Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment
Corresponding Author: Fangzhi Mou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 141
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Highlights:
1 Responsive photonic nanorobots (RPNRs) simultaneously exhibit energetic magnetically-propelled swarming motions, bright stimuli-responsive structural colors, and photothermal conversion.
2 The swarming RPNRs can actively navigate in complex environments and collectively map out local physicochemical conditions (e.g., pH, temperature, or glucose concentration) on the fly via their bright responsive structural colors.
3 The swarming RPNRs can visualize an unknown target (e.g., tumor lesion) via motile-targeting mapping and then guide the external NIR light to initiate localized photothermal treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Lu, A.A. Aimetti, R. Langer, Z. Gu, Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2016). https://doi.org/10.1038/natrevmats.2016.75
- Z. Yang, J. Cao, Y. He, J.H. Yang, T. Kim et al., Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 43(13), 4563–4601 (2014). https://doi.org/10.1039/c4cs00051j
- A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
- S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
- P.M. Gullino, S.H. Clark, F.H. Grantham, The interstitial fluid of solid tumors. Cancer Res. 24(5), 780–797 (1964)
- I.F. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49(16), 4373–4384 (1989)
- J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008). https://doi.org/10.1038/nmat2162
- P.J. Vikesland, Nanosensors for water quality monitoring. Nat. Nanotechnol. 13(8), 651–660 (2018). https://doi.org/10.1038/s41565-018-0209-9
- F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005). https://doi.org/10.1016/S1369-7021(05)00791-1
- S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, I.-D. Kim, Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50(7), 1587–1596 (2017). https://doi.org/10.1021/acs.accounts.7b00047
- Z. Farka, T. Juřík, D. Kovář, L. Trnková, P. Skládal, Nanop-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 117(15), 9973–10042 (2017). https://doi.org/10.1021/acs.chemrev.7b00037
- B.M. Cullum, T. Vo-Dinh, The development of optical nanosensors for biological measurements. Trends Biotechnol. 18(9), 388–393 (2000). https://doi.org/10.1016/s0167-7799(00)01477-3
- M. Li, Q. Lyu, B. Peng, X. Chen, L. Zhang et al., Bioinspired colloidal photonic composites: fabrications and emerging applications. Adv. Mater. 34(52), 2110488 (2022). https://doi.org/10.1002/adma.202110488
- D. Men, D. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bull. 61(17), 1358–1371 (2016). https://doi.org/10.1007/s11434-016-1134-7
- J. Wang, P.W.H. Pinkse, L.I. Segerink, J.C.T. Eijkel, Bottom-up assembled photonic crystals for structure-enabled label-free sensing. ACS Nano 15(6), 9299–9327 (2021). https://doi.org/10.1021/acsnano.1c02495
- G. Li, W. Luo, Z. Che, Y. Pu, P. Deng et al., Lipophilic magnetic photonic nanochains for practical anticounterfeiting. Small 18(21), 2200662 (2022). https://doi.org/10.1002/smll.202200662
- Y. Liu, J. Guan, Adaptive camouflage achieved by an artificial chameleon robot. Matter 5(8), 2397–2399 (2022). https://doi.org/10.1016/j.matt.2022.04.024
- W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma et al., Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 20(2), 803–811 (2020). https://doi.org/10.1021/acs.nanolett.7b04218
- Y. Liu, Q. Fan, G. Zhu, G. Shi, H. Ma et al., A dual responsive photonic liquid for independent modulation of color brightness and hue. Mater. Horiz. 8(7), 2032–2040 (2021). https://doi.org/10.1039/d1mh00556a
- J. Cai, W. Luo, J. Pan, G. Li, Y. Pu et al., Glucose-sensing photonic nanochain probes with color change in seconds. Adv. Sci. 9(9), 2105239 (2022). https://doi.org/10.1002/advs.202105239
- Z.W. Li, Y.D. Yin, Stimuli-responsive optical nanomaterials. Adv. Mater. 31(15), 1807061 (2019). https://doi.org/10.1002/adma.201807061
- C. Shao, Y. Yu, Q. Fan, X. Wang, F. Ye, Polyurethane-polypyrrole hybrid structural color films for dual-signal mechanics sensing. Smart Med. 1(1), 20008 (2022). https://doi.org/10.1002/SMMD.20220008
