Construction of Ultrathin Layered MXene-TiN Heterostructure Enabling Favorable Catalytic Ability for High-Areal-Capacity Lithium–Sulfur Batteries
Corresponding Author: Rujia Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 189
Abstract
Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li–S batteries. Herein, a spherical structure consists of ultrathin layered Ti3C2Tx-TiN heterostructures (MX-TiN) through in-situ nitridation method is reported. Through controllable nitridation, highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures. The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites. Moreover, the (001) surface of TiN is dominated by metallic Ti–3d states, which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance. Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN, meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li2S2/Li2S. As a result, the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022% over 1000 cycles and remarkable areal capacity of 8.27 mAh cm−2 at high sulfur loading and lean electrolytes.
Highlights:
1 An in-situ strategy to synthesize ultrathin two-dimensional MXene-TiN heterostructures and the ultrathin structure extremely shortens the electrons diffusion distance from catalysts to active sulfur species.
2 The heterostructure exhibits superior electronic structures to strongly capture the polysulfides and enhance bidirectional electrocatalytic ability between LiPSs and Li2S.
3 The advanced cathode achieves an excellent long-term cyclability with an extremely low-capacity fading rate of 0.022% over 1000 cycles and a remarkable areal capacity of 8.27 mAh cm−2 at high sulfur loading of 10.16 mg cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4(3), 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
- D. Castelvecchi, Electric cars: the battery challenge. Nature 596(7872), 336–339 (2021). https://doi.org/10.1038/d41586-021-02222-1
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
- L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3(9), 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
- C. Li, S. Qi, L. Zhu, Y. Zhao, R. Huang et al., Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium–sulfur batteries. Nano Today 40, 101246 (2021). https://doi.org/10.1016/j.nantod.2021.101246
- F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
- F. Pei, L. Lin, A. Fu, S. Mo, D. Ou et al., A two-dimensional porous carbon-modified separator for high-energy-density Li–S batteries. Joule 2(2), 323–336 (2018). https://doi.org/10.1016/j.joule.2017.12.003
- H. Jiang, X.C. Liu, Y. Wu, Y. Shu, X. Gong et al., Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(15), 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
- A.E. Baumann, J.R. Downing, D.A. Burns, M.C. Hersam, V.S. Thoi, Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 12(33), 37173–37181 (2020). https://doi.org/10.1021/acsami.0c09622
- X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng et al., Strong sulfur binding with conducting magneli-phase TinO2n−1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 14(9), 5288–5294 (2014). https://doi.org/10.1021/nl502331f
- X. Liang, L.F. Nazar, In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10(4), 4192–4198 (2016). https://doi.org/10.1021/acsnano.5b07458
- Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
- X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
- J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu et al., Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium–sulfur batteries. Adv. Mater. 33(25), 2100810 (2021). https://doi.org/10.1002/adma.202100810
- C. Qi, Z. Li, G. Wang, H. Yuan, C. Chen et al., Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li-S battery. Adv. Energy Mater. 11(39), 2102024 (2021). https://doi.org/10.1002/aenm.202102024
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
- Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium–sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/j.apsusc.2021.150634
- Q.F. Zhang, Y.P. Wang, Z.W. Seh, Z.H. Fu, R.F. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
- H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
- B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Nano-Micro Lett. 14, 40 (2022). https://doi.org/10.1007/s40820-021-00769-2
- Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 33(43), 2103050 (2021). https://doi.org/10.1002/adma.202103050
- M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang et al., Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 20, 98–107 (2019). https://doi.org/10.1016/j.ensm.2018.11.028
- W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
- Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12(7), 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
- L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
- S.Y. Qiu, C. Wang, Z.X. Jiang, L.S. Zhang, L.L. Gu et al., Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12(32), 16678–16684 (2020). https://doi.org/10.1039/d0nr03528a
- X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30(15), 01910302 (2020). https://doi.org/10.1002/adfm.201910302
- Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
- X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie et al., Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14(41), 1802443 (2018). https://doi.org/10.1002/smll.201802443
- C. Wei, M. Tian, M. Wang, Z. Shi, L. Yu et al., Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 14(11), 16073–16084 (2020). https://doi.org/10.1021/acsnano.0c07999
- C. Li, X. Liu, L. Zhu, R. Huang, M. Zhao et al., Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 30(20), 6969–6977 (2018). https://doi.org/10.1021/acs.chemmater.8b01352
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/c7ee01430a
- Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 32(6), 1905658 (2020). https://doi.org/10.1002/adma.201905658
- D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
- F. Chen, T. Ma, T. Zhang, Y. Zhang, H. Huang, Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 33(10), 2005256 (2021). https://doi.org/10.1002/adma.202005256
- H. Wang, S.A. He, Z. Cui, C. Xu, J. Zhu et al., Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 420(1), 129693 (2021). https://doi.org/10.1016/j.cej.2021.129693
- H. Zhang, P. Zhang, W. Zheng, W. Tian, J. Chen et al., 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim. Acta 285, 94–102 (2018). https://doi.org/10.1016/j.electacta.2018.07.198
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- C. Shang, G. Li, B. Wei, J. Wang, R. Gao et al., Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li-S batteries. Adv. Energy Mater. 11(3), 2003020 (2021). https://doi.org/10.1002/aenm.202003020
- J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
- B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
- Y. Wang, Z. Fu, X. Zhang, Z. Yang, Understanding the correlation between the electronic structure and catalytic behavior of TiC(001) and TiN(001) surfaces: DFT study. Appl. Surf. Sci. 494, 57–62 (2019). https://doi.org/10.1016/j.apsusc.2019.07.142
- D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
- Y. Liu, A. Chatterjee, P. Rusch, C. Wu, P. Nan et al., Monodisperse molybdenum nanops as highly efficient electrocatalysts for Li–S batteries. ACS Nano 15(9), 15047–15056 (2021). https://doi.org/10.1021/acsnano.1c05344
- L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
- H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
- J. He, A. Bhargav, H.Y. Asl, Y. Chen, A. Manthiram, 1T’-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries. Adv. Energy Mater. 10(23), 2001017 (2020). https://doi.org/10.1002/aenm.202001017
- M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 4(6), 1900344 (2020). https://doi.org/10.1002/smtd.201900344
- S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 33, 147–157 (2020). https://doi.org/10.1016/j.ensm.2020.08.006
- J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/c9ta00212j
- Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao et al., Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555
- W. Yao, W. Zheng, K. Han, S. Xiao, Ultrathin double-shell nanotubes of narrow band gap titanium oxide@carbon as efficient polysulfide inhibitors towards advanced lithium-sulfur batteries. J. Mater. Chem. A 8(36), 19028–19042 (2020). https://doi.org/10.1039/d0ta06636b
- Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
- J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan et al., A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting bi-directional sulfur redox in Li–S batteries. Adv. Funct. Mater. 31(23), 2100586 (2021). https://doi.org/10.1002/adfm.202100586
- B. Zhang, C. Luo, G. Zhou, Z.Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 31(26), 2100793 (2021). https://doi.org/10.1002/adfm.202100793
References
X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4(3), 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
D. Castelvecchi, Electric cars: the battery challenge. Nature 596(7872), 336–339 (2021). https://doi.org/10.1038/d41586-021-02222-1
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3(9), 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
C. Li, S. Qi, L. Zhu, Y. Zhao, R. Huang et al., Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium–sulfur batteries. Nano Today 40, 101246 (2021). https://doi.org/10.1016/j.nantod.2021.101246
F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
F. Pei, L. Lin, A. Fu, S. Mo, D. Ou et al., A two-dimensional porous carbon-modified separator for high-energy-density Li–S batteries. Joule 2(2), 323–336 (2018). https://doi.org/10.1016/j.joule.2017.12.003
H. Jiang, X.C. Liu, Y. Wu, Y. Shu, X. Gong et al., Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(15), 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
A.E. Baumann, J.R. Downing, D.A. Burns, M.C. Hersam, V.S. Thoi, Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 12(33), 37173–37181 (2020). https://doi.org/10.1021/acsami.0c09622
X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng et al., Strong sulfur binding with conducting magneli-phase TinO2n−1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 14(9), 5288–5294 (2014). https://doi.org/10.1021/nl502331f
