Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors
Corresponding Author: Jin Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 136
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Highlights:
1 A systematic summary of the research progress of hydrogel-based gas and humidity sensors is presented.
2 The sensing mechanism of hydrogel-based gas and humidity sensors is elaborated.
3 The potential of hydrogel-based vapor sensors in different fields of application is demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
- T. Li, W. Yin, S. Gao, Y. Sun, P. Xu et al., The combination of two-dimensional nanomaterials with metal oxide nanops for gas sensors: A review. Nanomaterials 12, 982 (2022). https://doi.org/10.3390/nano12060982
- L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuator A Phys. 267, 242 (2017). https://doi.org/10.1016/j.sna.2017.10.021
- Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6, 470 (2019). https://doi.org/10.1039/C8MH01365A
- J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020). https://doi.org/10.1016/j.jhazmat.2019.120919
- Z. Yuan, Q. Zhao, C. Xie, J. Liang, X. Duan et al., Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature. Sens. Actuator B Chem. 355, 131300 (2022). https://doi.org/10.1016/j.snb.2021.131300
- X. Bai, H. Lv, Z. Liu, J. Chen, J. Wang et al., Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J. Hazard. Mater. 416, 125830 (2021). https://doi.org/10.1016/j.jhazmat.2021.125830
- D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 233103 (2014). https://doi.org/10.1063/1.4903358
- T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95 (2016). https://doi.org/10.1007/s40820-015-0073-1
- Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28, 1205 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
- L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang et al., In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard. Mater. 385, 121570 (2020). https://doi.org/10.1016/j.jhazmat.2019.121570
- K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim et al., Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuator B Chem. 302, 127179 (2020). https://doi.org/10.1016/j.snb.2019.127179
- X. Liu, S. Qiao, Y. Ma, Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Express 30, 1304 (2022). https://doi.org/10.1364/OE.446294
- G.P. Mishra, D. Kumar, V.S. Chaudhary, S. Kumar, Design and sensitivity improvement of microstructured-core photonic crystal fiber based sensor for methane and hydrogen fluoride detection. IEEE Sens. J. 22, 1265 (2022). https://doi.org/10.1109/JSEN.2021.3131694
- Y. Chen, P. Xu, X. Li, Y. Ren, Y. Deng, High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens. Actuator B Chem. 267, 83 (2018). https://doi.org/10.1016/j.snb.2018.03.180
- J.-H. Lee, J.-H. Kim, J.-Y. Kim, A. Mirzaei, H.W. Kim et al., Ppb-level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors 19, 4276 (2019). https://doi.org/10.3390/s19194276
- C. Dong, M. Jiang, Y. Tao, Y. Shen, Y. Lu et al., Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sens. Actuator B Chem. 257, 419 (2018). https://doi.org/10.1016/j.snb.2017.10.175
- Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33, 2101262 (2021). https://doi.org/10.1002/adma.202101262
- A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268 (2019). https://doi.org/10.1021/acssensors.8b00937
- H. Haick, Y.Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 1423 (2014). https://doi.org/10.1039/C3CS60329F
- F. Güder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan et al., Paper-based electrical respiration sensor. Angew. Chem. Int. Edit. 55, 5727 (2016). https://doi.org/10.1002/anie.201511805
- A. Amann, B.L. Costello De, W. Miekisch, J. Schubert, B. Buszewski et al., The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8, 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184 (2017). https://doi.org/10.1021/acsami.7b11055
- H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuator B Chem. 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
- W. Liu, Y. Zheng, Z. Wang, Z. Wang, J. Yang et al., Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown ZnO-Bi2O3 nanosheets. Adv. Mater. Interfaces 8, 2001978 (2021). https://doi.org/10.1002/admi.202001978
- G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang et al., Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuator B Chem. 283, 590 (2019). https://doi.org/10.1016/j.snb.2018.09.117
- H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: A review. ACS Appl. Mater. Interfaces 12, 31037 (2020). https://doi.org/10.1021/acsami.0c06435
- Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373 (2016). https://doi.org/10.1002/adma.201504366
- T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288 (2019). https://doi.org/10.1021/acs.accounts.8b00497
- Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897 (2007). https://doi.org/10.1002/adma.200602223
- B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, 1901408 (2019). https://doi.org/10.1002/adma.201901408
- F. Guan, Z. Han, M. Jin, Z. Wu, Y. Chen et al., Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv. Fiber Mater. 3, 128 (2021). https://doi.org/10.1007/s42765-021-00066-y
- L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4, 98 (2022). https://doi.org/10.1007/s42765-021-00086-8
- Q. Li, C. Ding, W. Yuan, R. Xie, X. Zhou et al., Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 3, 302 (2021). https://doi.org/10.1007/s42765-021-00079-7
- L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 13, 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
- Y. Zheng, Y. Wang, Z. Li, Z. Yuan, S. Guo et al., MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter 6, 506 (2023). https://doi.org/10.1016/j.matt.2022.11.020
- K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4, 1800628 (2019). https://doi.org/10.1002/admt.201800628
- W. Chen, X. Yan, Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 43, 175 (2020). https://doi.org/10.1016/j.jmst.2019.11.010
- X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015). https://doi.org/10.1002/advs.201500169
- Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang et al., Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349, 400 (2015). https://doi.org/10.1126/science.aaa7952
- Y. Liu, M. Li, J. Liu, X. Chen, Mechanism of surface wrinkle modulation for a stiff film on compliant substrate. J. Appl. Mech. 84, 051011 (2017). https://doi.org/10.1115/1.4036256
- J. Yun, Y. Lim, G.N. Jang, D. Kim, S.-J. Lee et al., Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 19, 401 (2016). https://doi.org/10.1016/j.nanoen.2015.11.023
- L.T. Duy, T.Q. Trung, A. Hanif, S. Siddiqui, E. Roh et al., A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Mater. 4, 025062 (2017). https://doi.org/10.1088/2053-1583/aa6783
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986 (2018). https://doi.org/10.1021/acsnano.7b07460
- X. Kou, N. Xie, F. Chen, T. Wang, L. Guo et al., Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuator B Chem. 256, 861 (2018). https://doi.org/10.1016/j.snb.2017.10.011
- S. Nie, D. Dastan, J. Li, W.-D. Zhou, S.-S. Wu et al., Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids 150, 109864 (2021). https://doi.org/10.1016/j.jpcs.2020.109864
- Z. Li, X. Liu, M. Zhou, S. Zhang, S. Cao et al., Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J. Hazard. Mater. 415, 125757 (2021). https://doi.org/10.1016/j.jhazmat.2021.125757
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687 (2021). https://doi.org/10.1021/acsnano.1c04206
- N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni et al., 25th anniversary : Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26, 85 (2014). https://doi.org/10.1002/adma.201303233
- Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375 (2021). https://doi.org/10.1016/j.bioactmat.2020.10.029
