Plasmon Assisted Highly Efficient Visible Light Catalytic CO2 Reduction Over the Noble Metal Decorated Sr-Incorporated g-C3N4
Corresponding Author: Chungdong Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 209
Abstract
The photocatalytic performance of g-C3N4 for CO2 conversion is still inadequate by several shortfalls including the instability, insufficient solar light absorption and rapid charge carrier’s recombination rate. To solve these problems, herein, noble metals (Pt and Au) decorated Sr-incorporated g-C3N4 photocatalysts are fabricated via the simple calcination and photo-deposition methods. The Sr-incorporation remarkably reduced the g-C3N4 band gap from 2.7 to 2.54 eV, as evidenced by the UV–visible absorption spectra and the density functional theory results. The CO2 conversion performance of the catalysts was evaluated under visible light irradiation. The Pt/0.15Sr-CN sample produced 48.55 and 74.54 µmol h−1 g−1 of CH4 and CO, respectively. These amounts are far greater than that produced by the Au/0.15Sr-CN, 0.15Sr-CN, and CN samples. A high quantum efficiency of 2.92% is predicted for the Pt/0.15Sr-CN sample. Further, the stability of the photocatalyst is confirmed via the photocatalytic recyclable test. The improved CO2 conversion performance of the catalyst is accredited to the promoted light absorption and remarkably enhanced charge separation via the Sr-incorporated mid gap states and the localized surface plasmon resonance effect induced by noble metal nanoparticles. This work will provide a new approach for promoting the catalytic efficiency of g-C3N4 for efficient solar fuel production.
Highlights:
1 Noble metals (Pt, Au) decorated Sr-incorporated g-C3N4 photocatalysts are fabricated via facile calcination and photo-deposition methods.
2 The optical absorption and charge separation properties of the photocatalysts are remarkably improved and the Pt/0.15Sr-CN photocatalyst exhibited excellent activity for CO2 conversion.
3 A quantum efficiency of 2.92% is predicted for CO2 reduction over the Pt/0.15Sr-CN photocatalyst at 420 nm wavelength, which is accredited to the improved optical absorption and enhanced charge separation via Sr-incorporation and the surface plasmon resonance effect of noble metal nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 10(3), 2667–2678 (2018). https://doi.org/10.1021/acsami.7b18835
- Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/D1EE00505G
- M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan et al., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B 231, 23–33 (2018). https://doi.org/10.1016/j.apcatb.2018.02.060
- M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang et al., Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 180, 219–226 (2016). https://doi.org/10.1016/j.apcatb.2015.06.035
- Y. Huang, K. Wang, T. Guo, J. Li, X. Wu et al., Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B 277, 119232 (2020). https://doi.org/10.1016/j.apcatb.2020.119232
- J. Pei, T. Wang, R. Sui, X. Zhang, D. Zhou et al., N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 14(5), 3019–3028 (2021). https://doi.org/10.1039/D0EE03947K
- M.D. Garba, M. Usman, S. Khan, F. Shehzad, A. Galadima et al., CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 9(2), 104756 (2021). https://doi.org/10.1016/j.jece.2020.104756
- M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir et al., Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022). https://doi.org/10.1016/j.jechem.2021.08.023
- Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10(9), 1903879 (2020). https://doi.org/10.1002/aenm.201903879
- G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138(19), 6292–6297 (2016). https://doi.org/10.1021/jacs.6b02692
- M. Humayun, Y. Qu, F. Raziq, R. Yan, Z. Li et al., Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 50(24), 13600–13610 (2016). https://doi.org/10.1021/acs.est.6b04958
- N. Tian, H. Huang, X. Du, F. Dong, Y. Zhang, Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 7(19), 11584–11612 (2019). https://doi.org/10.1039/C9TA01819K
- J. Kosco, F. Moruzzi, B. Willner, I. McCulloch, Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Adv. Energy Mater. 10(39), 2001935 (2020). https://doi.org/10.1002/aenm.202001935
- M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11(2), 86–102 (2018). https://doi.org/10.1080/17518253.2018.1440324
- Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31(50), 1901997 (2019). https://doi.org/10.1002/adma.201901997