X. Liang, L.F. Nazar, In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10(4), 4192–4198 (2016). https://doi.org/10.1021/acsnano.5b07458
Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu et al., Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium–sulfur batteries. Adv. Mater. 33(25), 2100810 (2021). https://doi.org/10.1002/adma.202100810
C. Qi, Z. Li, G. Wang, H. Yuan, C. Chen et al., Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li-S battery. Adv. Energy Mater. 11(39), 2102024 (2021). https://doi.org/10.1002/aenm.202102024
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium–sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/j.apsusc.2021.150634
Q.F. Zhang, Y.P. Wang, Z.W. Seh, Z.H. Fu, R.F. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Nano-Micro Lett. 14, 40 (2022). https://doi.org/10.1007/s40820-021-00769-2
Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 33(43), 2103050 (2021). https://doi.org/10.1002/adma.202103050
M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang et al., Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 20, 98–107 (2019). https://doi.org/10.1016/j.ensm.2018.11.028
W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12(7), 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
S.Y. Qiu, C. Wang, Z.X. Jiang, L.S. Zhang, L.L. Gu et al., Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12(32), 16678–16684 (2020). https://doi.org/10.1039/d0nr03528a
X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30(15), 01910302 (2020). https://doi.org/10.1002/adfm.201910302
Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie et al., Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14(41), 1802443 (2018). https://doi.org/10.1002/smll.201802443
C. Wei, M. Tian, M. Wang, Z. Shi, L. Yu et al., Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 14(11), 16073–16084 (2020). https://doi.org/10.1021/acsnano.0c07999
C. Li, X. Liu, L. Zhu, R. Huang, M. Zhao et al., Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 30(20), 6969–6977 (2018). https://doi.org/10.1021/acs.chemmater.8b01352
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/c7ee01430a
Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 32(6), 1905658 (2020). https://doi.org/10.1002/adma.201905658
D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll et al., NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101250 (2021). https://doi.org/10.1002/aenm.202101250
F. Chen, T. Ma, T. Zhang, Y. Zhang, H. Huang, Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 33(10), 2005256 (2021). https://doi.org/10.1002/adma.202005256
H. Wang, S.A. He, Z. Cui, C. Xu, J. Zhu et al., Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 420(1), 129693 (2021). https://doi.org/10.1016/j.cej.2021.129693
H. Zhang, P. Zhang, W. Zheng, W. Tian, J. Chen et al., 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim. Acta 285, 94–102 (2018). https://doi.org/10.1016/j.electacta.2018.07.198
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
C. Shang, G. Li, B. Wei, J. Wang, R. Gao et al., Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li-S batteries. Adv. Energy Mater. 11(3), 2003020 (2021). https://doi.org/10.1002/aenm.202003020
J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
Y. Wang, Z. Fu, X. Zhang, Z. Yang, Understanding the correlation between the electronic structure and catalytic behavior of TiC(001) and TiN(001) surfaces: DFT study. Appl. Surf. Sci. 494, 57–62 (2019). https://doi.org/10.1016/j.apsusc.2019.07.142
D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
Y. Liu, A. Chatterjee, P. Rusch, C. Wu, P. Nan et al., Monodisperse molybdenum nanops as highly efficient electrocatalysts for Li–S batteries. ACS Nano 15(9), 15047–15056 (2021). https://doi.org/10.1021/acsnano.1c05344
L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
J. He, A. Bhargav, H.Y. Asl, Y. Chen, A. Manthiram, 1T’-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries. Adv. Energy Mater. 10(23), 2001017 (2020). https://doi.org/10.1002/aenm.202001017
M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 4(6), 1900344 (2020). https://doi.org/10.1002/smtd.201900344
S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 33, 147–157 (2020). https://doi.org/10.1016/j.ensm.2020.08.006
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/c9ta00212j
Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao et al., Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555
W. Yao, W. Zheng, K. Han, S. Xiao, Ultrathin double-shell nanotubes of narrow band gap titanium oxide@carbon as efficient polysulfide inhibitors towards advanced lithium-sulfur batteries. J. Mater. Chem. A 8(36), 19028–19042 (2020). https://doi.org/10.1039/d0ta06636b
Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan et al., A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting bi-directional sulfur redox in Li–S batteries. Adv. Funct. Mater. 31(23), 2100586 (2021). https://doi.org/10.1002/adfm.202100586
B. Zhang, C. Luo, G. Zhou, Z.Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 31(26), 2100793 (2021). https://doi.org/10.1002/adfm.202100793