- J. Tavakoli, Y. Tang, Hydrogel based sensors for biomedical applications: An updated review. Polymers 9, 364 (2017). https://doi.org/10.3390/polym9080364
- X. Liu, J. Liu, S. Lin, X. Zhao, Hydrogel machines. Mater. Today 36, 102 (2020). https://doi.org/10.1016/j.mattod.2019.12.026
- E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105 (2015). https://doi.org/10.1016/j.jare.2013.07.006
- O. Wichterle, D. Lím, Hydrophilic gels for biological use. Nature 185, 117 (1960). https://doi.org/10.1038/185117a0
- N. Dehbari, J. Tavakoli, J. Zhao, Y. Tang, In situ formed internal water channels improving water swelling and mechanical properties of water swellable rubber composites. J. Appl. Polym. Sci. 134, 44548 (2017). https://doi.org/10.1002/app.44548
- M. Cretich, G. Pirri, F. Damin, I. Solinas, M. Chiari, A new polymeric coating for protein microarrays. Anal. Biochem. 332, 67 (2004). https://doi.org/10.1016/j.ab.2004.05.041
- J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui, et al., Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
- A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18 (2012). https://doi.org/10.1016/j.addr.2012.09.010
- A. Khademhosseini, R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.021
- K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307 (2002). https://doi.org/10.1016/S0142-9612(02)00175-8
- D.R. Griffin, W.M. Weaver, P.O. Scumpia, D. Di Carlo, T. Segura, Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737 (2015). https://doi.org/10.1038/nmat4294
- J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5
- K. Zhai, H. Wang, Q. Ding, Z. Wu, M. Ding et al., High-performance strain sensors based on organohydrogel microsphere film for wearable human–computer interfacing. Adv. Sci. 10, 2205632 (2023). https://doi.org/10.1002/advs.202205632
- W. Huang, S. Cheng, X. Wang, Y. Zhang, L. Chen et al., Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel. Adv. Funct. Mater. 31, 2009189 (2021). https://doi.org/10.1002/adfm.202009189
- E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
- P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanop–hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015). https://doi.org/10.1002/advs.201400010
- Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat 4, e1141 (2022). https://doi.org/10.1002/smm2.1141
- H. Zhi, J. Gao, L. Feng, Hydrogel-based gas sensors for NO2 and NH3. ACS Sens. 5, 772 (2020). https://doi.org/10.1021/acssensors.9b02383
- Y. Wei, H. Wang, Q. Ding, Z. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horiz. 9, 1921 (2022). https://doi.org/10.1039/D2MH00284A
- J. Wu, Z. Wu, W. Huang, X. Yang, Y. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12, 52070 (2020). https://doi.org/10.1021/acsami.0c17669
- L. Liu, T. Fei, X. Guan, X. Lin, H. Zhao et al., Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sens. Actuator B Chem. 320, 128318 (2020). https://doi.org/10.1016/j.snb.2020.128318
- L. Liu, T. Fei, X. Guan, H. Zhao, T. Zhang, Humidity-activated ammonia sensor with excellent selectivity for exhaled breath analysis. Sens. Actuator B Chem. 334, 129625 (2021). https://doi.org/10.1016/j.snb.2021.129625
- R. Wang, M. Zhang, Y. Guan, M. Chen, Y. Zhang, A CO2-responsive hydrogel film for optical sensing of dissolved CO2. Soft Matter 15, 6107 (2019). https://doi.org/10.1039/C9SM00958B
- J. Wu, K. Tao, J. Zhang, Y. Guo, J. Miao et al., Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J. Mater. Chem. A 4, 8130 (2016). https://doi.org/10.1039/C6TA01426G
- Y. Lin, Z. Wu, C. Li, Q. Ding, K. Tao et al., Deformable, transparent, high-performance, room-temperature oxygen sensors based on ion-conductive, environment-tolerant, and green organohydrogels. EcoMat 4, e12220 (2022). https://doi.org/10.1002/eom2.12220
- L. Liu, T. Fei, X. Guan, H. Zhao, T. Zhang, Highly sensitive and chemically stable NH3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosens. Bioelectron. 191, 113459 (2021). https://doi.org/10.1016/j.bios.2021.113459
- Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- Y. Gao, F. Jia, G. Gao, Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature. Chem. Eng. J. 430, 132919 (2022). https://doi.org/10.1016/j.cej.2021.132919
- M. Xia, N. Pan, C. Zhang, C. Zhang, W. Fan et al., Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels. ACS Nano 16, 4714 (2022). https://doi.org/10.1021/acsnano.1c11505
- Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 9, 1356 (2022). https://doi.org/10.1039/D1MH01871J
- A. Bag, N. Lee, Recent advancements in development of wearable gas sensors. Adv. Mater. Technol. 6, 2000883 (2021). https://doi.org/10.1002/admt.202000883
- Y. Liu, L. Wang, Y. Mi, S. Zhao, S. Qi et al., Transparent stretchable hydrogel sensors: materials, design and applications. J. Mater. Chem. C 10, 13351 (2022). https://doi.org/10.1039/D2TC01104B
- B. Guo, Z. Ma, L. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. Pt. B: Polym. Phys. 57, 1606 (2019). https://doi.org/10.1002/polb.24899
- Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13, 2128 (2021). https://doi.org/10.1021/acsami.0c21841
- A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016). https://doi.org/10.1038/natrevmats.2015.12
- Z. Sun, C. Song, C. Wang, Y. Hu, J. Wu, Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol. Pharmaceutics 17, 373 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01020
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- T. Jiang, J.G. Munguia-Lopez, K. Gu, M.M. Bavoux, S. Flores-Torres et al., Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 12, 015024 (2019). https://doi.org/10.1088/1758-5090/ab3a5c
- A. Fatimi, O.V. Okoro, D. Podstawczyk, J. Siminska-Stanny, A. Shavandi, Natural hydrogel-based bio-inks for 3d bioprinting in tissue engineering: A review. Gels 8, 179 (2022). https://doi.org/10.3390/gels8030179
- M.K. Włodarczyk-Biegun, A. del Campo, 3D bioprinting of structural proteins. Biomaterials 134, 180 (2017). https://doi.org/10.1016/j.biomaterials.2017.04.019
- J.W. Chang, S.A. Park, J.-K. Park, J.W. Choi, Y.-S. Kim et al., Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: Preliminary report. Artif. Organs 38, E95 (2014). https://doi.org/10.1111/aor.12310
- K. Gul, R.-Y. Gan, C.-X. Sun, G. Jiao, D.-T. Wu et al., Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit. Rev. Food Sci. Nutr. 62, 3817 (2022). https://doi.org/10.1080/10408398.2020.1870034
- M. Klein, E. Poverenov, Natural biopolymer-based hydrogels for use in food and agriculture. J. Sci. Food Agric. 100, 2337 (2020). https://doi.org/10.1002/jsfa.10274
- S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar, S. Ikram, A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int. J. Biol. Macromol. 136, 870 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.113
- J. Liu, H. Wang, R. Ou, X. Yi, T. Liu et al., Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chem. Eng. J. 426, 130722 (2021). https://doi.org/10.1016/j.cej.2021.130722
- X. Liu, Y. Yang, M.E. Inda, S. Lin, J. Wu et al., Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021). https://doi.org/10.1002/adfm.202010918
- M.K. Shin, G.M. Spinks, S.R. Shin, S.I. Kim, S.J. Kim, Nanocomposite hydrogel with high toughness for bioactuators. Adv. Mater. 21, 1712 (2009). https://doi.org/10.1002/adma.200802205
- L. Liu, S. Jiang, Y. Sun, S. Agarwal, Giving direction to motion and surface with ultra-fast speed using oriented hydrogel fibers. Adv. Funct. Mater. 26, 1021 (2016). https://doi.org/10.1002/adfm.201503612
- J. Odent, S. Vanderstappen, A. Toncheva, E. Pichon, T.J. Wallin et al., Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing. J. Mater. Chem. A 7, 15395 (2019). https://doi.org/10.1039/C9TA03547H
- J. Liu, S. Lin, X. Liu, Z. Qin, Y. Yang et al., Fatigue-resistant adhesion of hydrogels. Nat. Commun. 11, 1071 (2020). https://doi.org/10.1038/s41467-020-14871-3
- H. Lei, L. Dong, Y. Li, J. Zhang, H. Chen et al., Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 11, 4032 (2020). https://doi.org/10.1038/s41467-020-17877-z
