Experimental and DFT Studies of Au Deposition Over WO3/g-C3N4 Z-Scheme Heterojunction
Corresponding Author: Wei Luo
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 7
Abstract
A typical Z-scheme system is composed of two photocatalysts which generate two sets of charge carriers and split water into H2 and O2 at different locations. Scientists are struggling to enhance the efficiencies of these systems by maximizing their light absorption, engineering more stable redox couples, and discovering new O2 and H2 evolutions co-catalysts. In this work, Au decorated WO3/g-C3N4 Z-scheme nanocomposites are fabricated via wet-chemical and photo-deposition methods. The nanocomposites are utilized in photocatalysis for H2 production and 2,4-dichlorophenol (2,4-DCP) degradation. It is investigated that the optimized 4Au/6% WO3/CN nanocomposite is highly efficient for production of 69.9 and 307.3 µmol h−1 g−1 H2 gas, respectively, under visible-light (λ > 420 nm) and UV–visible illumination. Further, the fabricated 4Au/6% WO3/CN nanocomposite is significant (i.e., 100% degradation in 2 h) for 2,4-DCP degradation under visible light and highly stable in photocatalysis. A significant 4.17% quantum efficiency is recorded for H2 production at wavelength 420 nm. This enhanced performance is attributed to the improved charge separation and the surface plasmon resonance effect of Au nanoparticles. Solid-state density functional theory simulations are performed to countercheck and validate our experimental data. Positive surface formation energy, high charge transfer, and strong non-bonding interaction via electrostatic forces confirm the stability of 4Au/6% WO3/CN interface.
Highlights
1 Experimental and density functional theory studies were performed for Au decorated WO3/g-C3N4 Z-scheme heterojunction.
2 The amount optimized 4Au/6WO3/CN composite exhibited high performance for H2 evolution and 2,4-DCP degradation due to the improved charge separation in WO3/g-C3N4 composite and the surface plasmon resonance ct of Au.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.F. Zhao, G.I.N. Waterhouse, G.B. Chen, X.Y. Xiong, L.Z. Wu, C.H. Tung, T. Zhang, Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019). https://doi.org/10.1039/C8CS00607E
- I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). https://doi.org/10.1039/C8EE01157E
- C. Marchal, T. Cottineau, M.G. Méndez-Medrano, C. Colbeau-Justin, V. Caps, V. Keller, Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 8, 1702142 (2018). https://doi.org/10.1002/aenm.201702142
- X.F. Liu, Z.P. Xing, H. Zhang, W.M. Wang, Y. Zhang, Z.Z. Li, X.Y. Wu, X.J. Yu, W. Zhou, Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem 9, 1118–1124 (2016). https://doi.org/10.1002/cssc.201600170
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- S. Hoang, P.X. Gao, Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. Adv. Energy Mater. 6, 1600683 (2016). https://doi.org/10.1002/aenm.201600683
- M. Humayun, Q.Y. Fu, Z.P. Zheng, H.L. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A 568, 139–147 (2018). https://doi.org/10.1016/j.apcata.2018.10.007
- A. Kudo, I. Mikami, Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution. J. Chem. Soc. Faraday Trans. 94, 2929–2932 (1998). https://doi.org/10.1039/a805563g
- H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira, Y. Inoue, Photocatalytic activity of the RuO2-dispersed composite p-block metal oxide LiInGeO4 with d 10–d 10 configuration for water decomposition. J. Phys. Chem. B 109, 22995–23000 (2005). https://doi.org/10.1021/jp0544686
- M. Humayun, Y. Qu, F. Raziq, R. Yan, Z.J. Li, X.L. Zhang, L.Q. Jing, Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 50, 13600–13610 (2016). https://doi.org/10.1021/acs.est.6b04958