- J. Wang, D. Huang, H. Yu, H. Ren, L. Shang, Biohybrid response microps decorated with trained-mscs for acute liver failure recovery. Adv. Healthc. Mater. 11(21), 2201085 (2022). https://doi.org/10.1002/adhm.202201085
- H.J. Zhou, C.C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
- B.E.-F. de Avila, P. Angsantikul, J.X. Li, M.A. Lopez-Ramirez, D.E. Ramirez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
- S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: the road ahead. Adv. Drug Deliver. Rev. 138, 41–55 (2019). https://doi.org/10.1016/j.addr.2018.09.005
- J. Li, B.E.-F. de Avila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
- S. Palagi, P. Fischer, Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124 (2018). https://doi.org/10.1038/s41578-018-0016-9
- B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
- F. Soto, J. Wang, R. Ahmed, U. Demirci, Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 2002203 (2020). https://doi.org/10.1002/advs.202002203
- W. Chen, H. Zhou, B. Zhang, Q. Cao, B. Wang et al., Recent progress of micro/nanorobots for cell delivery and manipulation. Adv. Funct. Mater. 32(18), 2110625 (2022). https://doi.org/10.1002/adfm.202110625
- L. Wang, X. Hao, Z. Gao, Z. Yang, Y. Long et al., Artificial nanomotors: fabrication, locomotion characterization, motion manipulation, and biomedical applications. Interdiscip. Mater. 1(2), 256–280 (2022). https://doi.org/10.1002/idm2.12021
- F. Mou, Q. Xie, J. Liu, S. Che, L. Bahmane et al., Zno-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nwab066 (2021). https://doi.org/10.1093/nsr/nwab066
- C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33(6), 2000512 (2021). https://doi.org/10.1002/adma.202000512
- L. Cai, D. Xu, H. Chen, L. Wang, Y. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
- M. Yang, X. Guo, F. Mou, J. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00062
- K. Kim, J. Guo, Z. Liang, D. Fan, Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 28(25), 1705867 (2018). https://doi.org/10.1002/adfm.201705867
- Y. Hu, W. Liu, Y. Sun, Self-propelled micro-/nanomotors as “on-the-move” platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32(10), 2109181 (2022). https://doi.org/10.1002/adfm.202109181
- J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
- T. Patino, A. Porchetta, A. Jannasch, A. Llado, T. Stumpp et al., Self-sensing enzyme-powered micromotors equipped with ph-responsive DNA nanoswitches. Nano Lett. 19(6), 3440–3447 (2019). https://doi.org/10.1021/acs.nanolett.8b04794
- D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
- B.E.-F. de Ávila, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time mirnas sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
- Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active sers sensing. Angew. Chem. Int. Ed. 57(40), 13110–13113 (2018). https://doi.org/10.1002/anie.201807033
- T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3), 71–140 (2012). https://doi.org/10.1016/j.physrep.2012.03.004
- H. Joh, D.E. Fan, Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv. Mater. 33(39), 2101965 (2021). https://doi.org/10.1002/adma.202101965
- D. Jin, L. Zhang, Collective behaviors of magnetic active matter: recent progress toward reconfigurable, adaptive, and multifunctional swarming micro/nanorobots. Acc. Chem. Res. 55(1), 98–109 (2022). https://doi.org/10.1021/acs.accounts.1c00619
- M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev et al., Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13(4), 375–379 (2017). https://doi.org/10.1038/nphys3970
- F. Mou, J. Zhang, Z. Wu, S. Du, Z. Zhang et al., Phototactic flocking of photochemical micromotors. iScience 19, 415–424 (2019). https://doi.org/10.1016/j.isci.2019.07.050
- J. Yu, D. Jin, K.F. Chan, Q. Wang, K. Yuan et al., Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10(1), 5631 (2019). https://doi.org/10.1038/s41467-019-13576-6
