Interface Sci. 534, 12–19 (2019). https://doi.org/10.1016/j.jcis.2018.08.096
Q.Q. Zhang, F. Zhang, X. Xu, C. Zhou, D. Lin, Three-dimensional printing hollow polymer template-mediated graphene lattices with tailorable architectures and multifunctional properties. ACS Nano 12(2), 1096–1106 (2018). https://doi.org/10.1021/acsnano.7b06095
C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
J.J. Moyano, J. Mosa, M. Aparicio, D. Perez-Coll, M. Belmonte et al., Strong and light cellular silicon carbonitride-reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Addit. Manuf. 30, 100849 (2019). https://doi.org/10.1016/j.addma.2019.100849
J.H. Huang, B.N. Zhang, P. Valdiserri, X. Huang, G.Q. Yin et al., Thermal flow self-assembled anisotropic chemically derived graphene aerogels and their thermal conductivity enhancement. Nanomaterials 9(9), 15 (2019). https://doi.org/10.3390/nano9091226
N. Burger, A. Laachachi, B. Mortazavi, M. Ferriol, M. Lutz et al., Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Transf. 89, 505–513 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.065
X.J. Tian, M.E. Itkis, E.B. Bekyarova, R.C. Haddon, Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Sci. Rep. 3(1), 6 (2013). https://doi.org/10.1038/srep01710
W.F. Zhao, J. Kong, H. Liu, Q. Zhuang, J.W. Gu et al., Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8(48), 19984–19993 (2016). https://doi.org/10.1039/c6nr06622d
J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
F. Conrado, M. Pavese, A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites. J. Nanomater. 2017, 1–11 (2017). https://doi.org/10.1155/2017/8974174
K. Wu, D. Liu, C. Lei, S. Xue, Q. Fu, Is filler orientation always good for thermal management performance: a visualized study from experimental results to simulative analysis. Chem. Eng. J. 394(15), 124929 (2020). https://doi.org/10.1016/j.cej.2020.124929
Z. Xu, Y. Zhang, P.G. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). https://doi.org/10.1021/nn3021772
L. Onsager, The effects of shape on the interaction of colloidal ps. Ann. New York Acad. Sci. 51(4), 627–639 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28(16), 3045–3068 (2016). https://doi.org/10.1002/adma.201505122
F. Guo, F. Kim, T.H. Han, V.B. Shenoy, J.X. Huang et al., Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 5(10), 8019–8025 (2011). https://doi.org/10.1021/nn2025644
Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5(4), 2908–2915 (2011). https://doi.org/10.1021/nn200069w
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
B.W. Yao, J. Chen, L. Huang, Q.Q. Zhou, G.Q. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7(9), 5538–5549 (2015). https://doi.org/10.1021/acsami.5b00146
X.W. Yang, L. Qiu, C. Cheng, Y.Z. Wu, Z.F. Ma et al., Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. 50(32), 7325–7328 (2011). https://doi.org/10.1002/anie.201100723
K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen et al., Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5(8), 6601–6609 (2011). https://doi.org/10.1021/nn202040c
L. Kou, Z. Liu, T.Q. Huang, B.N. Zheng, Z.Y. Tian et al., Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes. Nanoscale 7(9), 4080–4087 (2015). https://doi.org/10.1039/c4nr07038k
G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4(43), 17042–17049 (2016). https://doi.org/10.1039/c6ta07587h
G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901403
K. Huang, J. Yang, S. Dong, Q. Feng, X. Zhang et al., Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon 130, 1–10 (2018). https://doi.org/10.1016/j.carbon.2017.12.120
Y.C. Jia, H. He, Y. Geng, B. Huang, X.D. Peng, High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017). https://doi.org/10.1016/j.compscitech.2017.03.035
J. Huang, Z. Li, X. Wu, J. Wang, S. Yang, Poly(vinyl alcohol)-mediated graphene aerogels with tailorable architectures and advanced properties for anisotropic sensing. J. Phys. Chem. C 123(6), 3781–3789 (2019). https://doi.org/10.1021/acs.jpcc.8b11327
J. Huang, X. Huang, M. He, B. Zhang, G. Feng et al., Control of graphene aerogel self-assembly in strongly acidic solution via solution polarity tuning. RSC Adv. 9(37), 21155–21163 (2019). https://doi.org/10.1039/c9ra02658d
E. Garcia-Bordeje, S. Victor-Roman, O. Sanahuja-Parejo, A.M. Benito, W.K. Maser, Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale 10(7), 3526–3539 (2018). https://doi.org/10.1039/c7nr08732b
H. Zhang, A.I. Cooper, Aligned porous structures by directional freezing. Adv. Mater. 19(11), 1529–1533 (2007). https://doi.org/10.1002/adma.200700154
