Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation
Corresponding Author: Ziqi Sun
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 90
Abstract
Oxygen vacancies (Vo) in electrocatalysts are closely correlated with the hydrogen evolution reaction (HER) activity. The role of vacancy defects and the effect of their concentration, however, yet remains unclear. Herein, Bi2O3, an unfavorable electrocatalyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy (ΔGH*), is utilized as a perfect model to explore the function of Vo on HER performance. Through a facile plasma irradiation strategy, Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process. Unexpectedly, while the generated oxygen vacancies contribute to the enhanced HER performance, higher Vo concentrations beyond a saturation value result in a significant drop in HER activity. By tunning the Vo concentration in the Bi2O3 nanosheets via adjusting the treatment time, the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52 × 1024 cm−3 demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm−2, a Tafel slope of 80 mV dec−1, and an exchange current density of 316 mA cm−2 in an alkaline solution, which approaches the top-tier activity among Bi-based HER electrocatalysts. Density-functional theory calculations confirm the preferred adsorption of H* onto Bi2O3 as a function of oxygen chemical potential (∆μO) and oxygen partial potential (PO2) and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity. This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.
Highlights:
1 Catalytically inert 2D Bi2O3 is activated for boosting electrochemical hydrogen evolution reaction (HER) via oxygen vacancy concentration modulation.
2 The relationship between the varied oxygen vacancy concentrations and the corresponding HER activity is revealed by both experimental Vo verification and theoretical density-functional theory calculations.
3 This work provides insights into activating catalytically inert materials into high-performance catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Renssen, The hydrogen solution? Nat. Clim. Change 10(9), 799–801 (2020). https://doi.org/10.1038/s41558-020-0891-0
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
- W.S. Zhi, J. Kibsgaard, F.D. Colin, I. Chorkendorff, K.N. Jens et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), 4998 (2017). https://doi.org/10.1126/science.aad4998
- N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
- W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157(11), B1529 (2010). https://doi.org/10.1149/1.3483106
- J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5(4), 2000988 (2021). https://doi.org/10.1002/smtd.202000988
- F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review. Int. J. Hydrog. Energy 40(1), 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
- Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang et al., Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 10(11), 1903120 (2020). https://doi.org/10.1002/aenm.201903120
- J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33(49), 2104638 (2021). https://doi.org/10.1002/adma.202104638
- M. Iqbal, Y. Bando, Z. Sun, K. Wu, A. Rowan et al., In search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications. Adv. Mater. 33(13), 2004554 (2021). https://doi.org/10.1002/adma.202004554
- Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
- H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 1806326 (2020). https://doi.org/10.1002/adma.201806326
- J. Mei, Q. Zhang, H. Peng, T. Liao, Z. Sun, Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis. J. Mater. Sci. Technol. 111, 181–188 (2022). https://doi.org/10.1016/j.jmst.2021.09.047
- Y. Song, B. Xu, T. Liao, J. Guo, Y. Wu et al., Electronic structure tuning of 2D metal (hydr)oxides nanosheets for electrocatalysis. Small 17(9), 2002240 (2021). https://doi.org/10.1002/smll.202002240
- Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
- Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
- Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem. Mater. 29(13), 5566–5573 (2017). https://doi.org/10.1021/acs.chemmater.7b00867
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- Y. Guo, J. Tang, Z. Wang, Y.M. Kang, Y. Bando et al., Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
- J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong et al., Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56(11), 2960–2964 (2017). https://doi.org/10.1002/anie.201611767
- Z. Zeng, K.C. Chang, J. Kubal, N.M. Markovic, J. Greeley, Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2(6), 17070 (2017). https://doi.org/10.1038/nenergy.2017.70