- X. Liang, F. Mou, Z. Huang, J. Zhang, M. You et al., Hierarchical microswarms with leader–follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv. Funct. Mater. 30(16), 1908602 (2020). https://doi.org/10.1002/adfm.201908602
- S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman et al., Light-programmable assemblies of isotropic micromotors. Research 2022, 9816562 (2022). https://doi.org/10.34133/2022/9816562
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- J. Zhang, F. Mou, Z. Wu, J. Song, J.E. Kauffman et al., Cooperative transport by flocking phototactic micromotors. Nanoscale Adv. 3(21), 6157–6163 (2021). https://doi.org/10.1039/D1NA00641J
- M. Xie, W. Zhang, C. Fan, C. Wu, Q. Feng et al., Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 32(26), 2000366 (2020). https://doi.org/10.1002/adma.202000366
- L. Yang, J. Yu, S. Yang, B. Wang, B.J. Nelson et al., A survey on swarm microrobotics. IEEE T. Robot. 38(3), 1531–1551 (2022). https://doi.org/10.1109/TRO.2021.3111788
- M. Chu, Y. Shao, J. Peng, X. Dai, H. Li et al., Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanops. Biomaterials 34(16), 4078–4088 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.086
- W. Luo, H. Ma, F. Mou, M. Zhu, J. Yan et al., Steric-repulsion-based magnetically responsive photonic crystals. Adv. Mater. 26(7), 1058–1064 (2014). https://doi.org/10.1002/adma.201304134
- Q. Bao, P. Hu, W. Ren, Y. Guo, J. Shi, Tumor cell dissociation removes malignant bladder tumors. Chem 6(9), 2283–2299 (2020). https://doi.org/10.1016/j.chempr.2020.06.013
- D. Fayter, M. Corbett, M. Heirs, D. Fox, A. Eastwood, A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol. Asses. 14(37), 1–288 (2010). https://doi.org/10.3310/hta14370
- Y. Kumagai, M. Toi, H. Inoue, Dynamism of tumour vasculature in the early phase of cancer progression: outcomes from oesophageal cancer research. Lancet Oncol. 3(10), 604–610 (2002). https://doi.org/10.1016/S1470-2045(02)00874-4
- P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagues, Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101(21), 218304 (2008). https://doi.org/10.1103/PhysRevLett.101.218304
- J. Ge, Y. Yin, Responsive photonic crystals. Angew. Chem. Int. Ed. 50(7), 1492–1522 (2011). https://doi.org/10.1002/anie.200907091
- V. Berger, Nonlinear photonic crystals. Phys. Rev. Lett. 81(19), 4136–4139 (1998). https://doi.org/10.1103/PhysRevLett.81.4136
- H.J. Kull, Theory of the rayleigh-taylor instability. Phys. Rep. 206(5), 197–325 (1991). https://doi.org/10.1016/0370-1573(91)90153-D
- J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes. Nano Lett. 8(9), 2788–2793 (2008). https://doi.org/10.1021/nl8013617
- J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher, Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274(5289), 959–963 (1996). https://doi.org/10.1126/science.274.5289.959
- C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher, Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126(5), 1493–1496 (2004). https://doi.org/10.1021/ja037118a
- J. Chen, C. Ning, Z. Zhou, P. Yu, Y. Zhu et al., Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019). https://doi.org/10.1016/j.pmatsci.2018.07.005
- X. Yi, Q.-Y. Duan, F.-G. Wu, Low-temperature photothermal therapy: strategies and applications. Research 2021, 9816594 (2021). https://doi.org/10.34133/2021/9816594
- H. Arkaban, M. Barani, M.R. Akbarizadeh, N.P.S. Chauhan, S. Jadoun, M.D. Soltani, P. Zarrintaj, Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications. Polymers 14(6), 1259 (2022). https://doi.org/10.3390/polym14061259
- P.S. Stayton, A.S. Hoffman, N. Murthy, C. Lackey, C. Cheung et al., Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. J. Control. Release 65(1), 203–220 (2000). https://doi.org/10.1016/S0168-3659(99)00236-9
- N. Mohamad, E.Y.X. Loh, M.B. Fauzi, M.H. Ng, M.C.I.M. Amin, In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Delivery Trans. Res. 9(2), 444–452 (2019). https://doi.org/10.1007/s13346-017-0475-3
- B. Wang, F.C. Kai, K. Yuan, Q. Wang, X. Xia et al., Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6(52), eabd813 (2021). https://doi.org/10.1126/scirobotics.abd2813