- M.L. Pita-López, G. Fletes-Vargas, H. Espinosa-Andrews, R. Rodríguez-Rodríguez, Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 145, 110176 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110176
- M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969 (2014). https://doi.org/10.1021/ja500205v
- X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30, 1910748 (2020). https://doi.org/10.1002/adfm.201910748
- H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
- Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang et al., A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv. Funct. Mater. 25, 1598 (2015). https://doi.org/10.1002/adfm.201404357
- A. Phadke, C. Zhang, B. Arman, C.-C. Hsu, R.A. Mashelkar et al., Rapid self-healing hydrogels. Proc. Natl. Acad. Sci. 109, 4383 (2012). https://doi.org/10.1073/pnas.1201122109
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- H. Kamata, Y. Akagi, Y. Kayasuga-Kariya, U. Chung, T. Sakai, “Nonswellable” hydrogel without mechanical hysteresis. Science 343, 873 (2014). https://doi.org/10.1126/science.1247811
- Z. Han, P. Wang, Y. Lu, Z. Jia, S. Qu et al., A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8, eabl5066 (2022). https://doi.org/10.1126/sciadv.abl5066
- T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida et al., Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379 (2008). https://doi.org/10.1021/ma800476x
- K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/De-swelling properties. Adv. Mater. 14, 1120 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9
- F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R-Rep. 75, 1 (2014). https://doi.org/10.1016/j.mser.2013.11.001
- R. Kotani, S. Yokoyama, S. Nobusue, S. Yamaguchi, A. Osuka et al., Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat. Commun. 13, 303 (2022). https://doi.org/10.1038/s41467-022-27972-y
- R.A. Korver, I.T. Koevoets, C. Testerink, Out of shape during stress: a key role for auxin. Trends Plant Sci. 23, 783 (2018). https://doi.org/10.1016/j.tplants.2018.05.011
- T. Matsunaga, T. Sakai, Y. Akagi, U. Chung, M. Shibayama, SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules 42, 6245 (2009). https://doi.org/10.1021/ma901013q
- A. Sugimura, M. Asai, T. Matsunaga, Y. Akagi, T. Sakai et al., Mechanical properties of a polymer network of Tetra-PEG gel. Polym. J. 45, 300 (2013). https://doi.org/10.1038/pj.2012.149
- M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang et al., Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3d printability. Adv. Mater. 29, 1700533 (2017). https://doi.org/10.1002/adma.201700533
- Y. Wang, F. Chen, Z. Liu, Z. Tang, Q. Yang et al., A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew. Chem. Int. Edit. 58, 15707 (2019). https://doi.org/10.1002/anie.201908985
- H. Li, H. Zheng, Y.J. Tan, S.B. Tor, K. Zhou, Development of an ultrastretchable double-network hydrogel for flexible strain sensors. ACS Appl. Mater. Interfaces 13, 12814 (2021). https://doi.org/10.1021/acsami.0c19104
- S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen et al., Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 393, 124728 (2020). https://doi.org/10.1016/j.cej.2020.124728
- Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25, 4171 (2013). https://doi.org/10.1002/adma.201300817
- D. Chimene, R. Kaunas, A.K. Gaharwar, Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv. Mater. 32, 1902026 (2020). https://doi.org/10.1002/adma.201902026
- T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki et al., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013). https://doi.org/10.1038/nmat3713
- S. Xia, S. Song, G. Gao, Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 354, 817 (2018). https://doi.org/10.1016/j.cej.2018.08.053
- J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11, 2364 (2019). https://doi.org/10.1021/acsami.8b17437
- Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8, 3437 (2020). https://doi.org/10.1039/C9TB02570G
- B. Yao, H. Wang, Q. Zhou, M. Wu, M. Zhang et al., Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017). https://doi.org/10.1002/adma.201700974
- X. Hu, X.-X. Xia, S.-C. Huang, Z.-G. Qian, Development of adhesive and conductive resilin-based hydrogels for wearable sensors. Biomacromol 20, 3283 (2019). https://doi.org/10.1021/acs.biomac.9b00389
- X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.102
- Z. Chen, J.W.F. To, C. Wang, Z. Lu, N. Liu et al., A three-dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4, 1400207 (2014). https://doi.org/10.1002/aenm.201400207
- Z. Wang, H. Zhou, J. Lai, B. Yan, H. Liu et al., Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. J. Mater. Chem. C 6, 9200 (2018). https://doi.org/10.1039/C8TC02505C
- J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31, 4553 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
- L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao et al., Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. 109, 9287 (2012). https://doi.org/10.1073/pnas.1202636109
- J. Wu, K. Tao, J. Miao, L.K. Norford, Improved selectivity and sensitivity of gas sensing using a 3d reduced graphene oxide hydrogel with an integrated microheater. ACS Appl. Mater. Interfaces 7, 27502 (2015). https://doi.org/10.1021/acsami.5b09695
- P. Wei, T. Chen, G. Chen, H. Liu, I.T. Mugaanire et al., Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 12, 3068 (2020). https://doi.org/10.1021/acsami.9b20254
- W. Zhang, J. Ma, W. Zhang, P. Zhang, W. He et al., A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale 12, 6637 (2020). https://doi.org/10.1039/D0NR01414A
- G. Su, J. Cao, X. Zhang, Y. Zhang, S. Yin et al., Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. J. Mater. Chem. A 8, 2074 (2020). https://doi.org/10.1039/C9TA08111A
- R. An, B. Zhang, L. Han, X. Wang, Y. Zhang et al., Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J. Mater. Sci. 54, 8515 (2019). https://doi.org/10.1007/s10853-019-03438-3
- X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6, 326 (2019). https://doi.org/10.1039/C8MH01188E
- Y.-J. Liu, W.-T. Cao, M.-G. Ma, P. Wan, Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces 9, 25559 (2017). https://doi.org/10.1021/acsami.7b07639
- Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30, 8062 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
- Y. Peng, B. Yan, Y. Li, J. Lan, L. Shi et al., Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J. Mater. Sci. 55, 1280 (2020). https://doi.org/10.1007/s10853-019-04101-7
- Y. Peng, M. Pi, X. Zhang, B. Yan, Y. Li et al., High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 196, 122469 (2020). https://doi.org/10.1016/j.polymer.2020.122469
- Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039 (2019). https://doi.org/10.1016/j.cej.2019.03.287
- L. Guan, S. Yan, X. Liu, X. Li, G. Gao, Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. J. Mater. Chem. B 7, 5230 (2019). https://doi.org/10.1039/C9TB01340G
- A. Keller, J. Pham, H. Warren, Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 5318 (2017). https://doi.org/10.1039/C7TB01247K
- C.-J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10, 5845 (2018). https://doi.org/10.1021/acsami.7b15934
- X. Li, H. Charaya, G.M. Bernard, J.A.W. Elliott, V.K. Michaelis et al., Low-temperature ionic conductivity enhanced by disrupted ice formation in polyampholyte hydrogels. Macromolecules 51, 2723 (2018). https://doi.org/10.1021/acs.macromol.7b02498
- Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, 2104997 (2021). https://doi.org/10.1002/smll.202104997
- H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
- Z. Wu, Q. Ding, Z. Li, Z. Zhou, L. Luo et al., Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. Sci. China Mater. 65, 2540 (2022). https://doi.org/10.1007/s40843-021-2022-1
- G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4, 1600190 (2017). https://doi.org/10.1002/advs.201600190