- J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong et al., Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 30(9), 1705324 (2018). https://doi.org/10.1002/adma.201705324
- J.X. Feng, S.Y. Tong, Y.X. Tong, G.R. Li, Pt-like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts. J. Am. Chem. Soc. 140(15), 5118–5126 (2018). https://doi.org/10.1021/jacs.7b12968
- M. Li, J. Wei, L. Ren, Y. Zhao, Z. Shang et al., Superwetting behaviors at the interface between electrode and electrolyte. Cell Rep. Phys. Sci. 2(3), 100374 (2021). https://doi.org/10.1016/j.xcrp.2021.100374
- D. Gao, J. Guo, H. He, P. Xiao, Y. Zhang, Geometric and electronic modulation of fcc NiCo alloy by group-VI B metal doping to accelerate hydrogen evolution reaction in acidic and alkaline media. Chem. Eng. J. 430, 133110 (2022). https://doi.org/10.1016/j.cej.2021.133110
- J.X. Feng, H. Xu, S.H. Ye, G. Ouyang, Y.X. Tong et al., Silica–polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angew. Chem. Int. Ed. 56(28), 8120–8124 (2017). https://doi.org/10.1002/anie.201702934
- X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec et al., Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 36, 125–138 (2020). https://doi.org/10.1016/j.mattod.2019.12.003
- A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
- Y. Qiu, S. Liu, C. Wei, J. Fan, H. Yao et al., Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density. Chem. Eng. J. 427, 131309 (2022). https://doi.org/10.1016/j.cej.2021.131309
- T. Zhang, M.Y. Wu, D.Y. Yan, J. Mao, H. Liu et al., Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43, 103–109 (2018). https://doi.org/10.1016/j.nanoen.2017.11.015
- H. Tian, X. Cui, L. Zeng, L. Su, Y. Song et al., Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 7(11), 6285–6293 (2019). https://doi.org/10.1039/C8TA12219A
- K. Zhu, F. Shi, X. Zhu, W. Yang, The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73, 104761 (2020). https://doi.org/10.1016/j.nanoen.2020.104761
- R. Mohan, Green bismuth. Nat. Chem. 2(4), 336–336 (2010). https://doi.org/10.1038/nchem.609
- N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
- Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2(5), 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
- L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng et al., Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 9(4), 2902–2908 (2019). https://doi.org/10.1021/acscatal.9b00366
- W. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano-Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
- J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752
- X. Yang, P. Deng, D. Liu, S. Zhao, D. Li et al., Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 8(5), 2472–2480 (2020). https://doi.org/10.1039/C9TA11363K
- Z. Wu, J. Mei, Q. Liu, S. Wang, W. Li et al., Phase engineering of dual active 2D Bi2O3-based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. J. Mater. Chem. A 10(2), 808–817 (2022). https://doi.org/10.1039/D1TA09019D
- G.Y. Kim, K.R. Yoon, K. Shin, J.W. Jung, G. Henkelman et al., Black tungsten oxide nanofiber as a robust support for metal catalysts: high catalyst loading for electrochemical oxygen reduction. Small 17(47), 2103755 (2021). https://doi.org/10.1002/smll.202103755
- Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang et al., Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3−x. Angew. Chem. Int. Ed. 60(2), 910–916 (2021). https://doi.org/10.1002/anie.202010156
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65(3), 035406 (2001). https://doi.org/10.1103/PhysRevB.65.035406
- C. Stampfl, Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal. Today 105(1), 17–35 (2005). https://doi.org/10.1016/j.cattod.2005.04.015
- D.R. Stull, H. Prophet, JANAF Thermochem. Tables (1971). https://doi.org/10.6028/NBS.NSRDS.37
- Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
- N.O. Bezverkhnii, N.A. Monakhov, M.V. Petrenko, T.A. Lapushkina, V.A. Sakharov et al., Experimental studies of the spectral characteristics of a free glow discharge in the wavelength range of 340–440 nm. J. Phys.: Conf. Ser. 1697(1), 012210 (2020). https://doi.org/10.1088/1742-6596/1697/1/012210
- S. Dou, L. Tao, R. Wang, S.E. Hankari, R. Chen et al., Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30(21), 1705850 (2018). https://doi.org/10.1002/adma.201705850
- Y. Lu, T. Liu, C.L. Dong, C. Yang, L. Zhou et al., Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 34(2), 2107185 (2021). https://doi.org/10.1002/adma.202107185
- Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5(6), 1371–1397 (2019). https://doi.org/10.1016/j.chempr.2019.02.008
- K. Dong, J. Liang, Y. Wang, Y. Ren, Z. Xu et al., Plasma-induced defective TiO2−x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catal. 1(7), 1437–1448 (2021). https://doi.org/10.1016/j.checat.2021.10.011