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
T. Liu, M.L. Huang, X.F. Li, C.J. Wang, C.X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016). https://doi.org/10.1016/j.carbon.2016.01.038
X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Lium et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisturepowered information storage. Adv. Mater. 29(3), 1604972 (2017). https://doi.org/10.1002/adma.201604972
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5), 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y.Z. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10(43), 37507–37516 (2018). https://doi.org/10.1021/acsami.8b13415
L.J. Zhou, S.C. Zhai, Y.M. Chen, Z.Y. Xu, Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers 11(4), 15 (2019). https://doi.org/10.3390/polym11040712
H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
C.J. Huang, J.S. Peng, Y.R. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy-graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/c8ta10725d
W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. (2015). https://doi.org/10.1126/sciadv.1500849
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou et al., 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016). https://doi.org/10.1002/smll.201503524
J. Kuang, L.Q. Liu, Y. Gao, D. Zhou, Z. Chen et al., A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5(24), 12171–12177 (2013). https://doi.org/10.1039/c3nr03379a
M. Li, W. Tao, S. Lu, C. Zhao, Porous 3-D scaffolds from regenerated antheraea pernyi silk fibroin. Polym. Adv. Technol. 19(3), 207–212 (2008). https://doi.org/10.1002/pat.998
J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. J. Mater. Chem. A 4(48), 18841–18851 (2016). https://doi.org/10.1039/c6ta08454k
W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 7(53), 33600–33605 (2017). https://doi.org/10.1039/c7ra05557a
L.J. Zhou, Z.Y. Xu, Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mater. 388(15), 121804 (2020). https://doi.org/10.1016/j.jhazmat.2019.121804
C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58(23), 7636–7640 (2019). https://doi.org/10.1002/anie.201902410
Y.X. Liu, N. Fang, B. Liu, L.N. Song, B.Y. Wen et al., Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Mater. Lett. 233, 78–81 (2018). https://doi.org/10.1016/j.matlet.2018.08.108
H.Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199–209 (2018). https://doi.org/10.1016/j.carbon.2018.02.033
L. Wang, M. Fang, Y.J. Xia, J.X. Hou, X.R. Nan et al., Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Adv. 10(17), 10118–10128 (2020). https://doi.org/10.1039/c9ra09710d
C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5(45), 11708–11716 (2017). https://doi.org/10.1039/c7tc03846a
C. Li, J. Yu, S.L. Xue, Z. Cheng, G. Sun et al., Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries. Carbon 139, 522–530 (2018). https://doi.org/10.1016/j.carbon.2018.07.023
Z.D. Liu, Y.P. Chen, W. Dai, Y.M. Wu, M.J. Wang et al., Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC Adv. 8(2), 1065–1070 (2018). https://doi.org/10.1039/c7ra11574a
H.N. Huang, H. Bi, M. Zhou, F. Xu, T.Q. Lin et al., A three-dimensional elastic macroscopic graphene network for thermal management application. J. Mater. Chem. A 2(43), 18215–18218 (2014). https://doi.org/10.1039/c4ta03801k
H. Bi, I.W. Chen, T.Q. Lin, F.Q. Huang, A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 27(39), 5943–5949 (2015). https://doi.org/10.1002/adma.201502682
H. Bi, T. Lin, F. Xu, Y. Tang, Z. Liu et al., New graphene form of nanoporous monolith for excellent energy storage. Nano Lett. 16(1), 349–354 (2016). https://doi.org/10.1021/acs.nanolett.5b03923
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5(2), 275–284 (2018). https://doi.org/10.1039/c7mh00984d
G.B. Xue, K. Liu, Q. Chen, P.H. Yang, J. Li et al., Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9(17), 15052–15057 (2017). https://doi.org/10.1021/acsami.7b01992
L. Chen, N. Song, L.Y. Shi, P. Ding, Anisotropic thermally conductive composite with wood-derived carbon scaffolds. Compos. Part A Appl. Sci. Manuf. 112, 18–24 (2018). https://doi.org/10.1016/j.compositesa.2018.05.023
C. Wan, Y. Jiao, S. Wei, X. Li, W. Tian et al., Scalable top-to-bottom design on low tortuosity of anisotropic carbon aerogels for fast and reusable passive capillary absorption and separation of organic leakages. ACS Appl. Mater. Interfaces 11(51), 47846–47857 (2019). https://doi.org/10.1021/acsami.9b13686