- M. Humayun, H. Ullah, J. Cao, W. Pi, Y. Yuan et al., Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-scheme heterojunction. Nano-Micro Lett. 12, 7 (2020). https://doi.org/10.1007/s40820-019-0345-2
- M. Humayun, H. Ullah, A.A. Tahir, A.R.B.M. Yusoff, M.A.M. Teridi et al., An overview of the recent progress in polymeric carbon nitride based photocatalysis. Chem. Record. 21(7), 1811–1844 (2021). https://doi.org/10.1002/tcr.202100067
- M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan et al., Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J. Hazard. Mater. 364, 635–644 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.088
- M. Humayun, Q. Fu, Z. Zheng, H. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A 568, 139–147 (2018). https://doi.org/10.1016/j.apcata.2018.10.007
- F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu et al., Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
- A. Zada, M. Humayun, F. Raziq, X. Zhang, Y. Qu et al., Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6(21), 1601190 (2016). https://doi.org/10.1002/aenm.201601190
- S. Ali, M. Humayun, W. Pi, Y. Yuan, M. Wang et al., Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: insight mechanism. J. Hazard. Mater. 397, 122708 (2020). https://doi.org/10.1016/j.jhazmat.2020.122708
- R. Shen, K. He, A. Zhang, N. Li, Y.H. Ng et al., In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B 291, 120104 (2021). https://doi.org/10.1016/j.apcatb.2021.120104
- Z. Zhu, Z. Liu, X. Tang, K. Reeti, P. Huo et al., Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: insights by experiment and first-principles calculations. Catal. Sci. Technol. 11(5), 1725–1736 (2021). https://doi.org/10.1039/D0CY02382E
- X. Huang, W. Gu, S. Hu, Y. Hu, L. Zhou et al., Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2. Catal. Sci. Technol. 10(11), 3694–3700 (2020). https://doi.org/10.1039/D0CY00457J
- X. Dong, S. Zhang, H. Wu, Z. Kang, L. Wang, Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2. RSC Adv. 9(49), 28894–28901 (2019). https://doi.org/10.1039/C9RA04606B
- J.Y. Tang, W.G. Zhou, R.T. Guo, C.Y. Huang, W.G. Pan, Enhancement of photocatalytic performance in CO2 reduction over Mg/g-C3N4 catalysts under visible light irradiation. Catal. Commun. 107, 92–95 (2018). https://doi.org/10.1016/j.catcom.2018.01.006
- M.H. Darvishnejad, A. Reisi-Vanani, Multiple CO2 capture in pristine and Sr-decorated graphyne: A DFT-D3 and AIMD study. Comput. Mater. Sci. 176, 109539 (2020). https://doi.org/10.1016/j.commatsci.2020.109539
- H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase, A. Kudo, Highly active NaTaO3-based photocatalysts for CO2 reduction to form CO using water as the electron donor. Chemsuschem 10(1), 112–118 (2017). https://doi.org/10.1002/cssc.201601360
- S. Wan, M. Chen, M. Ou, Q. Zhong, Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation. J. CO2 Util. 33, 357–364 (2019). https://doi.org/10.1016/j.jcou.2019.06.024
- X.A. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang et al., The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Appl. Catal. B 232, 69–76 (2018). https://doi.org/10.1016/j.apcatb.2018.03.054
- M. Zhou, G. Dong, F. Yu, Y. Huang, The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B 256, 117825 (2019). https://doi.org/10.1016/j.apcatb.2019.117825
- S. Liang, Y. Xia, S. Zhu, S. Zheng, Y. He et al., Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 358, 304–312 (2015). https://doi.org/10.1016/j.apsusc.2015.08.035
- M. Yaseen, M. Humayun, A. Khan, M. Usman, H. Ullah et al., Preparation, functionalization, modification, and applications of nanostructured gold: a critical review. Energies 14(5), 1278 (2021). https://doi.org/10.3390/en14051278
- H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 439, 552–559 (2018). https://doi.org/10.1016/j.apsusc.2018.01.071
- S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider et al., QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. 32, 015901 (2019). https://doi.org/10.1088/1361-648X/ab4007
- J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak et al., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202
- F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
- J. Endres, D.A. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7(14), 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
- G. Zhang, Z.A. Lan, L. Lin, S. Lin, X. Wang, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7(5), 3062–3066 (2016). https://doi.org/10.1039/C5SC04572J
- K. Maślana, R.J. Kaleńczuk, B. Zielińska, E. Mijowska, Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials 13(6), 1349 (2020). https://doi.org/10.3390/ma13061349