- T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4, 1600404 (2017). https://doi.org/10.1002/advs.201600404
- X.-F. Zhang, X. Ma, T. Hou, K. Guo, J. Yin et al., Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 58, 7366 (2019). https://doi.org/10.1002/anie.201902578
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, 2110140 (2022). https://doi.org/10.1002/adma.202110140
- G. Chen, J. Huang, J. Gu, S. Peng, X. Xiang et al., Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 8, 6776 (2020). https://doi.org/10.1039/D0TA00002G
- Y. Bai, B. Chen, F. Xiang, J. Zhou, H. Wang et al., Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105, 151903 (2014). https://doi.org/10.1063/1.4898189
- Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- D.H. Rasmussen, A.P. Mackenzie, Phase diagram for the system water–dimethylsulphoxide. Nature 220, 1315 (1968). https://doi.org/10.1038/2201315a0
- W.P. Williams, P.J. Quinn, L.I. Tsonev, R.D. Koynova, The effects of glycerol on the phase behaviour of hydrated distearoylphosphatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim. Biophys. Acta-Biomembr. 1062, 123 (1991). https://doi.org/10.1016/0005-2736(91)90383-J
- M. Matsugami, T. Takamuku, T. Otomo, T. Yamaguchi, Thermal properties and mixing state of ethylene glycol-water binary solutions by calorimetry, large-angle X-ray scattering, and small-angle neutron scattering. J. Phys. Chem. B 110, 12372 (2006). https://doi.org/10.1021/jp061456r
- Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou et al., Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Edit. 56, 14159 (2017). https://doi.org/10.1002/anie.201708614
- D. Xia, P. Wang, X. Ji, N.M. Khashab, J.L. Sessler et al., Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 120, 6070 (2020). https://doi.org/10.1021/acs.chemrev.9b00839
- Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu et al., Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions. Macromolecules 51, 5294 (2018). https://doi.org/10.1021/acs.macromol.8b01124
- Z. Qin, X. Sun, Q. Yu, H. Zhang, X. Wu et al., Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944 (2020). https://doi.org/10.1021/acsami.9b21659
- R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
- X. Dai, Y. Zhang, L. Gao, T. Bai, W. Wang et al., A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27, 3566 (2015). https://doi.org/10.1002/adma.201500534
- D. Zhao, M. Feng, L. Zhang, B. He, X. Chen et al., Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 256, 117580 (2021). https://doi.org/10.1016/j.carbpol.2020.117580
- C.-H. Li, J.-L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32, 1903762 (2020). https://doi.org/10.1002/adma.201903762
- Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446 (2013). https://doi.org/10.1039/C3CS60109A
- Y. Wang, Q. Chen, M. Chen, Y. Guan, Y. Zhang, PHEMA hydrogel films crosslinked with dynamic disulfide bonds: Synthesis, swelling-induced mechanical instability and self-healing. Polym. Chem. 10, 4844 (2019). https://doi.org/10.1039/C9PY00670B
- M. Chen, J. Tian, Y. Liu, H. Cao, R. Li et al., Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 373, 413 (2019). https://doi.org/10.1016/j.cej.2019.05.043
- G. Deng, F. Li, H. Yu, F. Liu, C. Liu et al., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1, 275 (2012). https://doi.org/10.1021/mz200195n
- P. Li, S. Liu, X. Yang, S. Du, W. Tang et al., Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem. Eng. J. 403, 126387 (2021). https://doi.org/10.1016/j.cej.2020.126387
- S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi et al., Self-healing hydrogels: The next paradigm shift in tissue engineering? Adv. Sci. 6, 1801664 (2019). https://doi.org/10.1002/advs.201801664
- J. Amirian, Y. Zeng, M.I. Shekh, G. Sharma, F.J. Stadler et al., In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing. Carbohydr. Polym. 251, 117005 (2021). https://doi.org/10.1016/j.carbpol.2020.117005
- H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1, 1233 (2012). https://doi.org/10.1021/mz300451r
- S. Owusu-Nkwantabisah, J. Gillmor, S. Switalski, M.R. Mis, G. Bennett et al., Synergistic thermoresponsive optical properties of a composite self-healing hydrogel. Macromolecules 50, 3671 (2017). https://doi.org/10.1021/acs.macromol.7b00355
- D.C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44, 4997 (2011). https://doi.org/10.1021/ma200579v
- N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith et al., PH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108, 2651 (2011). https://doi.org/10.1073/pnas.1015862108
- L. Shi, H. Carstensen, K. Hölzl, M. Lunzer, H. Li et al., Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem. Mater. 29, 5816 (2017). https://doi.org/10.1021/acs.chemmater.7b00128
- T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25, 2849 (2013). https://doi.org/10.1002/adma.201205321
- K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984 (2015). https://doi.org/10.1002/anie.201502957
- L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
- L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11, 2561 (2017). https://doi.org/10.1021/acsnano.6b05318
- L. Li, W. Smitthipong, H. Zeng, Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 6, 353 (2015). https://doi.org/10.1039/c4py01415d
- L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater. 27, 1294 (2015). https://doi.org/10.1002/adma.201405166
- G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43, 1191 (2010). https://doi.org/10.1021/ma9022197
- T. Elshaarani, H. Yu, L. Wang, R.S.U. Zain-ul-Abdin et al., Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J. Mater. Chem. B 6, 3831 (2018). https://doi.org/10.1039/C7TB03332J
- Y. Chen, Z. Tan, W. Wang, Y.Y. Peng, R. Narain, Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups. Biomacromol 20, 1028 (2019). https://doi.org/10.1021/acs.biomac.8b01652
- V. Yesilyurt, M.J. Webber, E.A. Appel, C. Godwin, R. Langer et al., Injectable self-healing glucose-responsive hydrogels with ph-regulated mechanical properties. Adv. Mater. 28, 86 (2016). https://doi.org/10.1002/adma.201502902
- J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ et al., Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142 (2012). https://doi.org/10.1021/ma2015134
- J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44, 2536 (2011). https://doi.org/10.1021/ma2001492
- Y. Zhang, L. Tao, S. Li, Y. Wei, Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12, 2894 (2011). https://doi.org/10.1021/bm200423f
- Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrínyi et al., Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114 (2014). https://doi.org/10.1039/C4CS00219A
- G.A. Barcan, X. Zhang, R.M. Waymouth, Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 137, 5650 (2015). https://doi.org/10.1021/jacs.5b02161
- Z. Wei, J.H. Yang, X.J. Du, F. Xu, M. Zrinyi et al., Dextran-based self-healing hydrogels formed by reversible diels–alder reaction under physiological conditions. Macromol. Rapid Commun. 34, 1464 (2013). https://doi.org/10.1002/marc.201300494
- L. Zhou, C. Dai, L. Fan, Y. Jiang, C. Liu et al., Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 31, 2007457 (2021). https://doi.org/10.1002/adfm.202007457
- F. Gao, Z. Xu, Q. Liang, H. Li, L. Peng et al., Osteochondral regeneration with 3d-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv. Sci. 6, 1900867 (2019). https://doi.org/10.1002/advs.201900867
- J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang et al., Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5, 1700848 (2018). https://doi.org/10.1002/advs.201700848
- Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15, 7078 (2021). https://doi.org/10.1021/acsnano.1c00204
- D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanops-triggered dynamic redox catechol chemistry. Nat. Commun. 10, 1487 (2019). https://doi.org/10.1038/s41467-019-09351-2