- M. Valenti, D. Dolat, G. Biskos, A. Schmidt-Ott, W.A. Smith, Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization. J. Phys. Chem. C 119, 2096–2104 (2015). https://doi.org/10.1021/jp506349t
- S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F.X. Zhang, K. Domen, C. Li, Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 54, 8498–8501 (2015). https://doi.org/10.1002/anie.201502686
- Y.S. Zhou, G. Chen, Y. Liu, F. He, Surface natrotantite phase induced efficient charge carrier separation and highly active surface of TaON for superior enhanced photocatalytic performance. Adv. Mater. Interfaces 3, 1600429 (2016). https://doi.org/10.1002/admi.201600429
- S.J. Peng, L.L. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 7, 2212–2220 (2014). https://doi.org/10.1002/cssc.201402161
- J.P. Shi, R. Tong, X.B. Zhou, Y. Gong, Z.P. Zhang, Q.Q. Ji, Y. Zhang, Q.Y. Fang, L. Gu, X. Wang, Z.F. Liu, Y.F. Zhang, Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 28, 10664–10672 (2016). https://doi.org/10.1002/adma.201603174
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- F. Raziq, Y. Qu, M. Humayun, A. Zada, H.T. Yu, L.Q. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
- M. Humayun, Z.W. Hu, A. Khan, W. Cheng, Y. Yuan, Z.P. Zheng, Q.Y. Fu, W. Luo, Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J. Hazard. Mater. 364, 635–644 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.088
- S.D. Sun, S.H. Liang, Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9, 10544–10578 (2017). https://doi.org/10.1039/C7NR03656F
- Y.J. Zhou, L.X. Zhang, J.J. Liu, X.Q. Fan, B.Z. Wang, M. Wang, W.C. Ren, J. Wang, M.L. Li, J.L. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3, 3862–3867 (2015). https://doi.org/10.1039/C4TA05292G
- X.B. Wei, C.L. Shao, X.H. Li, N. Lu, K.X. Wang, Z.Y. Zhang, Y.C. Liu, Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. Nanoscale 8, 11034–11043 (2016). https://doi.org/10.1039/C6NR01491G
- F. Raziq, L.Q. Sun, Y.Y. Wang, X.L. Zhang, M. Humayun et al., Synthesis of large surface-area g-C3N4 comodified with MnOx and Au–TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 8, 1701580 (2018). https://doi.org/10.1002/aenm.201701580
- F. Raziq, M. Humayun, A. Ali, T.T. Wang, A. Khan et al., Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au–TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl. Catal. B 237, 1082–1090 (2018). https://doi.org/10.1016/j.apcatb.2018.06.009
- F. Raziq, Y. Qu, X.L. Zhang, M. Humayun, J. Wu et al., Enhanced cocatalyst-free visible-light activities for photocatalytic fuel production of g-C3N4 by trapping holes and transferring electrons. J. Phys. Chem. C 120, 98–107 (2016). https://doi.org/10.1021/acs.jpcc.5b10313
- Z. Wei, M.L. Liu, Z.J. Zhang, W.Q. Yao, H.W. Tan, Y.F. Zhu, Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581–2589 (2018). https://doi.org/10.1039/C8EE01316K
- C.H. Wang, D.D. Qin, D.L. Shan, J. Gu, Y. Yan et al., Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation. Phys. Chem. Chem. Phys. 19, 4507–4515 (2017). https://doi.org/10.1039/C6CP08066A
- K. Xu, J. Feng, Superior photocatalytic performance of LaFeO3/gC3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 7, 45369–45376 (2017). https://doi.org/10.1039/C7RA08715B
- Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 4, 1806–1818 (2016). https://doi.org/10.1039/C5TA09919F
- S. Acharya, S. Mansingh, K.M. Parida, The enhanced photocatalytic activity of g-C3N4–LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg. Chem. Front. 4, 1022–1032 (2017). https://doi.org/10.1039/C7QI00115K
