Pickering Emulsion-Driven MXene/Silk Fibroin Hydrogels with Programmable Functional Networks for EMI Shielding and Solar Evaporation
Corresponding Author: Hao‑Bin Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 312
Abstract
Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields. However, the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize. We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures. Significantly, the amphipathy of silk fibroin (SF) and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant. The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities. As a proof-of-concept, the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency (~ 64 dB). Also, the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties. The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process, expecting far superior evaporation performance (~ 3.5 kg m⁻2 h⁻1) and salt tolerance capability compared to other hydrogel evaporators. Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties.
Highlights:
1 A versatile surfactant-free emulsion construction strategy is proposed to customize functional hydrogels.
2 The synergistic emulsification mechanism between amphiphilic polymers and MXene is comprehensively elucidated.
3 Programmable functional structures confer hydrogels with excellent EMI shielding and water evaporation performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- H. Na, Y.W. Kang, C.S. Park, S. Jung, H.Y. Kim et al., Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376(6590), 301–307 (2022). https://doi.org/10.1126/science.abm7862
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
- Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao et al., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642–7707 (2020). https://doi.org/10.1021/acs.chemrev.0c00345
- D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 30(5), 1907678 (2020). https://doi.org/10.1002/adfm.201907678
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- S.R. Shin, R. Farzad, A. Tamayol, V. Manoharan, P. Mostafalu et al., A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28(17), 3280–3289 (2016). https://doi.org/10.1002/adma.201506420
- X. Li, L. He, Y. Li, M. Chao, M. Li et al., Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15(4), 7765–7773 (2021). https://doi.org/10.1021/acsnano.1c01751
- P. Zhang, F. Liu, Q. Liao, H. Yao, H. Geng et al., A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 57(50), 16343–16347 (2018). https://doi.org/10.1002/anie.201810345
- Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston et al., Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
- X. Li, K. Cui, T.L. Sun, L. Meng, C. Yu et al., Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. U.S.A. 117(14), 7606–7612 (2020). https://doi.org/10.1073/pnas.2000189117
- A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
- Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
- X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), 2310849 (2024). https://doi.org/10.1002/adma.202310849
- L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- L. Li, Z. Deng, M. Chen, Z.-Z. Yu, T.P. Russell et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
- S. Yang, C. Zhao, Y. Yang, J. Ren, S. Ling, The fractal network structure of silk fibroin molecules and its effect on spinning of silkworm silk. ACS Nano 17(8), 7662–7673 (2023). https://doi.org/10.1021/acsnano.3c00105
- A. Ghaffarkhah, S.A. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
- R. Abidnejad, M. Beaumont, B.L. Tardy, B.D. Mattos, O.J. Rojas, Superstable wet foams and lightweight solid composites from nanocellulose and hydrophobic ps. ACS Nano 15(12), 19712–19721 (2021). https://doi.org/10.1021/acsnano.1c07084
- Y. Alsaid, S. Wu, D. Wu, Y. Du, L. Shi et al., Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33(20), 2008235 (2021). https://doi.org/10.1002/adma.202008235
- S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13(1), 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
- S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
- W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu et al., Pickering multiphase materials using plant-based cellulosic micro/nanops. Aggregate 5(2), e486 (2024). https://doi.org/10.1002/agt2.486
- D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett et al., Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6(10), 1612–1631 (2011). https://doi.org/10.1038/nprot.2011.379
- D. Wilson, R. Valluzzi, D. Kaplan, Conformational transitions in model silk peptides. Biophys. J. 78(5), 2690–2701 (2000). https://doi.org/10.1016/S0006-3495(00)76813-5
- J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7(5), 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
- T.-B. Ma, H. Ma, K.-P. Ruan, X.-T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
- Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
- C. Wang, L. Xu, J. Zheng, Z. Zhu, Z. Huang et al., Polyvinyl alcohol/chitosan biomimetic hydrogel enhanced by MXene for excellent electromagnetic shielding and pressure sensing. Int. J. Biol. Macromol. 278, 134354 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134354
- C. Wang, Z. Zhu, L. Han, L. Xu, M. Wang et al., Poly(vinyl alcohol) hydrogels enhanced with Ti3C2Tx MXene nanosheets and aramid nanofibers for electromagnetic shielding and motion detection. ACS Appl. Nano Mater. 7(21), 24925–24937 (2024). https://doi.org/10.1021/acsanm.4c04840
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), e1907499 (2020). https://doi.org/10.1002/adma.201907499
- Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11(8), 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