- S. Liu, S. Kang, H. Wang, G. Wang, H. Zhao et al., Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chem. Eng. Sci. 289, 219–230 (2016). https://doi.org/10.1016/j.cej.2015.12.101
- Z. Wang, X. Mao, P. Chen, M. Xiao, S.A. Monny et al., Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew. Chem. Int. Ed. 58(4), 1030–1034 (2019). https://doi.org/10.1002/anie.201810583
- K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu et al., Perovskites decorated with oxygen vacancies and Fe–Ni alloy nanops as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(37), 19836–19845 (2017). https://doi.org/10.1039/C7TA05404A
- T. Selvamani, S. Anandan, L. Granone, D.W. Bahnemann, M. Ashokkumar, Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Mater. Chem. Front. 2(9), 1664–1673 (2018). https://doi.org/10.1039/C8QM00221E
- J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(1), 015015 (2017). https://doi.org/10.1088/2043-6254/aa5984
- V. Swamy, B.C. Muddle, Q. Dai, Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 89(16), 163118 (2006). https://doi.org/10.1063/1.2364123
- S. Jiang, R. Zhang, H. Liu, Y. Rao, Y. Yu et al., Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 142(14), 6461–6466 (2020). https://doi.org/10.1021/jacs.9b13915
- L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
- H. Idriss, On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 712, 121894 (2021). https://doi.org/10.1016/j.susc.2021.121894
- Y. Xiao, Y. Wang, M. Xiao, C. Liu, S. Hou et al., Regulating the pore structure and oxygen vacancies of cobaltosic oxide hollow dodecahedra for an enhanced oxygen evolution reaction. NPG Asia Mater. 12, 73 (2020). https://doi.org/10.1038/s41427-020-00255-y
- S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 140(42), 13644–13653 (2018). https://doi.org/10.1021/jacs.8b05134
- D. Lu, Y. Zheng, L. Yuan, Electron paramagnetic resonance study on oxygen vacancies and site occupations in Mg-doped BaTiO3 ceramics. Materials 12(9), 1525 (2019). https://doi.org/10.3390/ma12091525
- P. Villars, Bi2O3 rt permittivity (dielectric constant). Material phases data system (MPDS), Springer Materials (online database), (Springer, Heidelberg, 2012). https://materials.springer.com/isp/physical-property/docs/ppp_435dcb78261bffae0d8f4d49fca3fd65
- V.S. Dharmadhikari, A. Goswami, Effects of Bi2O3 dissociation on the electrical properties of thermally evaporated films of bismuth oxide. J. Vac. Sci. Technol. A 1(2), 383–387 (1983). https://doi.org/10.1116/1.572143
- T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett et al., Unlocking the optimal aqueous δ-Bi2O3 anode via unifying octahedrally liberated Bi-atoms and spilled nano-Bi exsolution. Energy Storage Mater. 36, 376–386 (2021). https://doi.org/10.1016/j.ensm.2021.01.013
- W.Y. Zhou, S.S. Li, J.Y. Song, M. Jiang, T.J. Jiang et al., High electrochemical sensitivity of TiO2−x nanosheets and an electron-induced mutual interference effect toward heavy metal ions demonstrated using X-ray absorption fine structure spectra. Anal. Chem. 90(7), 4328–4337 (2018). https://doi.org/10.1021/acs.analchem.7b02315
- D. Xiao, Q. Ruan, D.L. Bao, Y. Luo, C. Huang et al., Effects of ion energy and density on the plasma etching-induced surface area, edge electrical field, and multivacancies in MoSe2 nanosheets for enhancement of the hydrogen evolution reaction. Small 16(25), 2001470 (2020). https://doi.org/10.1002/smll.202001470
- T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5(1), 13801 (2015). https://doi.org/10.1038/srep13801
- Y.H. Fang, Z.P. Liu, Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal. 4(12), 4364–4376 (2014). https://doi.org/10.1021/cs501312v
References
S. Renssen, The hydrogen solution? Nat. Clim. Change 10(9), 799–801 (2020). https://doi.org/10.1038/s41558-020-0891-0
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
W.S. Zhi, J. Kibsgaard, F.D. Colin, I. Chorkendorff, K.N. Jens et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), 4998 (2017). https://doi.org/10.1126/science.aad4998
N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157(11), B1529 (2010). https://doi.org/10.1149/1.3483106
J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5(4), 2000988 (2021). https://doi.org/10.1002/smtd.202000988
F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review. Int. J. Hydrog. Energy 40(1), 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang et al., Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 10(11), 1903120 (2020). https://doi.org/10.1002/aenm.201903120
J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33(49), 2104638 (2021). https://doi.org/10.1002/adma.202104638