- R.Q. Ye, H.B. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl. Mater. Interfaces. 8, 13879–13889 (2016). https://doi.org/10.1021/acsami.6b01850
- J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018). https://doi.org/10.1002/aenm.201701503
- Y.S. Fu, T. Huang, B.Q. Jia, J.W. Zhu, X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl. Catal. B 202, 430–437 (2017). https://doi.org/10.1016/j.apcatb.2016.09.051
- Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7, 13723–13733 (2015). https://doi.org/10.1039/C5NR03260A
- S.W. Cao, J. Jiang, B.C. Zhu, J.G. Yu, Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 18, 19457–19463 (2016). https://doi.org/10.1039/C6CP02832B
- Z.W. Zhao, Y.J. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015). https://doi.org/10.1039/C4NR03008G
- W.B. Li, C. Feng, S.Y. Dai, J.G. Yue, F.X. Hu, H. Hou, Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B 168–169, 465–471 (2015). https://doi.org/10.1016/j.apcatb.2015.01.012
- A. Zada, M. Humayun, F. Raziq, X.L. Zhang, Y. Qu, L.L. Bai, C.L. Qin, L.Q. Jing, H.G. Fu, Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6, 1601190 (2016). https://doi.org/10.1002/aenm.201601190
- X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 405, 359–371 (2017). https://doi.org/10.1016/j.apsusc.2017.02.025
- L.F. Cui, X. Ding, Y.G. Wang, H.C. Shi, L.H. Huang, Y.H. Zuo, S.F. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 391, 202–210 (2017). https://doi.org/10.1016/j.apsusc.2016.07.055
- AtomistixTool, QuantumATK A/S. Version 3 (2019).www.quantumatk.com. Accessed Nov 2018
- VirtualNanoLab, QuantumATK A/S. Version 3 (2019). www.quantumatk.com. Accessed Nov 2018
- C. Ramana, S. Utsunomiya, R. Ewing, C. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 10430–10435 (2006). https://doi.org/10.1021/jp056664i
- F. Wang, C.D. Valentin, G. Pacchioni, Electronic and structural properties of WO3: a systematic hybrid DFT study. J. Phys. Chem. C 115, 8345–8353 (2011). https://doi.org/10.1021/jp201057m
- F. Wang, C.D. Valentin, G. Pacchioni, DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 116, 10672–10679 (2011). https://doi.org/10.1021/jp302210y
- J.E. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak et al., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J. Endres, A.D. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
- X. Chen, H.L. Chen, J. Guan, J.M. Zhen, Z.J. Sun, P.W. Du, Y.L. Lu, S.F. Yang, A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production. Nanoscale 9, 5615–5623 (2017). https://doi.org/10.1039/C7NR01237C
- J.L. Yuan, J.Q. Wen, Y.M. Zhong, X. Li, Y.P. Fang, S. Zhang, W. Liu, Enhanced photocatalytic H2 evolution over noblemetal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 3, 18244–18255 (2015). https://doi.org/10.1039/C5TA04573H
- H.H. Gong, Y. Cao, Y.F. Zhang, Y. Zhang, K.W. Liu, H.M. Cao, H.J. Yan, The synergetic effect of dual co-catalysts on the photocatalytic activity of square-like WO3 with different exposed facets. RSC Adv. 7, 19019–19025 (2017). https://doi.org/10.1039/C7RA01149K
- L.Y. Huang, H. Xu, Y.P. Li, H.M. Li, X.N. Cheng, J.X. Xia, Y.G. Xu, G.B. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 42, 8606–8616 (2013). https://doi.org/10.1039/c3dt00115f
- K.H. Katsumata, Y. Tachi, T. Suzukib, S. Kaneco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Adv. 4, 21405–21409 (2014). https://doi.org/10.1039/C4RA02511C
- W.L. Yu, J.X. Chen, T.T. Shang, L.F. Chen, L. Gu, T.Y. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B 219, 693–704 (2017). https://doi.org/10.1016/j.apcatb.2017.08.018
