Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar-Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
Corresponding Author: Jin Qu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 48
Abstract
Although solar steam generation strategy is efficient in desalinating seawater, it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Herein, dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co2(OH)2CO3 nanorod top layer and a bacterial cellulose/Co2(OH)2CO3 nanorod (BCH) bottom layer. Crucially, the hydrogen bonding networks inside the membrane can be tuned by the rich surface –OH groups of the bacterial cellulose and Co2(OH)2CO3 as well as the ions and radicals in situ generated during the catalysis process. Moreover, both SO42− and HSO5− can regulate the solvation structure of Na+ and be adsorbed more preferentially on the evaporation surface than Cl−, thus hindering the de-solvation of the solvated Na+ and subsequent nucleation/growth of NaCl. Furthermore, the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency. This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
Highlights:
1 A flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane is designed for synergistic solar-thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
2 The hydrogen bonding networks can be regulated by the abundant surface –OH groups and the in situ generated ions and radicals during the degradation process for promoting solar-driven steam generation.
3 The de-solvation of solvated Na+ and subsequent nucleation/growth of NaCl are effectively inhibited by SO42−/HSO5− ions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas et al., Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
- X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- M. Wang, Y. Wei, X. Wang, R. Li, S. Zhang et al., An integrated system with functions of solar desalination, power generation and crop irrigation. Nat. Water 1, 716–724 (2023). https://doi.org/10.1038/s44221-023-00118-0
- T. Li, T. Yan, P. Wang, J. Xu, X. Huo et al., Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023). https://doi.org/10.1038/s44221-023-00150-0
- J. Wu, T. Zhang, J. Qu, F.-Z. Jiao, C. Hu et al., Hydrothermally modified 3D porous loofah sponges with MoS2 sheets and carbon ps for efficient solar steam generation and seawater desalination. ACS Appl. Mater. Interfaces 15, 29457–29467 (2023). https://doi.org/10.1021/acsami.3c05198
- F.-Z. Jiao, J. Wu, T. Zhang, R.-J. Pan, Z.-H. Wang et al., Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants. ACS Appl. Mater. Interfaces 15, 41007–41018 (2023). https://doi.org/10.1021/acsami.3c09346
- R.-J. Pan, J. Wu, J. Qu, T. Zhang, F.-Z. Jiao et al., Peak-like three-dimensional CoFe2O4/carbon nanotube decorated bamboo fabrics for simultaneous solar-thermal evaporation of water and photocatalytic degradation of bisphenol A. J. Mater. Sci. Technol. 179, 40–49 (2024). https://doi.org/10.1016/j.jmst.2023.08.045
- X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe2O4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222–34231 (2019). https://doi.org/10.1021/acsami.9b10287
- C. Pornrungroj, A.B. Mohamad Annuar, Q. Wang, M. Rahaman, S. Bhattacharjee et al., Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat. Water 1, 952–960 (2023). https://doi.org/10.1038/s44221-023-00139-9
- X. Liang, H. Zhong, A. Johs, P. Lei, J. Zhang et al., Light-independent phytoplankton degradation and detoxification of methylmercury in water. Nat. Water 1, 705–715 (2023). https://doi.org/10.1038/s44221-023-00117-1
- J. Wu, J. Qu, G. Yin, T. Zhang, H.-Y. Zhao et al., Omnidirectionally irradiated three-dimensional molybdenum disulfide decorated hydrothermal pinecone evaporator for solar-thermal evaporation and photocatalytic degradation of wastewaters. J. Colloid Interface Sci. 637, 477–488 (2023). https://doi.org/10.1016/j.jcis.2023.01.095
- Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
- Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019). https://doi.org/10.1039/c9ee00692c
- L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun et al., A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 14, 2451–2459 (2021). https://doi.org/10.1039/D1EE00113B
- X. Chen, S. He, M.M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14, 5347–5357 (2021). https://doi.org/10.1039/d1ee01505b
- C. Dang, H. Wang, Y. Cao, J. Shen, J. Zhang et al., Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5405–5414 (2022). https://doi.org/10.1039/D2EE03341K