- Z.G. Wu, J. Troll, H.H. Jeong, Q. Wei, M. Stang et al., A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4(11), eaat4388 (2018). https://doi.org/10.1126/sciadv.aat4388
- K.W.Y. Chan, G. Liu, X. Song, H. Kim, T. Yu et al., Mri-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat. Mater. 12(3), 268–275 (2013). https://doi.org/10.1038/nmat3525
- Q. Wang, F.C. Kai, K. Schweizer, X. Du, D. Jin et al., Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
- T. Li, X. Chang, Z. Wu, J. Li, G. Shao et al., Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments. ACS Nano 11(9), 9268–9275 (2017). https://doi.org/10.1021/acsnano.7b04525
References
Y. Lu, A.A. Aimetti, R. Langer, Z. Gu, Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2016). https://doi.org/10.1038/natrevmats.2016.75
Z. Yang, J. Cao, Y. He, J.H. Yang, T. Kim et al., Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 43(13), 4563–4601 (2014). https://doi.org/10.1039/c4cs00051j
A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
P.M. Gullino, S.H. Clark, F.H. Grantham, The interstitial fluid of solid tumors. Cancer Res. 24(5), 780–797 (1964)
I.F. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49(16), 4373–4384 (1989)
J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008). https://doi.org/10.1038/nmat2162
P.J. Vikesland, Nanosensors for water quality monitoring. Nat. Nanotechnol. 13(8), 651–660 (2018). https://doi.org/10.1038/s41565-018-0209-9
F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005). https://doi.org/10.1016/S1369-7021(05)00791-1
S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, I.-D. Kim, Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50(7), 1587–1596 (2017). https://doi.org/10.1021/acs.accounts.7b00047
Z. Farka, T. Juřík, D. Kovář, L. Trnková, P. Skládal, Nanop-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 117(15), 9973–10042 (2017). https://doi.org/10.1021/acs.chemrev.7b00037
B.M. Cullum, T. Vo-Dinh, The development of optical nanosensors for biological measurements. Trends Biotechnol. 18(9), 388–393 (2000). https://doi.org/10.1016/s0167-7799(00)01477-3
M. Li, Q. Lyu, B. Peng, X. Chen, L. Zhang et al., Bioinspired colloidal photonic composites: fabrications and emerging applications. Adv. Mater. 34(52), 2110488 (2022). https://doi.org/10.1002/adma.202110488
D. Men, D. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bull. 61(17), 1358–1371 (2016). https://doi.org/10.1007/s11434-016-1134-7
J. Wang, P.W.H. Pinkse, L.I. Segerink, J.C.T. Eijkel, Bottom-up assembled photonic crystals for structure-enabled label-free sensing. ACS Nano 15(6), 9299–9327 (2021). https://doi.org/10.1021/acsnano.1c02495
G. Li, W. Luo, Z. Che, Y. Pu, P. Deng et al., Lipophilic magnetic photonic nanochains for practical anticounterfeiting. Small 18(21), 2200662 (2022). https://doi.org/10.1002/smll.202200662
Y. Liu, J. Guan, Adaptive camouflage achieved by an artificial chameleon robot. Matter 5(8), 2397–2399 (2022). https://doi.org/10.1016/j.matt.2022.04.024
W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma et al., Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 20(2), 803–811 (2020). https://doi.org/10.1021/acs.nanolett.7b04218
Y. Liu, Q. Fan, G. Zhu, G. Shi, H. Ma et al., A dual responsive photonic liquid for independent modulation of color brightness and hue. Mater. Horiz. 8(7), 2032–2040 (2021). https://doi.org/10.1039/d1mh00556a
J. Cai, W. Luo, J. Pan, G. Li, Y. Pu et al., Glucose-sensing photonic nanochain probes with color change in seconds. Adv. Sci. 9(9), 2105239 (2022). https://doi.org/10.1002/advs.202105239
Z.W. Li, Y.D. Yin, Stimuli-responsive optical nanomaterials. Adv. Mater. 31(15), 1807061 (2019). https://doi.org/10.1002/adma.201807061
C. Shao, Y. Yu, Q. Fan, X. Wang, F. Ye, Polyurethane-polypyrrole hybrid structural color films for dual-signal mechanics sensing. Smart Med. 1(1), 20008 (2022). https://doi.org/10.1002/SMMD.20220008
J. Wang, D. Huang, H. Yu, H. Ren, L. Shang, Biohybrid response microps decorated with trained-mscs for acute liver failure recovery. Adv. Healthc. Mater. 11(21), 2201085 (2022). https://doi.org/10.1002/adhm.202201085
H.J. Zhou, C.C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