- S. Tonda, S. Kumar, V. Shanker, Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C3N4 nanosheets under direct sunlight irradiation. Mater. Res. Bull. 75, 51–58 (2016). https://doi.org/10.1016/j.materresbull.2015.11.011
- X.B. Qian, W. Peng, J.H. Huang, Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light. Mater. Res. Bull. 102, 362–368 (2018). https://doi.org/10.1016/j.materresbull.2018.02.056
- X.D. Jiang, S.F. Lai, W.C. Xu, J.Z. Fang, X. Chen et al., Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process. J. Alloys Compd. 809, 151804 (2019). https://doi.org/10.1016/j.jallcom.2019.151804
- Y.P. Zang, L.P. Li, Y. Zuo, H.F. Lin, G.S. Li, X.F. Guan, Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light. RSC Adv. 3, 13646–13650 (2013). https://doi.org/10.1039/c3ra41982g
- K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, Facile synthesis of WO3 with reduced particle size on zeolite and enhanced photocatalytic activity. RSC Adv. 4, 21221–21229 (2014). https://doi.org/10.1039/C4RA01376J
- J. Meng, J.Y. Pei, Z.F. He, S.Y. Wu, Q.Y. Lin, X. Wei, J.X. Li, Z. Zhang, Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation. RSC Adv. 7, 24097–24104 (2017). https://doi.org/10.1039/C7RA02297B
- Y.M. Zhao, M. Ikram, J.Z. Wang, Z. Liu, L.J. Du et al., Ultrafast NH3 sensing properties of WO3@CoWO4 heterojunction nanofibres at room temperature. Aust. J. Chem. 71, 87 (2017). https://doi.org/10.1071/CH17354
- J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 243, 556–565 (2019). https://doi.org/10.1016/j.apcatb.2018.11.011
- H.Y. Aziz, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J. Mol. Catal. A 415, 2496–2506 (2016). https://doi.org/10.1016/j.apt.2016.09.025
- S.N.F.M. Nasir, H. Ullah, M. Ebadi, A.A. Tahir, J.S. Sagu, M.A. Mat Teridi, New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121, 6218–6228 (2017). https://doi.org/10.1021/acs.jpcc.7b01149
- J. Safaei, H. Ullah, N.A. Mohamed, M.F.M. Noh, M.F. Soh et al., Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). https://doi.org/10.1016/j.apcatb.2018.04.056
- X.L. Zhang, H.Q. Cui, M. Humayun, Y. Qu, N.Y. Fan, X.J. Sun, L.Q. Jing, Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Sci. Rep. 6, 21430 (2016). https://doi.org/10.1038/srep21430
- M. Humayun, Z.J. Li, L.Q. Sun, X.L. Zhang, F. Raziq, A. Zada, Y. Qu, L.Q. Jing, Coupling of nanocrystalline anatase TiO2 to porous nanosized LaFeO3 for efficient visible-light photocatalytic degradation of pollutants. Nanomaterials 6, 22 (2016). https://doi.org/10.3390/nano6010022
- M.B. Tahir, M. Sagir, K. Shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3–TiO2@g-C3N4 composite. J. Hazard. Mater. 363, 205–213 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.055
- M. Bilal Tahira, M. Sagir, Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 209, 94–102 (2019). https://doi.org/10.1016/j.seppur.2018.07.029
- L.M. He, L.Q. Jing, Y.B. Luan, L. Wang, H.G. Fu, Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catal. 4, 990–998 (2014). https://doi.org/10.1021/cs401122e
References
Y.F. Zhao, G.I.N. Waterhouse, G.B. Chen, X.Y. Xiong, L.Z. Wu, C.H. Tung, T. Zhang, Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019). https://doi.org/10.1039/C8CS00607E
I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). https://doi.org/10.1039/C8EE01157E
C. Marchal, T. Cottineau, M.G. Méndez-Medrano, C. Colbeau-Justin, V. Caps, V. Keller, Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 8, 1702142 (2018). https://doi.org/10.1002/aenm.201702142
X.F. Liu, Z.P. Xing, H. Zhang, W.M. Wang, Y. Zhang, Z.Z. Li, X.Y. Wu, X.J. Yu, W. Zhou, Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem 9, 1118–1124 (2016). https://doi.org/10.1002/cssc.201600170
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