- F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- C. Onggowarsito, S. Mao, X.S. Zhang, A. Feng, H. Xu et al., Updated perspective on solar steam generation application. Energy Environ. Sci. 17, 2088–2099 (2024). https://doi.org/10.1039/d3ee04073a
- T. Liu, Y. Zhang, Z. Shan, M. Wu, B. Li et al., Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water. Nat. Water 1, 1059–1067 (2023). https://doi.org/10.1038/s44221-023-00162-w
- S. Afzal, X. Quan, J. Zhang, High surface area mesoporous nanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B Environ. 206, 692–703 (2017). https://doi.org/10.1016/j.apcatb.2017.01.072
- C. Song, D. Qi, Y. Han, Y. Xu, H. Xu et al., Volatile-organic-compound-intercepting solar distillation enabled by a photothermal/photocatalytic nanofibrous membrane with dual-scale pores. Environ. Sci. Technol. 54, 9025–9033 (2020). https://doi.org/10.1021/acs.est.9b07903
- J. Lu, Y. Zhang, J. Wu, J. Wang, C. Zhang et al., Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China. Environ. Pollut. 252, 450–460 (2019). https://doi.org/10.1016/j.envpol.2019.05.143
- L. Shi, Y. Shi, S. Zhuo, C. Zhang, Y. Aldrees et al., Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation. Nano Energy 60, 222–230 (2019). https://doi.org/10.1016/j.nanoen.2019.03.039
- M.-C. Han, J.-H. Zhang, C.-Y. Yu, J.-C. Yu, Y.-X. Wang et al., Constructing dynamic anode/electrolyte interfaces coupled with regulated solvation structures for long-term and highly reversible zinc metal anodes. Angew. Chem. Int. Ed. 63, e202403695 (2024). https://doi.org/10.1002/anie.202403695
- H.-J. Liu, C.-Y. Yang, M.-C. Han, C.-Y. Yu, X. Li et al., In-situ constructing A heterogeneous layer on lithium metal anodes for dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed. 62, e202217458 (2023). https://doi.org/10.1002/anie.202217458
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
- W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl. Catal. B Environ. 194, 169–201 (2016). https://doi.org/10.1016/j.apcatb.2016.04.003
- H. Chen, G. Pan, M. Yan, F. Wang, Y. Wu et al., Janus membrane with enhanced interfacial activation for solar evaporation. J. Energy Chem. 87, 1–11 (2023). https://doi.org/10.1016/j.jechem.2023.08.018
- Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32, 2205790 (2022). https://doi.org/10.1002/adfm.202205790
- H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35, e2207262 (2023). https://doi.org/10.1002/adma.202207262
- X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
- Z. Mao, Y. Yao, J. Shen, J. Liu, Y. Chen et al., Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nat. Water 2, 93–100 (2024). https://doi.org/10.1038/s44221-023-00190-6
- J. Ma, S. Xing, Y. Wang, J. Yang, F. Yu, Kinetic-thermodynamic promotion engineering toward high-density hierarchical and Zn-doping activity-enhancing ZnNiO@CF for high-capacity desalination. Nano-Micro Lett. 16, 143 (2024). https://doi.org/10.1007/s40820-024-01371-y
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- W. Ren, L. Xiong, G. Nie, H. Zhang, X. Duan et al., Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: the role of oxygen functional groups. Environ. Sci. Technol. 54, 1267–1275 (2020). https://doi.org/10.1021/acs.est.9b06208
- X. Leng, L. Wu, Y. Liu, C. Li, S. Wei et al., A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitors. J. Mater. Chem. A 4, 17171–17179 (2016). https://doi.org/10.1039/C6TA07112K
- S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Mesoporous Co3O4 and CoO@C topotactically transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 22, 861–871 (2012). https://doi.org/10.1002/adfm.201102192
- S.L. Wang, L.Q. Qian, H. Xu, G.L. Lü, W.J. Dong et al., Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J. Alloys Compd. 476, 739–743 (2009). https://doi.org/10.1016/j.jallcom.2008.09.096
- X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei et al., Co2(OH)2CO3 nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 12022–12029 (2015). https://doi.org/10.1021/acsami.5b02152
- W. Wei, S. Cui, L. Ding, L. Mi, W. Chen et al., Urchin-like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for ultrahigh-rate electrochemical supercapacitors: structural evolution from solid to hollow. ACS Appl. Mater. Interfaces. 9, 40655–40670 (2017). https://doi.org/10.1021/acsami.7b12392