- R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation. RSC Adv. 5(31), 24281–24292 (2015). https://doi.org/10.1039/C4RA15560B
- F. Raziq, J. He, J. Gan, M. Humayun, M.B. Faheem et al., Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-electron mechanism. Appl. Catal. B 270, 118870 (2020). https://doi.org/10.1016/j.apcatb.2020.118870
- Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49(1), 649–656 (2015). https://doi.org/10.1021/es5046309
- C. Wu, S. Xue, Z. Qin, M. Nazari, G. Yang et al., Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Appl. Catal. B 282, 119557 (2021). https://doi.org/10.1016/j.apcatb.2020.119557
- R. Malik, V.K. Tomer, N. Joshi, Au-TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 10(40), 34087–34097 (2018). https://doi.org/10.1021/acsami.8b08091
- X. Zhang, Q. Wu, Z. Du, Y. Zheng, Q. Li, Green synthesis of g-C3N4-Pt catalyst and application to photocatalytic hydrogen evolution from water splitting. Fuller. Nanotub. Car. N. 26(10), 688–695 (2018). https://doi.org/10.1080/1536383X.2018.1469006
- S.N.F.M. Nasir, H. Ullah, M. Ebadi, A.A. Tahir, J.S. Sagu et al., New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121(11), 6218–6228 (2017). https://doi.org/10.1021/acs.jpcc.7b01149
- F. Raziq, L. Sun, Y. Wang, X. Zhang, M. Humayun et al., Synthesis of large surface-area g-C3N4 comodified with MnOx and Au-TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 8(3), 1701580 (2018). https://doi.org/10.1002/aenm.201701580
- N. D, M. Humayun, D. Bhattacharyya, D. Fu, Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities. J. Photochem. Photobiol. A 396, 112515 (2020). https://doi.org/10.1016/j.jphotochem.2020.112515
- F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan et al., Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl. Catal. B 237, 1082–1090 (2018). https://doi.org/10.1016/j.apcatb.2018.06.009
- Q. Zhou, Y. Lin, K. Zhang, M. Li, D. Tang, Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens. Bioelectron. 101, 146–152 (2018). https://doi.org/10.1016/j.bios.2017.10.027
- R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang et al., Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese J. Catal. 42(1), 25–36 (2021). https://doi.org/10.1016/S1872-2067(20)63600-2
- N. Sun, Y. Qu, S. Chen, R. Yan, M. Humayun et al., Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ. Sci. Nano 4(5), 1147–1154 (2017). https://doi.org/10.1039/C7EN00188F
- M. Humayun, W. Pi, Y. Yuan, L. Shu, J. Cao et al., A rational design of g-C3N4-based ternary composite for highly efficient H2 generation and 2,4-DCP degradation. J. Colloid Interface Sci. 599, 484–496 (2021). https://doi.org/10.1016/j.jcis.2021.04.049
- W. Pi, M. Humayun, Y. Li, Y. Yuan, J. Cao et al., Properly aligned band structures in B-TiO2/MIL53(Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results. Int. J. Hydrog. Energy 46(42), 21912–21923 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.023
- P. Yu, X. Zhou, Y. Yan, Z. Li, T. Zheng, Enhanced visible-light-driven photocatalytic disinfection using AgBr-modified g-C3N4 composite and its mechanism. Colloids Surf. B 179, 170–179 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.074
- Y.H. Jin, C.M. Li, Y.F. Zhang, Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructure for methyl orange degradation. New Carbon Mater. 35(4), 394–400 (2020). https://doi.org/10.1016/S1872-5805(20)60496-6
References
S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 10(3), 2667–2678 (2018). https://doi.org/10.1021/acsami.7b18835
Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/D1EE00505G
M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan et al., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B 231, 23–33 (2018). https://doi.org/10.1016/j.apcatb.2018.02.060
M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang et al., Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 180, 219–226 (2016). https://doi.org/10.1016/j.apcatb.2015.06.035
Y. Huang, K. Wang, T. Guo, J. Li, X. Wu et al., Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B 277, 119232 (2020). https://doi.org/10.1016/j.apcatb.2020.119232
J. Pei, T. Wang, R. Sui, X. Zhang, D. Zhou et al., N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 14(5), 3019–3028 (2021). https://doi.org/10.1039/D0EE03947K
M.D. Garba, M. Usman, S. Khan, F. Shehzad, A. Galadima et al., CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 9(2), 104756 (2021). https://doi.org/10.1016/j.jece.2020.104756