S. Hoang, P.X. Gao, Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. Adv. Energy Mater. 6, 1600683 (2016). https://doi.org/10.1002/aenm.201600683
M. Humayun, Q.Y. Fu, Z.P. Zheng, H.L. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A 568, 139–147 (2018). https://doi.org/10.1016/j.apcata.2018.10.007
A. Kudo, I. Mikami, Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution. J. Chem. Soc. Faraday Trans. 94, 2929–2932 (1998). https://doi.org/10.1039/a805563g
H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira, Y. Inoue, Photocatalytic activity of the RuO2-dispersed composite p-block metal oxide LiInGeO4 with d 10–d 10 configuration for water decomposition. J. Phys. Chem. B 109, 22995–23000 (2005). https://doi.org/10.1021/jp0544686
M. Humayun, Y. Qu, F. Raziq, R. Yan, Z.J. Li, X.L. Zhang, L.Q. Jing, Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 50, 13600–13610 (2016). https://doi.org/10.1021/acs.est.6b04958
M. Valenti, D. Dolat, G. Biskos, A. Schmidt-Ott, W.A. Smith, Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization. J. Phys. Chem. C 119, 2096–2104 (2015). https://doi.org/10.1021/jp506349t
S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F.X. Zhang, K. Domen, C. Li, Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 54, 8498–8501 (2015). https://doi.org/10.1002/anie.201502686
Y.S. Zhou, G. Chen, Y. Liu, F. He, Surface natrotantite phase induced efficient charge carrier separation and highly active surface of TaON for superior enhanced photocatalytic performance. Adv. Mater. Interfaces 3, 1600429 (2016). https://doi.org/10.1002/admi.201600429
S.J. Peng, L.L. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 7, 2212–2220 (2014). https://doi.org/10.1002/cssc.201402161
J.P. Shi, R. Tong, X.B. Zhou, Y. Gong, Z.P. Zhang, Q.Q. Ji, Y. Zhang, Q.Y. Fang, L. Gu, X. Wang, Z.F. Liu, Y.F. Zhang, Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 28, 10664–10672 (2016). https://doi.org/10.1002/adma.201603174
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
F. Raziq, Y. Qu, M. Humayun, A. Zada, H.T. Yu, L.Q. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
M. Humayun, Z.W. Hu, A. Khan, W. Cheng, Y. Yuan, Z.P. Zheng, Q.Y. Fu, W. Luo, Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J. Hazard. Mater. 364, 635–644 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.088
S.D. Sun, S.H. Liang, Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9, 10544–10578 (2017). https://doi.org/10.1039/C7NR03656F
Y.J. Zhou, L.X. Zhang, J.J. Liu, X.Q. Fan, B.Z. Wang, M. Wang, W.C. Ren, J. Wang, M.L. Li, J.L. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3, 3862–3867 (2015). https://doi.org/10.1039/C4TA05292G
X.B. Wei, C.L. Shao, X.H. Li, N. Lu, K.X. Wang, Z.Y. Zhang, Y.C. Liu, Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. Nanoscale 8, 11034–11043 (2016). https://doi.org/10.1039/C6NR01491G
F. Raziq, L.Q. Sun, Y.Y. Wang, X.L. Zhang, M. Humayun et al., Synthesis of large surface-area g-C3N4 comodified with MnOx and Au–TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 8, 1701580 (2018). https://doi.org/10.1002/aenm.201701580
F. Raziq, M. Humayun, A. Ali, T.T. Wang, A. Khan et al., Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au–TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl. Catal. B 237, 1082–1090 (2018). https://doi.org/10.1016/j.apcatb.2018.06.009
F. Raziq, Y. Qu, X.L. Zhang, M. Humayun, J. Wu et al., Enhanced cocatalyst-free visible-light activities for photocatalytic fuel production of g-C3N4 by trapping holes and transferring electrons. J. Phys. Chem. C 120, 98–107 (2016). https://doi.org/10.1021/acs.jpcc.5b10313