- L. Han, L. Yan, M. Wang, K. Wang, L. Fang et al., Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater. 30, 5561 (2018). https://doi.org/10.1021/acs.chemmater.8b01446
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- Z. Chen, J. Wang, A. Umar, Y. Wang, H. Li et al., Three-dimensional crumpled graphene-based nanosheets with ultrahigh NO2 gas sensibility. ACS Appl. Mater. Interfaces 9, 11819 (2017). https://doi.org/10.1021/acsami.7b01229
- J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4, 1600319 (2017). https://doi.org/10.1002/advs.201600319
- J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang et al., Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl. Mater. Interfaces 12, 20623 (2020). https://doi.org/10.1021/acsami.0c00578
- J. Wu, Z. Wu, H. Ding, Y. Wei, W. Huang et al., Three-dimensional graphene hydrogel decorated with SnO2 for high-performance no2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 12, 2634 (2020). https://doi.org/10.1021/acsami.9b18098
- H.D. Kim, J. Heo, Y. Hwang, S.Y. Kwak, O.K. Park et al., Extracellular-matrix-based and Arg-Gly-Asp–modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng. Part A 21, 757 (2014). https://doi.org/10.1089/ten.tea.2014.0233
- X. Pan, Q. Wang, D. Ning, L. Dai, K. Liu et al., Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397 (2018). https://doi.org/10.1021/acsbiomaterials.8b00657
- Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668 (2021). https://doi.org/10.1039/D1TC02506F
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300046
- R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Adv. 5, 50165 (2015). https://doi.org/10.1039/C5RA06696D
- A. Bag, D.-B. Moon, K.-H. Park, C.-Y. Cho, N.-E. Lee, Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sens. Actuator B-Chem. 296, 126684 (2019). https://doi.org/10.1016/j.snb.2019.126684
- S.Y. Hong, J.H. Oh, H. Park, J.Y. Yun, S.W. Jin et al., Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater. 9, e448 (2017). https://doi.org/10.1038/am.2017.194
- S. Davies, P. Spanel, D. Smith, Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52, 223 (1997). https://doi.org/10.1038/ki.1997.324
- G. Konvalina, H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47, 66 (2014). https://doi.org/10.1021/ar400070m
- C. Turner, P. Španěl, D. Smith, A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS. Physiol. Meas. 27, 321 (2006). https://doi.org/10.1088/0967-3334/27/4/001
- Y.R. Choi, Y.-G. Yoon, K.S. Choi, J.H. Kang, Y.-S. Shim et al., Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91, 178 (2015). https://doi.org/10.1016/j.carbon.2015.04.082
- W. Yuan, A. Liu, L. Huang, C. Li, G. Shi, High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25, 766 (2013). https://doi.org/10.1002/adma.201203172
- R. Maughan, Carbohydrate metabolism. Surgery 27, 6 (2009). https://doi.org/10.1016/j.mpsur.2008.12.002
- G. Hedenstierna, Oxygen and anesthesia: what lung do we deliver to the post-operative ward? Acta Anaesthesiol. Scand. 56, 675 (2012). https://doi.org/10.1111/j.1399-6576.2012.02689.x
- Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.-S. Shim, J.-M. Jeon et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanops. J. Mater. Chem. A 4, 6070 (2016). https://doi.org/10.1039/C6TA01277A
- R. Arieli, Calculated risk of pulmonary and central nervous system oxygen toxicity: A toxicity index derived from the power equation. Diving Hyperb. Med. 49, 154 (2019). https://doi.org/10.28920/dhm49.3.154-160
- A.L. Harabin, S.S. Survanshi, L.D. Homer, A model for predicting central nervous system oxygen toxicity from hyperbaric oxygen exposures in humans. Toxicol. Appl. Pharmacol. 132, 19 (1995). https://doi.org/10.1006/taap.1995.1082
- R. Arieli, M. Truman, A. Abramovich, Recovery from central nervous system oxygen toxicity in the rat at oxygen pressures between 100 and 300 kPa. Eur. J. Appl. Physiol. 104, 867 (2008). https://doi.org/10.1007/s00421-008-0843-2
- J. Ernsting, Breathing systems in aerospace. in IEE Seminar on Low Flow Anaesthesia Breathing Systems - Technology, Safety and Economics (Ref. No. 1999/060) 7/1 (1999). https://doi.org/10.1049/ic:19990341
- C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
- V. De Santis, M. Singer, Tissue oxygen tension monitoring of organ perfusion: rationale, methodologies, and literature review. Br. J. Anaesth. 115, 357 (2015). https://doi.org/10.1093/bja/aev162
- K.K. Tremper, W.C. Shoemaker, Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock. Crit. Care Med. 9, 706 (1981). https://doi.org/10.1097/00003246-198110000-00007
- F. Liebisch, A. Weltin, J. Marzioch, G.A. Urban, J. Kieninger, Zero-consumption Clark-type microsensor for oxygen monitoring in cell culture and organ-on-chip systems. Sens. Actuator B Chem. 322, 128652 (2020). https://doi.org/10.1016/j.snb.2020.128652
- C.A. Erdmann, M.G. Apte, Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 14, 127 (2004). https://doi.org/10.1111/j.1600-0668.2004.00298.x
- H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang et al., Carbon dioxide gas sensor using a graphene sheet. Sens. Actuator B Chem. 157, 310 (2011). https://doi.org/10.1016/j.snb.2011.03.035
- S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuator B Chem. 193, 692 (2014). https://doi.org/10.1016/j.snb.2013.12.017
- X. Li, B. Tang, B. Wu, C. Hsu, X. Wang, Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection. Ind. Eng. Chem. Res. 60, 4639 (2021). https://doi.org/10.1021/acs.iecr.1c00211
- X. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019 (2015). https://doi.org/10.1039/C5CS00496A
- L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection. Mater. Today 11, 28 (2008). https://doi.org/10.1016/S1369-7021(08)70017-8
- P.-C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev et al., 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900 (2010). https://doi.org/10.1002/adma.200904005
- S. Armenta, F.A. Esteve-Turrillas, M. Alcalà, Analysis of hazardous chemicals by “stand alone” drift tube ion mobility spectrometry: a review. Anal. Methods 12, 1163 (2020). https://doi.org/10.1039/C9AY02268F
- L. Barron, E. Gilchrist, Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal. Chim. Acta 806, 27 (2014). https://doi.org/10.1016/j.aca.2013.10.047
- M.N. Baldin, S.M. Bobrovnikov, A.B. Vorozhtsov, E.V. Gorlov, V.M. Gruznov et al., Effectiveness of combined laser and gas chromatographic remote detection of traces of explosives. Atmos. Ocean. Opt. 32, 227 (2019). https://doi.org/10.1134/S1024856019020039
- M.E. Walsh, Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54, 427 (2001). https://doi.org/10.1016/S0039-9140(00)00541-5
- C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, P. Ponard, Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization. Nucl. Instrum. Methods Phys. Res. Sect A-Accel. Spectrom. Dect. Assoc. Equip. 623, 1050 (2010). https://doi.org/10.1016/j.nima.2010.08.023
- H. Itozaki, Nuclear quadrupole resonance for explosive detection. in Anti-personnel Landmine Detection for Humanitarian Demining: The Current Situation and Future Direction for Japanese Research and Development (eds. Furuta, K. & Ishikawa, J.) 147 (Springer, 2009). https://doi.org/10.1007/978-1-84882-346-4_9
- J. Choi, J.-H. Kim, J.-W. Oh, J.-M. Nam, Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. Nanoscale 11, 20379 (2019). https://doi.org/10.1039/C9NR07439B
- A.S. Chajistamatiou, E.B. Bakeas, Identification of thiocyanates by gas chromatography – mass spectrometry in explosive residues used as a possible marker to indicate black powder usage. Talanta 195, 456 (2019). https://doi.org/10.1016/j.talanta.2018.11.097
- T. Puttasakul, C. Pintavirooj, C. Sangma, W. Sukjee, Hydrogel based-electrochemical gas sensor for explosive material detection. IEEE Sens. J. 19, 8556 (2019). https://doi.org/10.1109/JSEN.2019.2922170
- G. Wang, Y. Li, Z. Cai, X. Dou, A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, 1907043 (2020). https://doi.org/10.1002/adma.201907043