M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir et al., Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022). https://doi.org/10.1016/j.jechem.2021.08.023
Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10(9), 1903879 (2020). https://doi.org/10.1002/aenm.201903879
G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138(19), 6292–6297 (2016). https://doi.org/10.1021/jacs.6b02692
M. Humayun, Y. Qu, F. Raziq, R. Yan, Z. Li et al., Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 50(24), 13600–13610 (2016). https://doi.org/10.1021/acs.est.6b04958
N. Tian, H. Huang, X. Du, F. Dong, Y. Zhang, Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 7(19), 11584–11612 (2019). https://doi.org/10.1039/C9TA01819K
J. Kosco, F. Moruzzi, B. Willner, I. McCulloch, Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Adv. Energy Mater. 10(39), 2001935 (2020). https://doi.org/10.1002/aenm.202001935
M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11(2), 86–102 (2018). https://doi.org/10.1080/17518253.2018.1440324
Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31(50), 1901997 (2019). https://doi.org/10.1002/adma.201901997
M. Humayun, H. Ullah, J. Cao, W. Pi, Y. Yuan et al., Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-scheme heterojunction. Nano-Micro Lett. 12, 7 (2020). https://doi.org/10.1007/s40820-019-0345-2
M. Humayun, H. Ullah, A.A. Tahir, A.R.B.M. Yusoff, M.A.M. Teridi et al., An overview of the recent progress in polymeric carbon nitride based photocatalysis. Chem. Record. 21(7), 1811–1844 (2021). https://doi.org/10.1002/tcr.202100067
M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan et al., Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J. Hazard. Mater. 364, 635–644 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.088
M. Humayun, Q. Fu, Z. Zheng, H. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A 568, 139–147 (2018). https://doi.org/10.1016/j.apcata.2018.10.007
F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu et al., Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
A. Zada, M. Humayun, F. Raziq, X. Zhang, Y. Qu et al., Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6(21), 1601190 (2016). https://doi.org/10.1002/aenm.201601190
S. Ali, M. Humayun, W. Pi, Y. Yuan, M. Wang et al., Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: insight mechanism. J. Hazard. Mater. 397, 122708 (2020). https://doi.org/10.1016/j.jhazmat.2020.122708
R. Shen, K. He, A. Zhang, N. Li, Y.H. Ng et al., In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B 291, 120104 (2021). https://doi.org/10.1016/j.apcatb.2021.120104
Z. Zhu, Z. Liu, X. Tang, K. Reeti, P. Huo et al., Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: insights by experiment and first-principles calculations. Catal. Sci. Technol. 11(5), 1725–1736 (2021). https://doi.org/10.1039/D0CY02382E
X. Huang, W. Gu, S. Hu, Y. Hu, L. Zhou et al., Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2. Catal. Sci. Technol. 10(11), 3694–3700 (2020). https://doi.org/10.1039/D0CY00457J
X. Dong, S. Zhang, H. Wu, Z. Kang, L. Wang, Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2. RSC Adv. 9(49), 28894–28901 (2019). https://doi.org/10.1039/C9RA04606B
J.Y. Tang, W.G. Zhou, R.T. Guo, C.Y. Huang, W.G. Pan, Enhancement of photocatalytic performance in CO2 reduction over Mg/g-C3N4 catalysts under visible light irradiation. Catal. Commun. 107, 92–95 (2018). https://doi.org/10.1016/j.catcom.2018.01.006
M.H. Darvishnejad, A. Reisi-Vanani, Multiple CO2 capture in pristine and Sr-decorated graphyne: A DFT-D3 and AIMD study. Comput. Mater. Sci. 176, 109539 (2020). https://doi.org/10.1016/j.commatsci.2020.109539
H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase, A. Kudo, Highly active NaTaO3-based photocatalysts for CO2 reduction to form CO using water as the electron donor. Chemsuschem 10(1), 112–118 (2017). https://doi.org/10.1002/cssc.201601360
S. Wan, M. Chen, M. Ou, Q. Zhong, Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation. J. CO2 Util. 33, 357–364 (2019). https://doi.org/10.1016/j.jcou.2019.06.024
X.A. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang et al., The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Appl. Catal. B 232, 69–76 (2018). https://doi.org/10.1016/j.apcatb.2018.03.054
M. Zhou, G. Dong, F. Yu, Y. Huang, The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B 256, 117825 (2019). https://doi.org/10.1016/j.apcatb.2019.117825
S. Liang, Y. Xia, S. Zhu, S. Zheng, Y. He et al., Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 358, 304–312 (2015). https://doi.org/10.1016/j.apsusc.2015.08.035