B.E.-F. de Avila, P. Angsantikul, J.X. Li, M.A. Lopez-Ramirez, D.E. Ramirez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: the road ahead. Adv. Drug Deliver. Rev. 138, 41–55 (2019). https://doi.org/10.1016/j.addr.2018.09.005
J. Li, B.E.-F. de Avila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
S. Palagi, P. Fischer, Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124 (2018). https://doi.org/10.1038/s41578-018-0016-9
B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
F. Soto, J. Wang, R. Ahmed, U. Demirci, Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 2002203 (2020). https://doi.org/10.1002/advs.202002203
W. Chen, H. Zhou, B. Zhang, Q. Cao, B. Wang et al., Recent progress of micro/nanorobots for cell delivery and manipulation. Adv. Funct. Mater. 32(18), 2110625 (2022). https://doi.org/10.1002/adfm.202110625
L. Wang, X. Hao, Z. Gao, Z. Yang, Y. Long et al., Artificial nanomotors: fabrication, locomotion characterization, motion manipulation, and biomedical applications. Interdiscip. Mater. 1(2), 256–280 (2022). https://doi.org/10.1002/idm2.12021
F. Mou, Q. Xie, J. Liu, S. Che, L. Bahmane et al., Zno-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nwab066 (2021). https://doi.org/10.1093/nsr/nwab066
C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33(6), 2000512 (2021). https://doi.org/10.1002/adma.202000512
L. Cai, D. Xu, H. Chen, L. Wang, Y. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
M. Yang, X. Guo, F. Mou, J. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00062
K. Kim, J. Guo, Z. Liang, D. Fan, Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 28(25), 1705867 (2018). https://doi.org/10.1002/adfm.201705867
Y. Hu, W. Liu, Y. Sun, Self-propelled micro-/nanomotors as “on-the-move” platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32(10), 2109181 (2022). https://doi.org/10.1002/adfm.202109181
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
T. Patino, A. Porchetta, A. Jannasch, A. Llado, T. Stumpp et al., Self-sensing enzyme-powered micromotors equipped with ph-responsive DNA nanoswitches. Nano Lett. 19(6), 3440–3447 (2019). https://doi.org/10.1021/acs.nanolett.8b04794
D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
B.E.-F. de Ávila, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time mirnas sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active sers sensing. Angew. Chem. Int. Ed. 57(40), 13110–13113 (2018). https://doi.org/10.1002/anie.201807033
T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3), 71–140 (2012). https://doi.org/10.1016/j.physrep.2012.03.004
H. Joh, D.E. Fan, Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv. Mater. 33(39), 2101965 (2021). https://doi.org/10.1002/adma.202101965
D. Jin, L. Zhang, Collective behaviors of magnetic active matter: recent progress toward reconfigurable, adaptive, and multifunctional swarming micro/nanorobots. Acc. Chem. Res. 55(1), 98–109 (2022). https://doi.org/10.1021/acs.accounts.1c00619
M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev et al., Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13(4), 375–379 (2017). https://doi.org/10.1038/nphys3970
F. Mou, J. Zhang, Z. Wu, S. Du, Z. Zhang et al., Phototactic flocking of photochemical micromotors. iScience 19, 415–424 (2019). https://doi.org/10.1016/j.isci.2019.07.050
J. Yu, D. Jin, K.F. Chan, Q. Wang, K. Yuan et al., Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10(1), 5631 (2019). https://doi.org/10.1038/s41467-019-13576-6
X. Liang, F. Mou, Z. Huang, J. Zhang, M. You et al., Hierarchical microswarms with leader–follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv. Funct. Mater. 30(16), 1908602 (2020). https://doi.org/10.1002/adfm.201908602
S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman et al., Light-programmable assemblies of isotropic micromotors. Research 2022, 9816562 (2022). https://doi.org/10.34133/2022/9816562
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
J. Zhang, F. Mou, Z. Wu, J. Song, J.E. Kauffman et al., Cooperative transport by flocking phototactic micromotors. Nanoscale Adv. 3(21), 6157–6163 (2021). https://doi.org/10.1039/D1NA00641J