- R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible no2 sensor at room temperature. ACS Sens. 2, 1744 (2017). https://doi.org/10.1021/acssensors.7b00731
- S.-J. Choi, H.-J. Choi, W.-T. Koo, D. Huh, H. Lee et al., Metal–organic framework-templated PdO-Co3O4 nanocubes functionalized by SWCNTs: Improved NO2 reaction kinetics on flexible heating film. ACS Appl. Mater. Interfaces 9, 40593 (2017). https://doi.org/10.1021/acsami.7b11317
- U. Yaqoob, D.-T. Phan, A.S.M.I. Uddin, G.-S. Chung, Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanops hybrid on a PET substrate. Sens. Actuator B Chem. 221, 760 (2015). https://doi.org/10.1016/j.snb.2015.06.137
- S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale et al., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuator B Chem. 240, 426 (2017). https://doi.org/10.1016/j.snb.2016.08.177
- S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han et al., Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuator B Chem. 282, 917 (2019). https://doi.org/10.1016/j.snb.2018.11.142
- J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao et al., Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuator B Chem. 249, 715 (2017). https://doi.org/10.1016/j.snb.2017.04.190
- C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuator B Chem. 261, 587 (2018). https://doi.org/10.1016/j.snb.2017.12.022
- B. Sakthivel, L. Manjakkal, G. Nammalvar, High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 17, 6529 (2017). https://doi.org/10.1109/JSEN.2017.2749334
- D.K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler et al., Ultra-sensitive polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964 (2015). https://doi.org/10.1039/C5RA11512D
- M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763 (2019). https://doi.org/10.1021/acssensors.9b01308
- J.R. Stetter, W.R. Penrose, S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150, S11 (2003). https://doi.org/10.1149/1.1539051
- R.N. Dean, A.K. Rane, M.E. Baginski, J. Richard, Z. Hartzog et al., A capacitive fringing field sensor design for moisture measurement based on printed circuit board technology. IEEE Trans. Instrum. Meas. 61, 1105 (2012). https://doi.org/10.1109/TIM.2011.2173041
- A. Salehi, A. Nikfarjam, D.J. Kalantari, Highly sensitive humidity sensor using Pd/porous GaAs schottky contact. IEEE Sens. J. 6, 1415 (2006). https://doi.org/10.1109/JSEN.2006.881371
- F. Aziz, M.H. Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov et al., Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 014001 (2011). https://doi.org/10.1088/0957-0233/23/1/014001
- L. Xu, R. Wang, Q. Xiao, D. Zhang, Y. Liu, Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chinese Phys. Lett. 28, 070702 (2011). https://doi.org/10.1088/0256-307X/28/7/070702
- J.-H. Kim, S.-M. Hong, J.-S. Lee, B.-M. Moon, K. Kim, High sensitivity capacitive humidity sensor with a novel polyimide design fabricated by MEMS technology. in 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems 703 (2009). https://doi.org/10.1109/NEMS.2009.5068676
- C. Jung, S.-J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022). https://doi.org/10.1126/sciadv.abm8598
- M.M.F. Choi, O.L. Tse, Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Anal. Chim. Acta 378, 127 (1999). https://doi.org/10.1016/S0003-2670(98)00614-X
- M.C. Moreno-Bondi, G. Orellana, M. Bedoya, Fibre optic sensors for humidity monitoring, in Optical Sensors: Industrial Environmental and Diagnostic Applications. ed. by R. Narayanaswamy, O.S. Wolfbeis (Springer, Germany, 2004), p.251. https://doi.org/10.1007/978-3-662-09111-1_11
- J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6, 595 (2019). https://doi.org/10.1039/C8MH01160E
- J.C. Tellis, C.A. Strulson, M.M. Myers, K.A. Kneas, Relative humidity sensors based on an environment-sensitive fluorophore in hydrogel films. Anal. Chem. 83, 928 (2011). https://doi.org/10.1021/ac102616w
- A. Buchberger, S. Peterka, A.M. Coclite, A. Bergmann, Fast optical humidity sensor based on hydrogel thin film expansion for harsh environment. Sensors 19, 999 (2019). https://doi.org/10.3390/s19050999
- Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123 (2018). https://doi.org/10.1016/j.bios.2018.05.038
- Y. Wang, R. Duan, Z. Tong, B. Wang, Z. Zhang et al., Sensitively humidity-driven actuator and sensor derived from natural skin system. Sens. Actuator B Chem. 370, 132388 (2022). https://doi.org/10.1016/j.snb.2022.132388
- J. Zhang, X.-X. Wang, B. Zhang, S. Ramakrishna, M. Yu et al., In situ assembly of well-dispersed ag nanops throughout electrospun alginate nanofibers for monitoring human breath—smart fabrics. ACS Appl. Mater. Interfaces 10, 19863 (2018). https://doi.org/10.1021/acsami.8b01718
- S. Zeng, J. Zhang, G. Zu, J. Huang, Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr. Polym. 267, 118198 (2021). https://doi.org/10.1016/j.carbpol.2021.118198
- Q. Ding, H. Wang, Z. Zhou, Z. Wu, K. Tao et al., Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat 4, e1147 (2023). https://doi.org/10.1002/smm2.1147
- J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao et al., A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7, 2926 (2015). https://doi.org/10.1039/C4NR06494A
- Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
- H.-H. Chou, A. Nguyen, A. Chortos, J.W.F. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). https://doi.org/10.1038/ncomms9011
- F. Zhang, Y. Zang, D. Huang, C. Di, D. Zhu, Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). https://doi.org/10.1038/ncomms9356
- S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 (2021). https://doi.org/10.1002/adfm.202100940
- Y. Fu, H. He, Y. Liu, Q. Wang, L. Xing et al., Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. J. Mater. Chem. C 5, 1231 (2017). https://doi.org/10.1039/C6TC04272D
- B. Ying, Q. Wu, J. Li, X. Liu, An ambient-stable and stretchable ionic skin with multimodal sensation. Mater. Horiz. 7, 477 (2020). https://doi.org/10.1039/C9MH00715F
- X. Pan, Q. Wang, R. Guo, S. Cao, H. Wu et al., An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J. Mater. Chem. A 8, 17498 (2020). https://doi.org/10.1039/C9TA13407G
References
S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
T. Li, W. Yin, S. Gao, Y. Sun, P. Xu et al., The combination of two-dimensional nanomaterials with metal oxide nanops for gas sensors: A review. Nanomaterials 12, 982 (2022). https://doi.org/10.3390/nano12060982
L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuator A Phys. 267, 242 (2017). https://doi.org/10.1016/j.sna.2017.10.021
Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6, 470 (2019). https://doi.org/10.1039/C8MH01365A
J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020). https://doi.org/10.1016/j.jhazmat.2019.120919
Z. Yuan, Q. Zhao, C. Xie, J. Liang, X. Duan et al., Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature. Sens. Actuator B Chem. 355, 131300 (2022). https://doi.org/10.1016/j.snb.2021.131300
X. Bai, H. Lv, Z. Liu, J. Chen, J. Wang et al., Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J. Hazard. Mater. 416, 125830 (2021). https://doi.org/10.1016/j.jhazmat.2021.125830
D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 233103 (2014). https://doi.org/10.1063/1.4903358
T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95 (2016). https://doi.org/10.1007/s40820-015-0073-1
Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28, 1205 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang et al., In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard. Mater. 385, 121570 (2020). https://doi.org/10.1016/j.jhazmat.2019.121570
K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim et al., Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuator B Chem. 302, 127179 (2020). https://doi.org/10.1016/j.snb.2019.127179
X. Liu, S. Qiao, Y. Ma, Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Express 30, 1304 (2022). https://doi.org/10.1364/OE.446294