Z. Wei, M.L. Liu, Z.J. Zhang, W.Q. Yao, H.W. Tan, Y.F. Zhu, Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581–2589 (2018). https://doi.org/10.1039/C8EE01316K
C.H. Wang, D.D. Qin, D.L. Shan, J. Gu, Y. Yan et al., Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation. Phys. Chem. Chem. Phys. 19, 4507–4515 (2017). https://doi.org/10.1039/C6CP08066A
K. Xu, J. Feng, Superior photocatalytic performance of LaFeO3/gC3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 7, 45369–45376 (2017). https://doi.org/10.1039/C7RA08715B
Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 4, 1806–1818 (2016). https://doi.org/10.1039/C5TA09919F
S. Acharya, S. Mansingh, K.M. Parida, The enhanced photocatalytic activity of g-C3N4–LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg. Chem. Front. 4, 1022–1032 (2017). https://doi.org/10.1039/C7QI00115K
R.Q. Ye, H.B. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl. Mater. Interfaces. 8, 13879–13889 (2016). https://doi.org/10.1021/acsami.6b01850
J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018). https://doi.org/10.1002/aenm.201701503
Y.S. Fu, T. Huang, B.Q. Jia, J.W. Zhu, X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl. Catal. B 202, 430–437 (2017). https://doi.org/10.1016/j.apcatb.2016.09.051
Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7, 13723–13733 (2015). https://doi.org/10.1039/C5NR03260A
S.W. Cao, J. Jiang, B.C. Zhu, J.G. Yu, Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 18, 19457–19463 (2016). https://doi.org/10.1039/C6CP02832B
Z.W. Zhao, Y.J. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015). https://doi.org/10.1039/C4NR03008G
W.B. Li, C. Feng, S.Y. Dai, J.G. Yue, F.X. Hu, H. Hou, Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B 168–169, 465–471 (2015). https://doi.org/10.1016/j.apcatb.2015.01.012
A. Zada, M. Humayun, F. Raziq, X.L. Zhang, Y. Qu, L.L. Bai, C.L. Qin, L.Q. Jing, H.G. Fu, Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6, 1601190 (2016). https://doi.org/10.1002/aenm.201601190
X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 405, 359–371 (2017). https://doi.org/10.1016/j.apsusc.2017.02.025
L.F. Cui, X. Ding, Y.G. Wang, H.C. Shi, L.H. Huang, Y.H. Zuo, S.F. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 391, 202–210 (2017). https://doi.org/10.1016/j.apsusc.2016.07.055
AtomistixTool, QuantumATK A/S. Version 3 (2019).www.quantumatk.com. Accessed Nov 2018
VirtualNanoLab, QuantumATK A/S. Version 3 (2019). www.quantumatk.com. Accessed Nov 2018
C. Ramana, S. Utsunomiya, R. Ewing, C. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 10430–10435 (2006). https://doi.org/10.1021/jp056664i
F. Wang, C.D. Valentin, G. Pacchioni, Electronic and structural properties of WO3: a systematic hybrid DFT study. J. Phys. Chem. C 115, 8345–8353 (2011). https://doi.org/10.1021/jp201057m
F. Wang, C.D. Valentin, G. Pacchioni, DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 116, 10672–10679 (2011). https://doi.org/10.1021/jp302210y
J.E. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak et al., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J. Endres, A.D. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
X. Chen, H.L. Chen, J. Guan, J.M. Zhen, Z.J. Sun, P.W. Du, Y.L. Lu, S.F. Yang, A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production. Nanoscale 9, 5615–5623 (2017). https://doi.org/10.1039/C7NR01237C
J.L. Yuan, J.Q. Wen, Y.M. Zhong, X. Li, Y.P. Fang, S. Zhang, W. Liu, Enhanced photocatalytic H2 evolution over noblemetal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 3, 18244–18255 (2015). https://doi.org/10.1039/C5TA04573H