- X. Hao, H. Yao, P. Zhang, Q. Liao, K. Zhu et al., Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water 1, 982–991 (2023). https://doi.org/10.1038/s44221-023-00152-y
- F. Zhu, L. Wang, B. Demir, M. An, Z.L. Wu et al., Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 7, 3187–3195 (2020). https://doi.org/10.1039/D0MH01259A
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061
- X. Chen, C. Meng, Y. Wang, Q. Zhao, Y. Li et al., Laser-synthesized rutile TiO2 with abundant oxygen vacancies for enhanced solar water evaporation. ACS Sustain. Chem. Eng. 8, 1095–1101 (2020). https://doi.org/10.1021/acssuschemeng.9b05952
- Q. Lu, Y. Yang, J. Feng, X. Wang, Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Sol. RRL 3, 1800277 (2019). https://doi.org/10.1002/solr.201800277
- M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen et al., Synthesis of black TiOx nanops by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017). https://doi.org/10.1002/aenm.201601811
- G. Zhu, J. Xu, W. Zhao, F. Huang, Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 31716–31721 (2016). https://doi.org/10.1021/acsami.6b11466
- L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
- Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang et al., A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 9, 623–628 (2018). https://doi.org/10.1039/c7sc02967e
- F. Wang, Y. Su, Y. Li, D. Wei, H. Sun et al., Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 3, 8746–8754 (2020). https://doi.org/10.1021/acsaem.0c01292
- L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan et al., 3D self-assembly of aluminium nanops for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
- L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016). https://doi.org/10.1126/sciadv.1501227
- T. Chen, Z. Wu, Z. Liu, J.T. Aladejana, X.A. Wang et al., Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 12, 19511–19518 (2020). https://doi.org/10.1021/acsami.0c01815
- N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017). https://doi.org/10.1002/adma.201606762
- C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang et al., Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017). https://doi.org/10.1002/adma.201701756
- T. Meng, Z. Li, Z. Wan, J. Zhang, L. Wang et al., MOF-Derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction. Chem. Eng. J. 452, 139193 (2023). https://doi.org/10.1016/j.cej.2022.139193
- Z. Wang, Y. Yan, X. Shen, C. Jin, Q. Sun et al., A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J. Mater. Chem. A 7, 20706–20712 (2019). https://doi.org/10.1039/c9ta04914b
- Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12, 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
- Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, e1900498 (2019). https://doi.org/10.1002/adma.201900498
- L. Song, X.-F. Zhang, Z. Wang, T. Zheng, J. Yao, Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination 507, 115024 (2021). https://doi.org/10.1016/j.desal.2021.115024
- X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one Sun. Adv. Mater. 29, 1604031 (2017). https://doi.org/10.1002/adma.201604031
- Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki et al., Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015). https://doi.org/10.1002/adma.201501832
- C. Wang, J. Wang, Z. Li, K. Xu, T. Lei et al., Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 8, 9528–9535 (2020). https://doi.org/10.1039/D0TA01439G
- W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018). https://doi.org/10.1002/aenm.201702884
- P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
- F. Meng, Y. Zhang, S. Zhang, B. Ju, B. Tang, Polysulfide nanops-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy Environ. 8, 267–274 (2023). https://doi.org/10.1016/j.gee.2021.04.004
- H. Xu, X. Liu, H. Li, L. Zhang, O2 activation and 1O2 generation over phosphate modified BiOCl for efficient photodegradation of organic pollutants. Appl. Catal. B Environ. 314, 121520 (2022). https://doi.org/10.1016/j.apcatb.2022.121520
- L.-S. Zhang, X.-H. Jiang, Z.-A. Zhong, L. Tian, Q. Sun et al., Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity. Angew. Chem. Int. Ed. 60, 21751–21755 (2021). https://doi.org/10.1002/anie.202109488
- Y. Wang, Z. Chi, C. Chen, C. Su, D. Liu et al., Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. Appl. Catal. B Environ. 272, 118972 (2020). https://doi.org/10.1016/j.apcatb.2020.118972
- J. Yang, S. Hu, Y. Fang, S. Hoang, L. Li et al., Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal. 9, 9751–9763 (2019). https://doi.org/10.1021/acscatal.9b02408