G.P. Mishra, D. Kumar, V.S. Chaudhary, S. Kumar, Design and sensitivity improvement of microstructured-core photonic crystal fiber based sensor for methane and hydrogen fluoride detection. IEEE Sens. J. 22, 1265 (2022). https://doi.org/10.1109/JSEN.2021.3131694
Y. Chen, P. Xu, X. Li, Y. Ren, Y. Deng, High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens. Actuator B Chem. 267, 83 (2018). https://doi.org/10.1016/j.snb.2018.03.180
J.-H. Lee, J.-H. Kim, J.-Y. Kim, A. Mirzaei, H.W. Kim et al., Ppb-level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors 19, 4276 (2019). https://doi.org/10.3390/s19194276
C. Dong, M. Jiang, Y. Tao, Y. Shen, Y. Lu et al., Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sens. Actuator B Chem. 257, 419 (2018). https://doi.org/10.1016/j.snb.2017.10.175
Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33, 2101262 (2021). https://doi.org/10.1002/adma.202101262
A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268 (2019). https://doi.org/10.1021/acssensors.8b00937
H. Haick, Y.Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 1423 (2014). https://doi.org/10.1039/C3CS60329F
F. Güder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan et al., Paper-based electrical respiration sensor. Angew. Chem. Int. Edit. 55, 5727 (2016). https://doi.org/10.1002/anie.201511805
A. Amann, B.L. Costello De, W. Miekisch, J. Schubert, B. Buszewski et al., The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8, 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184 (2017). https://doi.org/10.1021/acsami.7b11055
H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuator B Chem. 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
W. Liu, Y. Zheng, Z. Wang, Z. Wang, J. Yang et al., Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown ZnO-Bi2O3 nanosheets. Adv. Mater. Interfaces 8, 2001978 (2021). https://doi.org/10.1002/admi.202001978
G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang et al., Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuator B Chem. 283, 590 (2019). https://doi.org/10.1016/j.snb.2018.09.117
H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: A review. ACS Appl. Mater. Interfaces 12, 31037 (2020). https://doi.org/10.1021/acsami.0c06435
Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373 (2016). https://doi.org/10.1002/adma.201504366
T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288 (2019). https://doi.org/10.1021/acs.accounts.8b00497
Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897 (2007). https://doi.org/10.1002/adma.200602223
B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, 1901408 (2019). https://doi.org/10.1002/adma.201901408
F. Guan, Z. Han, M. Jin, Z. Wu, Y. Chen et al., Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv. Fiber Mater. 3, 128 (2021). https://doi.org/10.1007/s42765-021-00066-y
L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4, 98 (2022). https://doi.org/10.1007/s42765-021-00086-8
Q. Li, C. Ding, W. Yuan, R. Xie, X. Zhou et al., Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 3, 302 (2021). https://doi.org/10.1007/s42765-021-00079-7
L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 13, 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
Y. Zheng, Y. Wang, Z. Li, Z. Yuan, S. Guo et al., MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter 6, 506 (2023). https://doi.org/10.1016/j.matt.2022.11.020
K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4, 1800628 (2019). https://doi.org/10.1002/admt.201800628
W. Chen, X. Yan, Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 43, 175 (2020). https://doi.org/10.1016/j.jmst.2019.11.010
X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015). https://doi.org/10.1002/advs.201500169
Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang et al., Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349, 400 (2015). https://doi.org/10.1126/science.aaa7952
Y. Liu, M. Li, J. Liu, X. Chen, Mechanism of surface wrinkle modulation for a stiff film on compliant substrate. J. Appl. Mech. 84, 051011 (2017). https://doi.org/10.1115/1.4036256
J. Yun, Y. Lim, G.N. Jang, D. Kim, S.-J. Lee et al., Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 19, 401 (2016). https://doi.org/10.1016/j.nanoen.2015.11.023
L.T. Duy, T.Q. Trung, A. Hanif, S. Siddiqui, E. Roh et al., A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Mater. 4, 025062 (2017). https://doi.org/10.1088/2053-1583/aa6783
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986 (2018). https://doi.org/10.1021/acsnano.7b07460
X. Kou, N. Xie, F. Chen, T. Wang, L. Guo et al., Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuator B Chem. 256, 861 (2018). https://doi.org/10.1016/j.snb.2017.10.011
S. Nie, D. Dastan, J. Li, W.-D. Zhou, S.-S. Wu et al., Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids 150, 109864 (2021). https://doi.org/10.1016/j.jpcs.2020.109864
Z. Li, X. Liu, M. Zhou, S. Zhang, S. Cao et al., Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J. Hazard. Mater. 415, 125757 (2021). https://doi.org/10.1016/j.jhazmat.2021.125757
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687 (2021). https://doi.org/10.1021/acsnano.1c04206
N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni et al., 25th anniversary : Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26, 85 (2014). https://doi.org/10.1002/adma.201303233
Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375 (2021). https://doi.org/10.1016/j.bioactmat.2020.10.029
J. Tavakoli, Y. Tang, Hydrogel based sensors for biomedical applications: An updated review. Polymers 9, 364 (2017). https://doi.org/10.3390/polym9080364
X. Liu, J. Liu, S. Lin, X. Zhao, Hydrogel machines. Mater. Today 36, 102 (2020). https://doi.org/10.1016/j.mattod.2019.12.026
E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105 (2015). https://doi.org/10.1016/j.jare.2013.07.006
O. Wichterle, D. Lím, Hydrophilic gels for biological use. Nature 185, 117 (1960). https://doi.org/10.1038/185117a0
N. Dehbari, J. Tavakoli, J. Zhao, Y. Tang, In situ formed internal water channels improving water swelling and mechanical properties of water swellable rubber composites. J. Appl. Polym. Sci. 134, 44548 (2017). https://doi.org/10.1002/app.44548
M. Cretich, G. Pirri, F. Damin, I. Solinas, M. Chiari, A new polymeric coating for protein microarrays. Anal. Biochem. 332, 67 (2004). https://doi.org/10.1016/j.ab.2004.05.041
J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui, et al., Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18 (2012). https://doi.org/10.1016/j.addr.2012.09.010
A. Khademhosseini, R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.021
K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307 (2002). https://doi.org/10.1016/S0142-9612(02)00175-8
D.R. Griffin, W.M. Weaver, P.O. Scumpia, D. Di Carlo, T. Segura, Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737 (2015). https://doi.org/10.1038/nmat4294
J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5
K. Zhai, H. Wang, Q. Ding, Z. Wu, M. Ding et al., High-performance strain sensors based on organohydrogel microsphere film for wearable human–computer interfacing. Adv. Sci. 10, 2205632 (2023). https://doi.org/10.1002/advs.202205632
W. Huang, S. Cheng, X. Wang, Y. Zhang, L. Chen et al., Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel. Adv. Funct. Mater. 31, 2009189 (2021). https://doi.org/10.1002/adfm.202009189
E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanop–hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015). https://doi.org/10.1002/advs.201400010
Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat 4, e1141 (2022). https://doi.org/10.1002/smm2.1141
H. Zhi, J. Gao, L. Feng, Hydrogel-based gas sensors for NO2 and NH3. ACS Sens. 5, 772 (2020). https://doi.org/10.1021/acssensors.9b02383
Y. Wei, H. Wang, Q. Ding, Z. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horiz. 9, 1921 (2022). https://doi.org/10.1039/D2MH00284A