- X. Lin, P. Wang, R. Hong, X. Zhu, Y. Liu et al., Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv. Funct. Mater. 32(51), 2209262 (2022). https://doi.org/10.1002/adfm.202209262
- F. Zhu, L. Wang, B. Demir, M. An, Z.L. Wu et al., Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 7(12), 3187–3195 (2020). https://doi.org/10.1039/D0MH01259A
- X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
- H. Li, G. Tong, A. Chu, J. Chen, H. Yang et al., Thermoresponsive Janus hybrid hydrogel for efficient solar steam generation. Nano Energy 124, 109475 (2024). https://doi.org/10.1016/j.nanoen.2024.109475
- Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19(4), 2530–2536 (2019). https://doi.org/10.1021/acs.nanolett.9b00252
- S.Y. Zheng, J. Zhou, M. Si, S. Wang, F. Zhu et al., A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation. Adv. Funct. Mater. 33(43), 2303272 (2023). https://doi.org/10.1002/adfm.202303272
References
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
H. Na, Y.W. Kang, C.S. Park, S. Jung, H.Y. Kim et al., Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376(6590), 301–307 (2022). https://doi.org/10.1126/science.abm7862
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao et al., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642–7707 (2020). https://doi.org/10.1021/acs.chemrev.0c00345
D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 30(5), 1907678 (2020). https://doi.org/10.1002/adfm.201907678
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
S.R. Shin, R. Farzad, A. Tamayol, V. Manoharan, P. Mostafalu et al., A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28(17), 3280–3289 (2016). https://doi.org/10.1002/adma.201506420
X. Li, L. He, Y. Li, M. Chao, M. Li et al., Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15(4), 7765–7773 (2021). https://doi.org/10.1021/acsnano.1c01751
P. Zhang, F. Liu, Q. Liao, H. Yao, H. Geng et al., A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 57(50), 16343–16347 (2018). https://doi.org/10.1002/anie.201810345
Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston et al., Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
X. Li, K. Cui, T.L. Sun, L. Meng, C. Yu et al., Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. U.S.A. 117(14), 7606–7612 (2020). https://doi.org/10.1073/pnas.2000189117
A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), 2310849 (2024). https://doi.org/10.1002/adma.202310849
L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
L. Li, Z. Deng, M. Chen, Z.-Z. Yu, T.P. Russell et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
S. Yang, C. Zhao, Y. Yang, J. Ren, S. Ling, The fractal network structure of silk fibroin molecules and its effect on spinning of silkworm silk. ACS Nano 17(8), 7662–7673 (2023). https://doi.org/10.1021/acsnano.3c00105
A. Ghaffarkhah, S.A. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
R. Abidnejad, M. Beaumont, B.L. Tardy, B.D. Mattos, O.J. Rojas, Superstable wet foams and lightweight solid composites from nanocellulose and hydrophobic ps. ACS Nano 15(12), 19712–19721 (2021). https://doi.org/10.1021/acsnano.1c07084
Y. Alsaid, S. Wu, D. Wu, Y. Du, L. Shi et al., Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33(20), 2008235 (2021). https://doi.org/10.1002/adma.202008235
S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13(1), 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu et al., Pickering multiphase materials using plant-based cellulosic micro/nanops. Aggregate 5(2), e486 (2024). https://doi.org/10.1002/agt2.486
D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett et al., Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6(10), 1612–1631 (2011). https://doi.org/10.1038/nprot.2011.379
D. Wilson, R. Valluzzi, D. Kaplan, Conformational transitions in model silk peptides. Biophys. J. 78(5), 2690–2701 (2000). https://doi.org/10.1016/S0006-3495(00)76813-5
J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7(5), 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
T.-B. Ma, H. Ma, K.-P. Ruan, X.-T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
C. Wang, L. Xu, J. Zheng, Z. Zhu, Z. Huang et al., Polyvinyl alcohol/chitosan biomimetic hydrogel enhanced by MXene for excellent electromagnetic shielding and pressure sensing. Int. J. Biol. Macromol. 278, 134354 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134354
C. Wang, Z. Zhu, L. Han, L. Xu, M. Wang et al., Poly(vinyl alcohol) hydrogels enhanced with Ti3C2Tx MXene nanosheets and aramid nanofibers for electromagnetic shielding and motion detection. ACS Appl. Nano Mater. 7(21), 24925–24937 (2024). https://doi.org/10.1021/acsanm.4c04840
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), e1907499 (2020). https://doi.org/10.1002/adma.201907499
Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11(8), 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
X. Lin, P. Wang, R. Hong, X. Zhu, Y. Liu et al., Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv. Funct. Mater. 32(51), 2209262 (2022). https://doi.org/10.1002/adfm.202209262
F. Zhu, L. Wang, B. Demir, M. An, Z.L. Wu et al., Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 7(12), 3187–3195 (2020). https://doi.org/10.1039/D0MH01259A
X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
H. Li, G. Tong, A. Chu, J. Chen, H. Yang et al., Thermoresponsive Janus hybrid hydrogel for efficient solar steam generation. Nano Energy 124, 109475 (2024). https://doi.org/10.1016/j.nanoen.2024.109475
Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19(4), 2530–2536 (2019). https://doi.org/10.1021/acs.nanolett.9b00252
S.Y. Zheng, J. Zhou, M. Si, S. Wang, F. Zhu et al., A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation. Adv. Funct. Mater. 33(43), 2303272 (2023). https://doi.org/10.1002/adfm.202303272