- Z.-S. Zhu, X.-J. Yu, J. Qu, Y.-Q. Jing, Y. Abdelkrim et al., Preforming abundant surface cobalt hydroxyl groups on low crystalline flowerlike Co3(Si2O5)2(OH)2 for enhancing catalytic degradation performances with a critical nonradical reaction. Appl. Catal. B Environ. 261, 118238 (2020). https://doi.org/10.1016/j.apcatb.2019.118238
- J. Bing, C. Hu, Y. Nie, M. Yang, J. Qu, Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ. Sci. Technol. 49, 1690–1697 (2015). https://doi.org/10.1021/es503729h
- W. Lan, X. Gou, Y. Wu, N. Liu, L. Lu et al., The influence of light-generated radicals for highly efficient solar-thermal conversion in an ultra-stable 2D metal-organic assembly. Angew. Chem. Int. Ed. 63, e202401766 (2024). https://doi.org/10.1002/anie.202401766
- Z. Zhu, H. Zheng, H. Kong, X. Ma, J. Xiong, Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat. Water 1, 790–799 (2023). https://doi.org/10.1038/s44221-023-00125-1
References
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas et al., Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
M. Wang, Y. Wei, X. Wang, R. Li, S. Zhang et al., An integrated system with functions of solar desalination, power generation and crop irrigation. Nat. Water 1, 716–724 (2023). https://doi.org/10.1038/s44221-023-00118-0
T. Li, T. Yan, P. Wang, J. Xu, X. Huo et al., Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023). https://doi.org/10.1038/s44221-023-00150-0
J. Wu, T. Zhang, J. Qu, F.-Z. Jiao, C. Hu et al., Hydrothermally modified 3D porous loofah sponges with MoS2 sheets and carbon ps for efficient solar steam generation and seawater desalination. ACS Appl. Mater. Interfaces 15, 29457–29467 (2023). https://doi.org/10.1021/acsami.3c05198
F.-Z. Jiao, J. Wu, T. Zhang, R.-J. Pan, Z.-H. Wang et al., Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants. ACS Appl. Mater. Interfaces 15, 41007–41018 (2023). https://doi.org/10.1021/acsami.3c09346
R.-J. Pan, J. Wu, J. Qu, T. Zhang, F.-Z. Jiao et al., Peak-like three-dimensional CoFe2O4/carbon nanotube decorated bamboo fabrics for simultaneous solar-thermal evaporation of water and photocatalytic degradation of bisphenol A. J. Mater. Sci. Technol. 179, 40–49 (2024). https://doi.org/10.1016/j.jmst.2023.08.045
X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe2O4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222–34231 (2019). https://doi.org/10.1021/acsami.9b10287
C. Pornrungroj, A.B. Mohamad Annuar, Q. Wang, M. Rahaman, S. Bhattacharjee et al., Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat. Water 1, 952–960 (2023). https://doi.org/10.1038/s44221-023-00139-9
X. Liang, H. Zhong, A. Johs, P. Lei, J. Zhang et al., Light-independent phytoplankton degradation and detoxification of methylmercury in water. Nat. Water 1, 705–715 (2023). https://doi.org/10.1038/s44221-023-00117-1
J. Wu, J. Qu, G. Yin, T. Zhang, H.-Y. Zhao et al., Omnidirectionally irradiated three-dimensional molybdenum disulfide decorated hydrothermal pinecone evaporator for solar-thermal evaporation and photocatalytic degradation of wastewaters. J. Colloid Interface Sci. 637, 477–488 (2023). https://doi.org/10.1016/j.jcis.2023.01.095
Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019). https://doi.org/10.1039/c9ee00692c
L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun et al., A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 14, 2451–2459 (2021). https://doi.org/10.1039/D1EE00113B
X. Chen, S. He, M.M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14, 5347–5357 (2021). https://doi.org/10.1039/d1ee01505b
C. Dang, H. Wang, Y. Cao, J. Shen, J. Zhang et al., Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5405–5414 (2022). https://doi.org/10.1039/D2EE03341K
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
C. Onggowarsito, S. Mao, X.S. Zhang, A. Feng, H. Xu et al., Updated perspective on solar steam generation application. Energy Environ. Sci. 17, 2088–2099 (2024). https://doi.org/10.1039/d3ee04073a
T. Liu, Y. Zhang, Z. Shan, M. Wu, B. Li et al., Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water. Nat. Water 1, 1059–1067 (2023). https://doi.org/10.1038/s44221-023-00162-w
S. Afzal, X. Quan, J. Zhang, High surface area mesoporous nanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B Environ. 206, 692–703 (2017). https://doi.org/10.1016/j.apcatb.2017.01.072