Y. Li, K.K. Fu, C. Chen, W. Luo, T. Gao et al., Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 11(5), 4801–4807 (2017). https://doi.org/10.1021/acsnano.7b01172
Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin et al., Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(25), 21371–21381 (2017). https://doi.org/10.1021/acsami.7b04523
C. Wang, Y. Ding, Y. Yuan, X. He, S. Wu et al., Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 3(45), 11893–11901 (2015). https://doi.org/10.1039/c5tc03127c
H.M. Fang, Y.H. Zhao, Y.F. Zhang, Y.J. Ren, S.L. Baio, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
D. Han, Y.H. Zhao, Y.F. Zhang, S.L. Bai, Vertically and compactly rolled-up reduced graphene oxide film/epoxy composites: a two-stage reduction method for graphene-based thermal interfacial materials. RSC Adv. 5(114), 94426–94435 (2015). https://doi.org/10.1039/c5ra16780a
Y.F. Zhang, Y.J. Ren, H.C. Guo, S.L. Bai, Enhanced thermal properties of pdms composites containing vertically aligned graphene tubes. Appl. Therm. Eng. 150, 840–848 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.029
Y.F. Zhang, D. Han, Y.H. Zhao, S.L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
J. Yang, G.Q. Qi, Y. Liu, R.Y. Bao, Z.Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016). https://doi.org/10.1016/j.carbon.2016.01.063
F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018). https://doi.org/10.1016/j.carbon.2017.10.011
J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z. Liu et al., Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain. Chem. Eng. 6(5), 6761–6770 (2018). https://doi.org/10.1021/acssuschemeng.8b00565
Y. Guo, J. He, H. Wang, Z. Su, Q. Qu et al., Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation. Polym. Compos. 40(2), 1600–1611 (2019). https://doi.org/10.1002/pc.25095
Q. Chen, X. Yan, L. Wu, Y. Xiao, S. Wang et al., Small-nanostructure-size-limited phonon transport within composite films made of single-wall carbon nanotubes and reduced graphene oxides. ACS Appl. Mater. Interfaces 13(4), 5435–5444 (2021). https://doi.org/10.1021/acsami.0c20551
Z. Ali, X. Kong, M. Li, X. Hou, L. Li et al., Ultrahigh thermal conductivity of epoxy composites with hybrid carbon fiber and graphene filler. Fibers Polym. 23, 463–470 (2021). https://doi.org/10.1007/s12221-021-3164-2
X. Wei, X.Z. Jin, N. Zhang, X.D. Qi, J.H. Yang et al., Constructing cellulose nanocrystal/graphene nanoplatelet networks in phase change materials toward intelligent thermal management. Carbohydr. Polym. 253(1), 117290 (2021). https://doi.org/10.1016/j.carbpol.2020.117290
X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
Z.G. Wang, Y.L. Yang, R.T. Lan, K. Dai, H.J. Duan et al., Significantly enhanced thermal conductivity and flame retardance by silicon carbide nanowires/graphene oxide hybrid network. Compos. Part A Appl. Sci. Manuf. 139, 106093 (2020). https://doi.org/10.1016/j.compositesa.2020.106093
G.Q. Qi, J. Yang, R.Y. Bao, Z.Y. Liu, W. Yang et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88, 196–205 (2015). https://doi.org/10.1016/j.carbon.2015.03.009
I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi et al., Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013). https://doi.org/10.1021/nl304060g
Y.K. Kim, J.Y. Chung, J.G. Lee, Y.K. Baek, P.W. Shin, Synergistic effect of spherical Al2O3 ps and bn nanoplates on the thermal transport properties of polymer composites. Compos. Part A Appl. Sci. Manuf. 98, 184–191 (2017). https://doi.org/10.1016/j.compositesa.2017.03.030
J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J. 315, 481–490 (2017). https://doi.org/10.1016/j.cej.2017.01.045
S. Vinod, C.S. Tiwary, P.A.D. Autreto, J. Taha-Tijerina, S. Ozden et al., Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 5, 4541 (2014). https://doi.org/10.1038/ncomms5541
Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044
T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng et al., Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Adv. 6(42), 35847–35854 (2016). https://doi.org/10.1039/c5ra27315c
T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng et al., A novel h-BN-RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density. RSC Adv. 7(38), 23355–23362 (2017). https://doi.org/10.1039/c6ra28503a
L.B. Shao, L.Y. Shi, X.H. Li, N. Song, P. Ding, Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos. Sci. Technol. 135, 83–91 (2016). https://doi.org/10.1016/j.compscitech.2016.09.013