M. Iqbal, Y. Bando, Z. Sun, K. Wu, A. Rowan et al., In search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications. Adv. Mater. 33(13), 2004554 (2021). https://doi.org/10.1002/adma.202004554
Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 1806326 (2020). https://doi.org/10.1002/adma.201806326
J. Mei, Q. Zhang, H. Peng, T. Liao, Z. Sun, Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis. J. Mater. Sci. Technol. 111, 181–188 (2022). https://doi.org/10.1016/j.jmst.2021.09.047
Y. Song, B. Xu, T. Liao, J. Guo, Y. Wu et al., Electronic structure tuning of 2D metal (hydr)oxides nanosheets for electrocatalysis. Small 17(9), 2002240 (2021). https://doi.org/10.1002/smll.202002240
Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem. Mater. 29(13), 5566–5573 (2017). https://doi.org/10.1021/acs.chemmater.7b00867
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
Y. Guo, J. Tang, Z. Wang, Y.M. Kang, Y. Bando et al., Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong et al., Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56(11), 2960–2964 (2017). https://doi.org/10.1002/anie.201611767
Z. Zeng, K.C. Chang, J. Kubal, N.M. Markovic, J. Greeley, Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2(6), 17070 (2017). https://doi.org/10.1038/nenergy.2017.70
J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong et al., Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 30(9), 1705324 (2018). https://doi.org/10.1002/adma.201705324
J.X. Feng, S.Y. Tong, Y.X. Tong, G.R. Li, Pt-like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts. J. Am. Chem. Soc. 140(15), 5118–5126 (2018). https://doi.org/10.1021/jacs.7b12968
M. Li, J. Wei, L. Ren, Y. Zhao, Z. Shang et al., Superwetting behaviors at the interface between electrode and electrolyte. Cell Rep. Phys. Sci. 2(3), 100374 (2021). https://doi.org/10.1016/j.xcrp.2021.100374
D. Gao, J. Guo, H. He, P. Xiao, Y. Zhang, Geometric and electronic modulation of fcc NiCo alloy by group-VI B metal doping to accelerate hydrogen evolution reaction in acidic and alkaline media. Chem. Eng. J. 430, 133110 (2022). https://doi.org/10.1016/j.cej.2021.133110
J.X. Feng, H. Xu, S.H. Ye, G. Ouyang, Y.X. Tong et al., Silica–polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angew. Chem. Int. Ed. 56(28), 8120–8124 (2017). https://doi.org/10.1002/anie.201702934
X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec et al., Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 36, 125–138 (2020). https://doi.org/10.1016/j.mattod.2019.12.003
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
Y. Qiu, S. Liu, C. Wei, J. Fan, H. Yao et al., Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density. Chem. Eng. J. 427, 131309 (2022). https://doi.org/10.1016/j.cej.2021.131309
T. Zhang, M.Y. Wu, D.Y. Yan, J. Mao, H. Liu et al., Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43, 103–109 (2018). https://doi.org/10.1016/j.nanoen.2017.11.015
H. Tian, X. Cui, L. Zeng, L. Su, Y. Song et al., Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 7(11), 6285–6293 (2019). https://doi.org/10.1039/C8TA12219A
K. Zhu, F. Shi, X. Zhu, W. Yang, The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73, 104761 (2020). https://doi.org/10.1016/j.nanoen.2020.104761
R. Mohan, Green bismuth. Nat. Chem. 2(4), 336–336 (2010). https://doi.org/10.1038/nchem.609
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2(5), 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng et al., Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 9(4), 2902–2908 (2019). https://doi.org/10.1021/acscatal.9b00366
W. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano-Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752
X. Yang, P. Deng, D. Liu, S. Zhao, D. Li et al., Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 8(5), 2472–2480 (2020). https://doi.org/10.1039/C9TA11363K
Z. Wu, J. Mei, Q. Liu, S. Wang, W. Li et al., Phase engineering of dual active 2D Bi2O3-based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. J. Mater. Chem. A 10(2), 808–817 (2022). https://doi.org/10.1039/D1TA09019D
G.Y. Kim, K.R. Yoon, K. Shin, J.W. Jung, G. Henkelman et al., Black tungsten oxide nanofiber as a robust support for metal catalysts: high catalyst loading for electrochemical oxygen reduction. Small 17(47), 2103755 (2021). https://doi.org/10.1002/smll.202103755
Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang et al., Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3−x. Angew. Chem. Int. Ed. 60(2), 910–916 (2021). https://doi.org/10.1002/anie.202010156
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65(3), 035406 (2001). https://doi.org/10.1103/PhysRevB.65.035406
C. Stampfl, Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal. Today 105(1), 17–35 (2005). https://doi.org/10.1016/j.cattod.2005.04.015