H.H. Gong, Y. Cao, Y.F. Zhang, Y. Zhang, K.W. Liu, H.M. Cao, H.J. Yan, The synergetic effect of dual co-catalysts on the photocatalytic activity of square-like WO3 with different exposed facets. RSC Adv. 7, 19019–19025 (2017). https://doi.org/10.1039/C7RA01149K
L.Y. Huang, H. Xu, Y.P. Li, H.M. Li, X.N. Cheng, J.X. Xia, Y.G. Xu, G.B. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 42, 8606–8616 (2013). https://doi.org/10.1039/c3dt00115f
K.H. Katsumata, Y. Tachi, T. Suzukib, S. Kaneco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Adv. 4, 21405–21409 (2014). https://doi.org/10.1039/C4RA02511C
W.L. Yu, J.X. Chen, T.T. Shang, L.F. Chen, L. Gu, T.Y. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B 219, 693–704 (2017). https://doi.org/10.1016/j.apcatb.2017.08.018
S. Tonda, S. Kumar, V. Shanker, Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C3N4 nanosheets under direct sunlight irradiation. Mater. Res. Bull. 75, 51–58 (2016). https://doi.org/10.1016/j.materresbull.2015.11.011
X.B. Qian, W. Peng, J.H. Huang, Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light. Mater. Res. Bull. 102, 362–368 (2018). https://doi.org/10.1016/j.materresbull.2018.02.056
X.D. Jiang, S.F. Lai, W.C. Xu, J.Z. Fang, X. Chen et al., Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process. J. Alloys Compd. 809, 151804 (2019). https://doi.org/10.1016/j.jallcom.2019.151804
Y.P. Zang, L.P. Li, Y. Zuo, H.F. Lin, G.S. Li, X.F. Guan, Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light. RSC Adv. 3, 13646–13650 (2013). https://doi.org/10.1039/c3ra41982g
K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, Facile synthesis of WO3 with reduced particle size on zeolite and enhanced photocatalytic activity. RSC Adv. 4, 21221–21229 (2014). https://doi.org/10.1039/C4RA01376J
J. Meng, J.Y. Pei, Z.F. He, S.Y. Wu, Q.Y. Lin, X. Wei, J.X. Li, Z. Zhang, Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation. RSC Adv. 7, 24097–24104 (2017). https://doi.org/10.1039/C7RA02297B
Y.M. Zhao, M. Ikram, J.Z. Wang, Z. Liu, L.J. Du et al., Ultrafast NH3 sensing properties of WO3@CoWO4 heterojunction nanofibres at room temperature. Aust. J. Chem. 71, 87 (2017). https://doi.org/10.1071/CH17354
J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 243, 556–565 (2019). https://doi.org/10.1016/j.apcatb.2018.11.011
H.Y. Aziz, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J. Mol. Catal. A 415, 2496–2506 (2016). https://doi.org/10.1016/j.apt.2016.09.025
S.N.F.M. Nasir, H. Ullah, M. Ebadi, A.A. Tahir, J.S. Sagu, M.A. Mat Teridi, New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121, 6218–6228 (2017). https://doi.org/10.1021/acs.jpcc.7b01149
J. Safaei, H. Ullah, N.A. Mohamed, M.F.M. Noh, M.F. Soh et al., Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). https://doi.org/10.1016/j.apcatb.2018.04.056
X.L. Zhang, H.Q. Cui, M. Humayun, Y. Qu, N.Y. Fan, X.J. Sun, L.Q. Jing, Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Sci. Rep. 6, 21430 (2016). https://doi.org/10.1038/srep21430
M. Humayun, Z.J. Li, L.Q. Sun, X.L. Zhang, F. Raziq, A. Zada, Y. Qu, L.Q. Jing, Coupling of nanocrystalline anatase TiO2 to porous nanosized LaFeO3 for efficient visible-light photocatalytic degradation of pollutants. Nanomaterials 6, 22 (2016). https://doi.org/10.3390/nano6010022
M.B. Tahir, M. Sagir, K. Shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3–TiO2@g-C3N4 composite. J. Hazard. Mater. 363, 205–213 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.055
M. Bilal Tahira, M. Sagir, Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 209, 94–102 (2019). https://doi.org/10.1016/j.seppur.2018.07.029
L.M. He, L.Q. Jing, Y.B. Luan, L. Wang, H.G. Fu, Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catal. 4, 990–998 (2014). https://doi.org/10.1021/cs401122e