X.L. Cui, P. Ding, N. Zhuang, L.Y. Shi, N. Song et al., Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl. Mater. 7(34), 19068–19075 (2015). https://doi.org/10.1021/acsami.5b04444
E. Pop, D. Mann, Q. Wang, K.E. Goodson, H.J. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006). https://doi.org/10.1021/nl052145f
E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001). https://doi.org/10.1016/s0266-3538(01)00094-x
G.J. Chen, Y.P. Su, D.Y. Jiang, L.J. Pan, S. Li, An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications. Appl. Energy 264(15), 114786 (2020). https://doi.org/10.1016/j.apenergy.2020.114786
H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576
Y.J. Xiao, W.Y. Wang, X.J. Chen, T. Lin, Y.T. Zhang et al., Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 90, 614–625 (2016). https://doi.org/10.1016/j.compositesa.2016.08.029
X. Dong, Y. Ma, G. Zhu, Y. Huang, J. Wang et al., Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J. Mater. Chem. 22(33), 17044–17048 (2012). https://doi.org/10.1039/c2jm33286h
Y.P. Chen, X. Hou, R.Y. Kang, Y. Liang, L.C. Guo et al., Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity. J. Mater. Chem. C 6(46), 12739–12745 (2018). https://doi.org/10.1039/c8tc04859b
A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin et al., Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl. Mater. Interfaces 5(13), 5969–5975 (2013). https://doi.org/10.1021/am400171y
X. Du, M. Zhou, S. Deng, Z. Du, X. Cheng et al., Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency. Cellulose 27(8), 4679–4690 (2020). https://doi.org/10.1007/s10570-020-03110-z
J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang et al., Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale 12, 4005–4017 (2020). https://doi.org/10.1039/c9nr10696k
H. Wu, S. Deng, Y. Shao, J. Yang, X. Qi et al., Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl. Mater. Interfaces 11(50), 46851–46863 (2019). https://doi.org/10.1021/acsami.9b16612
S. Yang, Y. Ji, Y. Wu, J. Ma, Z. Zou et al., Air-dried graphene-based sponge for water/oil separation and strain sensing. Colloids Surf. A 555, 358–364 (2018). https://doi.org/10.1016/j.colsurfa.2018.07.018
C.Z. Liu, S.B. Ye, J.C. Feng, The preparation of compressible and fire-resistant sponge-supported reduced graphene oxide aerogel for electromagnetic interference shielding. Chem. Asian J. 11(18), 2586–2593 (2016). https://doi.org/10.1002/asia.201600905
W.L. Liu, H.B. Jiang, Y. Ru, X.H. Zhang, J.L. Qiao, Conductive graphene-melamine sponge prepared via microwave irradiation. ACS Appl. Mater. Interfaces 10(29), 24776–24783 (2018). https://doi.org/10.1021/acsami.8b06070
S. Li, Y. Li, X. Han, X. Zhao, Y. Zhao, High-efficiency enhancement on thermal and electrical properties of epoxy nanocomposites with core-shell carbon foam template-coated graphene. Compos. Part A Appl. Sci. Manuf. 120, 95–105 (2019). https://doi.org/10.1016/j.compositesa.2019.01.032
H.Y. Wu, S.T. Li, Y.W. Shao, X.Z. Jin, X.D. Qi et al., Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chem. Eng. J. 379(1), 122373 (2020). https://doi.org/10.1016/j.cej.2019.122373
F. Nazeer, Z. Ma, L. Gao, F. Wang, M.A. Khan et al., Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Compos. Part B Eng. 163, 77–85 (2019). https://doi.org/10.1016/j.compositesb.2018.11.004
J. Chen, X. Gao, Directional dependence of electrical and thermal properties in graphene-nanoplatelet-based composite materials. Results Phys. 15, 102608 (2019). https://doi.org/10.1016/j.rinp.2019.102608
J. Shen, P. Zhang, L.X. Song, J.P. Li, B.Q. Ji et al., Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos. Part B Eng. 179, 10 (2019). https://doi.org/10.1016/j.compositesb.2019.107545
P.F. Liu, F. An, X.Y. Lu, X.F. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201(5), 108492 (2021). https://doi.org/10.1016/j.compscitech.2020.108492
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
T. Du, Z. Xiong, L. Delgado, W. Liao, J. Peoples et al., Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat. Commun. 12, 4915 (2021). https://doi.org/10.1038/s41467-021-25083-8
C.P. Feng, L.B. Chen, G.L. Tian, L. Bai, R.Y. Bao et al., Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm-1k-1. Chem. Eng. J. 392(15), 123784 (2020). https://doi.org/10.1016/j.cej.2019.123784
H. Hou, W. Dai, Q.W. Yan, L. Lv, F.E. Alam et al., Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 6(25), 12091–12097 (2018). https://doi.org/10.1039/c8ta03937b
J.N. Shi, M.D. Ger, Y.M. Liu, Y.C. Fan, N