D.R. Stull, H. Prophet, JANAF Thermochem. Tables (1971). https://doi.org/10.6028/NBS.NSRDS.37
Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
N.O. Bezverkhnii, N.A. Monakhov, M.V. Petrenko, T.A. Lapushkina, V.A. Sakharov et al., Experimental studies of the spectral characteristics of a free glow discharge in the wavelength range of 340–440 nm. J. Phys.: Conf. Ser. 1697(1), 012210 (2020). https://doi.org/10.1088/1742-6596/1697/1/012210
S. Dou, L. Tao, R. Wang, S.E. Hankari, R. Chen et al., Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30(21), 1705850 (2018). https://doi.org/10.1002/adma.201705850
Y. Lu, T. Liu, C.L. Dong, C. Yang, L. Zhou et al., Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 34(2), 2107185 (2021). https://doi.org/10.1002/adma.202107185
Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5(6), 1371–1397 (2019). https://doi.org/10.1016/j.chempr.2019.02.008
K. Dong, J. Liang, Y. Wang, Y. Ren, Z. Xu et al., Plasma-induced defective TiO2−x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catal. 1(7), 1437–1448 (2021). https://doi.org/10.1016/j.checat.2021.10.011
S. Liu, S. Kang, H. Wang, G. Wang, H. Zhao et al., Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chem. Eng. Sci. 289, 219–230 (2016). https://doi.org/10.1016/j.cej.2015.12.101
Z. Wang, X. Mao, P. Chen, M. Xiao, S.A. Monny et al., Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew. Chem. Int. Ed. 58(4), 1030–1034 (2019). https://doi.org/10.1002/anie.201810583
K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu et al., Perovskites decorated with oxygen vacancies and Fe–Ni alloy nanops as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(37), 19836–19845 (2017). https://doi.org/10.1039/C7TA05404A
T. Selvamani, S. Anandan, L. Granone, D.W. Bahnemann, M. Ashokkumar, Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Mater. Chem. Front. 2(9), 1664–1673 (2018). https://doi.org/10.1039/C8QM00221E
J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(1), 015015 (2017). https://doi.org/10.1088/2043-6254/aa5984
V. Swamy, B.C. Muddle, Q. Dai, Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 89(16), 163118 (2006). https://doi.org/10.1063/1.2364123
S. Jiang, R. Zhang, H. Liu, Y. Rao, Y. Yu et al., Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 142(14), 6461–6466 (2020). https://doi.org/10.1021/jacs.9b13915
L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
H. Idriss, On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 712, 121894 (2021). https://doi.org/10.1016/j.susc.2021.121894
Y. Xiao, Y. Wang, M. Xiao, C. Liu, S. Hou et al., Regulating the pore structure and oxygen vacancies of cobaltosic oxide hollow dodecahedra for an enhanced oxygen evolution reaction. NPG Asia Mater. 12, 73 (2020). https://doi.org/10.1038/s41427-020-00255-y
S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 140(42), 13644–13653 (2018). https://doi.org/10.1021/jacs.8b05134
D. Lu, Y. Zheng, L. Yuan, Electron paramagnetic resonance study on oxygen vacancies and site occupations in Mg-doped BaTiO3 ceramics. Materials 12(9), 1525 (2019). https://doi.org/10.3390/ma12091525
P. Villars, Bi2O3 rt permittivity (dielectric constant). Material phases data system (MPDS), Springer Materials (online database), (Springer, Heidelberg, 2012). https://materials.springer.com/isp/physical-property/docs/ppp_435dcb78261bffae0d8f4d49fca3fd65
V.S. Dharmadhikari, A. Goswami, Effects of Bi2O3 dissociation on the electrical properties of thermally evaporated films of bismuth oxide. J. Vac. Sci. Technol. A 1(2), 383–387 (1983). https://doi.org/10.1116/1.572143
T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett et al., Unlocking the optimal aqueous δ-Bi2O3 anode via unifying octahedrally liberated Bi-atoms and spilled nano-Bi exsolution. Energy Storage Mater. 36, 376–386 (2021). https://doi.org/10.1016/j.ensm.2021.01.013
W.Y. Zhou, S.S. Li, J.Y. Song, M. Jiang, T.J. Jiang et al., High electrochemical sensitivity of TiO2−x nanosheets and an electron-induced mutual interference effect toward heavy metal ions demonstrated using X-ray absorption fine structure spectra. Anal. Chem. 90(7), 4328–4337 (2018). https://doi.org/10.1021/acs.analchem.7b02315
D. Xiao, Q. Ruan, D.L. Bao, Y. Luo, C. Huang et al., Effects of ion energy and density on the plasma etching-induced surface area, edge electrical field, and multivacancies in MoSe2 nanosheets for enhancement of the hydrogen evolution reaction. Small 16(25), 2001470 (2020). https://doi.org/10.1002/smll.202001470
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5(1), 13801 (2015). https://doi.org/10.1038/srep13801
Y.H. Fang, Z.P. Liu, Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal. 4(12), 4364–4376 (2014). https://doi.org/10.1021/cs501312v