M. Yaseen, M. Humayun, A. Khan, M. Usman, H. Ullah et al., Preparation, functionalization, modification, and applications of nanostructured gold: a critical review. Energies 14(5), 1278 (2021). https://doi.org/10.3390/en14051278
H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 439, 552–559 (2018). https://doi.org/10.1016/j.apsusc.2018.01.071
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider et al., QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. 32, 015901 (2019). https://doi.org/10.1088/1361-648X/ab4007
J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak et al., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202
F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
J. Endres, D.A. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7(14), 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
G. Zhang, Z.A. Lan, L. Lin, S. Lin, X. Wang, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7(5), 3062–3066 (2016). https://doi.org/10.1039/C5SC04572J
K. Maślana, R.J. Kaleńczuk, B. Zielińska, E. Mijowska, Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials 13(6), 1349 (2020). https://doi.org/10.3390/ma13061349
R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation. RSC Adv. 5(31), 24281–24292 (2015). https://doi.org/10.1039/C4RA15560B
F. Raziq, J. He, J. Gan, M. Humayun, M.B. Faheem et al., Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-electron mechanism. Appl. Catal. B 270, 118870 (2020). https://doi.org/10.1016/j.apcatb.2020.118870
Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49(1), 649–656 (2015). https://doi.org/10.1021/es5046309
C. Wu, S. Xue, Z. Qin, M. Nazari, G. Yang et al., Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Appl. Catal. B 282, 119557 (2021). https://doi.org/10.1016/j.apcatb.2020.119557
R. Malik, V.K. Tomer, N. Joshi, Au-TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 10(40), 34087–34097 (2018). https://doi.org/10.1021/acsami.8b08091
X. Zhang, Q. Wu, Z. Du, Y. Zheng, Q. Li, Green synthesis of g-C3N4-Pt catalyst and application to photocatalytic hydrogen evolution from water splitting. Fuller. Nanotub. Car. N. 26(10), 688–695 (2018). https://doi.org/10.1080/1536383X.2018.1469006
S.N.F.M. Nasir, H. Ullah, M. Ebadi, A.A. Tahir, J.S. Sagu et al., New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121(11), 6218–6228 (2017). https://doi.org/10.1021/acs.jpcc.7b01149
F. Raziq, L. Sun, Y. Wang, X. Zhang, M. Humayun et al., Synthesis of large surface-area g-C3N4 comodified with MnOx and Au-TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 8(3), 1701580 (2018). https://doi.org/10.1002/aenm.201701580
N. D, M. Humayun, D. Bhattacharyya, D. Fu, Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities. J. Photochem. Photobiol. A 396, 112515 (2020). https://doi.org/10.1016/j.jphotochem.2020.112515
F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan et al., Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl. Catal. B 237, 1082–1090 (2018). https://doi.org/10.1016/j.apcatb.2018.06.009
Q. Zhou, Y. Lin, K. Zhang, M. Li, D. Tang, Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens. Bioelectron. 101, 146–152 (2018). https://doi.org/10.1016/j.bios.2017.10.027
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang et al., Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese J. Catal. 42(1), 25–36 (2021). https://doi.org/10.1016/S1872-2067(20)63600-2
N. Sun, Y. Qu, S. Chen, R. Yan, M. Humayun et al., Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ. Sci. Nano 4(5), 1147–1154 (2017). https://doi.org/10.1039/C7EN00188F
M. Humayun, W. Pi, Y. Yuan, L. Shu, J. Cao et al., A rational design of g-C3N4-based ternary composite for highly efficient H2 generation and 2,4-DCP degradation. J. Colloid Interface Sci. 599, 484–496 (2021). https://doi.org/10.1016/j.jcis.2021.04.049
W. Pi, M. Humayun, Y. Li, Y. Yuan, J. Cao et al., Properly aligned band structures in B-TiO2/MIL53(Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results. Int. J. Hydrog. Energy 46(42), 21912–21923 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.023
P. Yu, X. Zhou, Y. Yan, Z. Li, T. Zheng, Enhanced visible-light-driven photocatalytic disinfection using AgBr-modified g-C3N4 composite and its mechanism. Colloids Surf. B 179, 170–179 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.074
Y.H. Jin, C.M. Li, Y.F. Zhang, Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructure for methyl orange degradation. New Carbon Mater. 35(4), 394–400 (2020). https://doi.org/10.1016/S1872-5805(20)60496-6