C. Song, D. Qi, Y. Han, Y. Xu, H. Xu et al., Volatile-organic-compound-intercepting solar distillation enabled by a photothermal/photocatalytic nanofibrous membrane with dual-scale pores. Environ. Sci. Technol. 54, 9025–9033 (2020). https://doi.org/10.1021/acs.est.9b07903
J. Lu, Y. Zhang, J. Wu, J. Wang, C. Zhang et al., Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China. Environ. Pollut. 252, 450–460 (2019). https://doi.org/10.1016/j.envpol.2019.05.143
L. Shi, Y. Shi, S. Zhuo, C. Zhang, Y. Aldrees et al., Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation. Nano Energy 60, 222–230 (2019). https://doi.org/10.1016/j.nanoen.2019.03.039
M.-C. Han, J.-H. Zhang, C.-Y. Yu, J.-C. Yu, Y.-X. Wang et al., Constructing dynamic anode/electrolyte interfaces coupled with regulated solvation structures for long-term and highly reversible zinc metal anodes. Angew. Chem. Int. Ed. 63, e202403695 (2024). https://doi.org/10.1002/anie.202403695
H.-J. Liu, C.-Y. Yang, M.-C. Han, C.-Y. Yu, X. Li et al., In-situ constructing A heterogeneous layer on lithium metal anodes for dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed. 62, e202217458 (2023). https://doi.org/10.1002/anie.202217458
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl. Catal. B Environ. 194, 169–201 (2016). https://doi.org/10.1016/j.apcatb.2016.04.003
H. Chen, G. Pan, M. Yan, F. Wang, Y. Wu et al., Janus membrane with enhanced interfacial activation for solar evaporation. J. Energy Chem. 87, 1–11 (2023). https://doi.org/10.1016/j.jechem.2023.08.018
Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32, 2205790 (2022). https://doi.org/10.1002/adfm.202205790
H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35, e2207262 (2023). https://doi.org/10.1002/adma.202207262
X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
Z. Mao, Y. Yao, J. Shen, J. Liu, Y. Chen et al., Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nat. Water 2, 93–100 (2024). https://doi.org/10.1038/s44221-023-00190-6
J. Ma, S. Xing, Y. Wang, J. Yang, F. Yu, Kinetic-thermodynamic promotion engineering toward high-density hierarchical and Zn-doping activity-enhancing ZnNiO@CF for high-capacity desalination. Nano-Micro Lett. 16, 143 (2024). https://doi.org/10.1007/s40820-024-01371-y
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
W. Ren, L. Xiong, G. Nie, H. Zhang, X. Duan et al., Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: the role of oxygen functional groups. Environ. Sci. Technol. 54, 1267–1275 (2020). https://doi.org/10.1021/acs.est.9b06208
X. Leng, L. Wu, Y. Liu, C. Li, S. Wei et al., A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitors. J. Mater. Chem. A 4, 17171–17179 (2016). https://doi.org/10.1039/C6TA07112K
S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Mesoporous Co3O4 and CoO@C topotactically transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 22, 861–871 (2012). https://doi.org/10.1002/adfm.201102192
S.L. Wang, L.Q. Qian, H. Xu, G.L. Lü, W.J. Dong et al., Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J. Alloys Compd. 476, 739–743 (2009). https://doi.org/10.1016/j.jallcom.2008.09.096
X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei et al., Co2(OH)2CO3 nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 12022–12029 (2015). https://doi.org/10.1021/acsami.5b02152
W. Wei, S. Cui, L. Ding, L. Mi, W. Chen et al., Urchin-like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for ultrahigh-rate electrochemical supercapacitors: structural evolution from solid to hollow. ACS Appl. Mater. Interfaces. 9, 40655–40670 (2017). https://doi.org/10.1021/acsami.7b12392
X. Hao, H. Yao, P. Zhang, Q. Liao, K. Zhu et al., Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water 1, 982–991 (2023). https://doi.org/10.1038/s44221-023-00152-y
F. Zhu, L. Wang, B. Demir, M. An, Z.L. Wu et al., Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 7, 3187–3195 (2020). https://doi.org/10.1039/D0MH01259A
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061
X. Chen, C. Meng, Y. Wang, Q. Zhao, Y. Li et al., Laser-synthesized rutile TiO2 with abundant oxygen vacancies for enhanced solar water evaporation. ACS Sustain. Chem. Eng. 8, 1095–1101 (2020). https://doi.org/10.1021/acssuschemeng.9b05952
Q. Lu, Y. Yang, J. Feng, X. Wang, Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Sol. RRL 3, 1800277 (2019). https://doi.org/10.1002/solr.201800277