M. Xie, W. Zhang, C. Fan, C. Wu, Q. Feng et al., Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 32(26), 2000366 (2020). https://doi.org/10.1002/adma.202000366
L. Yang, J. Yu, S. Yang, B. Wang, B.J. Nelson et al., A survey on swarm microrobotics. IEEE T. Robot. 38(3), 1531–1551 (2022). https://doi.org/10.1109/TRO.2021.3111788
M. Chu, Y. Shao, J. Peng, X. Dai, H. Li et al., Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanops. Biomaterials 34(16), 4078–4088 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.086
W. Luo, H. Ma, F. Mou, M. Zhu, J. Yan et al., Steric-repulsion-based magnetically responsive photonic crystals. Adv. Mater. 26(7), 1058–1064 (2014). https://doi.org/10.1002/adma.201304134
Q. Bao, P. Hu, W. Ren, Y. Guo, J. Shi, Tumor cell dissociation removes malignant bladder tumors. Chem 6(9), 2283–2299 (2020). https://doi.org/10.1016/j.chempr.2020.06.013
D. Fayter, M. Corbett, M. Heirs, D. Fox, A. Eastwood, A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol. Asses. 14(37), 1–288 (2010). https://doi.org/10.3310/hta14370
Y. Kumagai, M. Toi, H. Inoue, Dynamism of tumour vasculature in the early phase of cancer progression: outcomes from oesophageal cancer research. Lancet Oncol. 3(10), 604–610 (2002). https://doi.org/10.1016/S1470-2045(02)00874-4
P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagues, Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101(21), 218304 (2008). https://doi.org/10.1103/PhysRevLett.101.218304
J. Ge, Y. Yin, Responsive photonic crystals. Angew. Chem. Int. Ed. 50(7), 1492–1522 (2011). https://doi.org/10.1002/anie.200907091
V. Berger, Nonlinear photonic crystals. Phys. Rev. Lett. 81(19), 4136–4139 (1998). https://doi.org/10.1103/PhysRevLett.81.4136
H.J. Kull, Theory of the rayleigh-taylor instability. Phys. Rep. 206(5), 197–325 (1991). https://doi.org/10.1016/0370-1573(91)90153-D
J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes. Nano Lett. 8(9), 2788–2793 (2008). https://doi.org/10.1021/nl8013617
J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher, Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274(5289), 959–963 (1996). https://doi.org/10.1126/science.274.5289.959
C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher, Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126(5), 1493–1496 (2004). https://doi.org/10.1021/ja037118a
J. Chen, C. Ning, Z. Zhou, P. Yu, Y. Zhu et al., Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019). https://doi.org/10.1016/j.pmatsci.2018.07.005
X. Yi, Q.-Y. Duan, F.-G. Wu, Low-temperature photothermal therapy: strategies and applications. Research 2021, 9816594 (2021). https://doi.org/10.34133/2021/9816594
H. Arkaban, M. Barani, M.R. Akbarizadeh, N.P.S. Chauhan, S. Jadoun, M.D. Soltani, P. Zarrintaj, Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications. Polymers 14(6), 1259 (2022). https://doi.org/10.3390/polym14061259
P.S. Stayton, A.S. Hoffman, N. Murthy, C. Lackey, C. Cheung et al., Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. J. Control. Release 65(1), 203–220 (2000). https://doi.org/10.1016/S0168-3659(99)00236-9
N. Mohamad, E.Y.X. Loh, M.B. Fauzi, M.H. Ng, M.C.I.M. Amin, In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Delivery Trans. Res. 9(2), 444–452 (2019). https://doi.org/10.1007/s13346-017-0475-3
B. Wang, F.C. Kai, K. Yuan, Q. Wang, X. Xia et al., Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6(52), eabd813 (2021). https://doi.org/10.1126/scirobotics.abd2813
Z.G. Wu, J. Troll, H.H. Jeong, Q. Wei, M. Stang et al., A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4(11), eaat4388 (2018). https://doi.org/10.1126/sciadv.aat4388
K.W.Y. Chan, G. Liu, X. Song, H. Kim, T. Yu et al., Mri-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat. Mater. 12(3), 268–275 (2013). https://doi.org/10.1038/nmat3525
Q. Wang, F.C. Kai, K. Schweizer, X. Du, D. Jin et al., Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
T. Li, X. Chang, Z. Wu, J. Li, G. Shao et al., Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments. ACS Nano 11(9), 9268–9275 (2017). https://doi.org/10.1021/acsnano.7b04525