M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen et al., Synthesis of black TiOx nanops by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017). https://doi.org/10.1002/aenm.201601811
G. Zhu, J. Xu, W. Zhao, F. Huang, Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 31716–31721 (2016). https://doi.org/10.1021/acsami.6b11466
L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang et al., A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 9, 623–628 (2018). https://doi.org/10.1039/c7sc02967e
F. Wang, Y. Su, Y. Li, D. Wei, H. Sun et al., Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 3, 8746–8754 (2020). https://doi.org/10.1021/acsaem.0c01292
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan et al., 3D self-assembly of aluminium nanops for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016). https://doi.org/10.1126/sciadv.1501227
T. Chen, Z. Wu, Z. Liu, J.T. Aladejana, X.A. Wang et al., Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 12, 19511–19518 (2020). https://doi.org/10.1021/acsami.0c01815
N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017). https://doi.org/10.1002/adma.201606762
C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang et al., Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017). https://doi.org/10.1002/adma.201701756
T. Meng, Z. Li, Z. Wan, J. Zhang, L. Wang et al., MOF-Derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction. Chem. Eng. J. 452, 139193 (2023). https://doi.org/10.1016/j.cej.2022.139193
Z. Wang, Y. Yan, X. Shen, C. Jin, Q. Sun et al., A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J. Mater. Chem. A 7, 20706–20712 (2019). https://doi.org/10.1039/c9ta04914b
Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12, 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, e1900498 (2019). https://doi.org/10.1002/adma.201900498
L. Song, X.-F. Zhang, Z. Wang, T. Zheng, J. Yao, Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination 507, 115024 (2021). https://doi.org/10.1016/j.desal.2021.115024
X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one Sun. Adv. Mater. 29, 1604031 (2017). https://doi.org/10.1002/adma.201604031
Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki et al., Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015). https://doi.org/10.1002/adma.201501832
C. Wang, J. Wang, Z. Li, K. Xu, T. Lei et al., Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 8, 9528–9535 (2020). https://doi.org/10.1039/D0TA01439G
W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018). https://doi.org/10.1002/aenm.201702884
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
F. Meng, Y. Zhang, S. Zhang, B. Ju, B. Tang, Polysulfide nanops-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy Environ. 8, 267–274 (2023). https://doi.org/10.1016/j.gee.2021.04.004
H. Xu, X. Liu, H. Li, L. Zhang, O2 activation and 1O2 generation over phosphate modified BiOCl for efficient photodegradation of organic pollutants. Appl. Catal. B Environ. 314, 121520 (2022). https://doi.org/10.1016/j.apcatb.2022.121520
L.-S. Zhang, X.-H. Jiang, Z.-A. Zhong, L. Tian, Q. Sun et al., Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity. Angew. Chem. Int. Ed. 60, 21751–21755 (2021). https://doi.org/10.1002/anie.202109488
Y. Wang, Z. Chi, C. Chen, C. Su, D. Liu et al., Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. Appl. Catal. B Environ. 272, 118972 (2020). https://doi.org/10.1016/j.apcatb.2020.118972
J. Yang, S. Hu, Y. Fang, S. Hoang, L. Li et al., Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal. 9, 9751–9763 (2019). https://doi.org/10.1021/acscatal.9b02408
Z.-S. Zhu, X.-J. Yu, J. Qu, Y.-Q. Jing, Y. Abdelkrim et al., Preforming abundant surface cobalt hydroxyl groups on low crystalline flowerlike Co3(Si2O5)2(OH)2 for enhancing catalytic degradation performances with a critical nonradical reaction. Appl. Catal. B Environ. 261, 118238 (2020). https://doi.org/10.1016/j.apcatb.2019.118238
J. Bing, C. Hu, Y. Nie, M. Yang, J. Qu, Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ. Sci. Technol. 49, 1690–1697 (2015). https://doi.org/10.1021/es503729h
W. Lan, X. Gou, Y. Wu, N. Liu, L. Lu et al., The influence of light-generated radicals for highly efficient solar-thermal conversion in an ultra-stable 2D metal-organic assembly. Angew. Chem. Int. Ed. 63, e202401766 (2024). https://doi.org/10.1002/anie.202401766
Z. Zhu, H. Zheng, H. Kong, X. Ma, J. Xiong, Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat. Water 1, 790–799 (2023). https://doi.org/10.1038/s44221-023-00125-1