J. Wu, Z. Wu, W. Huang, X. Yang, Y. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12, 52070 (2020). https://doi.org/10.1021/acsami.0c17669
L. Liu, T. Fei, X. Guan, X. Lin, H. Zhao et al., Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sens. Actuator B Chem. 320, 128318 (2020). https://doi.org/10.1016/j.snb.2020.128318
L. Liu, T. Fei, X. Guan, H. Zhao, T. Zhang, Humidity-activated ammonia sensor with excellent selectivity for exhaled breath analysis. Sens. Actuator B Chem. 334, 129625 (2021). https://doi.org/10.1016/j.snb.2021.129625
R. Wang, M. Zhang, Y. Guan, M. Chen, Y. Zhang, A CO2-responsive hydrogel film for optical sensing of dissolved CO2. Soft Matter 15, 6107 (2019). https://doi.org/10.1039/C9SM00958B
J. Wu, K. Tao, J. Zhang, Y. Guo, J. Miao et al., Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J. Mater. Chem. A 4, 8130 (2016). https://doi.org/10.1039/C6TA01426G
Y. Lin, Z. Wu, C. Li, Q. Ding, K. Tao et al., Deformable, transparent, high-performance, room-temperature oxygen sensors based on ion-conductive, environment-tolerant, and green organohydrogels. EcoMat 4, e12220 (2022). https://doi.org/10.1002/eom2.12220
L. Liu, T. Fei, X. Guan, H. Zhao, T. Zhang, Highly sensitive and chemically stable NH3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosens. Bioelectron. 191, 113459 (2021). https://doi.org/10.1016/j.bios.2021.113459
Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
Y. Gao, F. Jia, G. Gao, Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature. Chem. Eng. J. 430, 132919 (2022). https://doi.org/10.1016/j.cej.2021.132919
M. Xia, N. Pan, C. Zhang, C. Zhang, W. Fan et al., Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels. ACS Nano 16, 4714 (2022). https://doi.org/10.1021/acsnano.1c11505
Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 9, 1356 (2022). https://doi.org/10.1039/D1MH01871J
A. Bag, N. Lee, Recent advancements in development of wearable gas sensors. Adv. Mater. Technol. 6, 2000883 (2021). https://doi.org/10.1002/admt.202000883
Y. Liu, L. Wang, Y. Mi, S. Zhao, S. Qi et al., Transparent stretchable hydrogel sensors: materials, design and applications. J. Mater. Chem. C 10, 13351 (2022). https://doi.org/10.1039/D2TC01104B
B. Guo, Z. Ma, L. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. Pt. B: Polym. Phys. 57, 1606 (2019). https://doi.org/10.1002/polb.24899
Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13, 2128 (2021). https://doi.org/10.1021/acsami.0c21841
A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016). https://doi.org/10.1038/natrevmats.2015.12
Z. Sun, C. Song, C. Wang, Y. Hu, J. Wu, Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol. Pharmaceutics 17, 373 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01020
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
T. Jiang, J.G. Munguia-Lopez, K. Gu, M.M. Bavoux, S. Flores-Torres et al., Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 12, 015024 (2019). https://doi.org/10.1088/1758-5090/ab3a5c
A. Fatimi, O.V. Okoro, D. Podstawczyk, J. Siminska-Stanny, A. Shavandi, Natural hydrogel-based bio-inks for 3d bioprinting in tissue engineering: A review. Gels 8, 179 (2022). https://doi.org/10.3390/gels8030179
M.K. Włodarczyk-Biegun, A. del Campo, 3D bioprinting of structural proteins. Biomaterials 134, 180 (2017). https://doi.org/10.1016/j.biomaterials.2017.04.019
J.W. Chang, S.A. Park, J.-K. Park, J.W. Choi, Y.-S. Kim et al., Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: Preliminary report. Artif. Organs 38, E95 (2014). https://doi.org/10.1111/aor.12310
K. Gul, R.-Y. Gan, C.-X. Sun, G. Jiao, D.-T. Wu et al., Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit. Rev. Food Sci. Nutr. 62, 3817 (2022). https://doi.org/10.1080/10408398.2020.1870034
M. Klein, E. Poverenov, Natural biopolymer-based hydrogels for use in food and agriculture. J. Sci. Food Agric. 100, 2337 (2020). https://doi.org/10.1002/jsfa.10274
S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar, S. Ikram, A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int. J. Biol. Macromol. 136, 870 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.113
J. Liu, H. Wang, R. Ou, X. Yi, T. Liu et al., Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chem. Eng. J. 426, 130722 (2021). https://doi.org/10.1016/j.cej.2021.130722
X. Liu, Y. Yang, M.E. Inda, S. Lin, J. Wu et al., Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021). https://doi.org/10.1002/adfm.202010918
M.K. Shin, G.M. Spinks, S.R. Shin, S.I. Kim, S.J. Kim, Nanocomposite hydrogel with high toughness for bioactuators. Adv. Mater. 21, 1712 (2009). https://doi.org/10.1002/adma.200802205
L. Liu, S. Jiang, Y. Sun, S. Agarwal, Giving direction to motion and surface with ultra-fast speed using oriented hydrogel fibers. Adv. Funct. Mater. 26, 1021 (2016). https://doi.org/10.1002/adfm.201503612
J. Odent, S. Vanderstappen, A. Toncheva, E. Pichon, T.J. Wallin et al., Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing. J. Mater. Chem. A 7, 15395 (2019). https://doi.org/10.1039/C9TA03547H
J. Liu, S. Lin, X. Liu, Z. Qin, Y. Yang et al., Fatigue-resistant adhesion of hydrogels. Nat. Commun. 11, 1071 (2020). https://doi.org/10.1038/s41467-020-14871-3
H. Lei, L. Dong, Y. Li, J. Zhang, H. Chen et al., Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 11, 4032 (2020). https://doi.org/10.1038/s41467-020-17877-z
M.L. Pita-López, G. Fletes-Vargas, H. Espinosa-Andrews, R. Rodríguez-Rodríguez, Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 145, 110176 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110176
M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969 (2014). https://doi.org/10.1021/ja500205v
X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30, 1910748 (2020). https://doi.org/10.1002/adfm.201910748
H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang et al., A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv. Funct. Mater. 25, 1598 (2015). https://doi.org/10.1002/adfm.201404357
A. Phadke, C. Zhang, B. Arman, C.-C. Hsu, R.A. Mashelkar et al., Rapid self-healing hydrogels. Proc. Natl. Acad. Sci. 109, 4383 (2012). https://doi.org/10.1073/pnas.1201122109
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
H. Kamata, Y. Akagi, Y. Kayasuga-Kariya, U. Chung, T. Sakai, “Nonswellable” hydrogel without mechanical hysteresis. Science 343, 873 (2014). https://doi.org/10.1126/science.1247811
Z. Han, P. Wang, Y. Lu, Z. Jia, S. Qu et al., A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8, eabl5066 (2022). https://doi.org/10.1126/sciadv.abl5066
T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida et al., Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379 (2008). https://doi.org/10.1021/ma800476x
K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/De-swelling properties. Adv. Mater. 14, 1120 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9
F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R-Rep. 75, 1 (2014). https://doi.org/10.1016/j.mser.2013.11.001
R. Kotani, S. Yokoyama, S. Nobusue, S. Yamaguchi, A. Osuka et al., Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat. Commun. 13, 303 (2022). https://doi.org/10.1038/s41467-022-27972-y
R.A. Korver, I.T. Koevoets, C. Testerink, Out of shape during stress: a key role for auxin. Trends Plant Sci. 23, 783 (2018). https://doi.org/10.1016/j.tplants.2018.05.011
T. Matsunaga, T. Sakai, Y. Akagi, U. Chung, M. Shibayama, SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules 42, 6245 (2009). https://doi.org/10.1021/ma901013q
A. Sugimura, M. Asai, T. Matsunaga, Y. Akagi, T. Sakai et al., Mechanical properties of a polymer network of Tetra-PEG gel. Polym. J. 45, 300 (2013). https://doi.org/10.1038/pj.2012.149
M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang et al., Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3d printability. Adv. Mater. 29, 1700533 (2017). https://doi.org/10.1002/adma.201700533
Y. Wang, F. Chen, Z. Liu, Z. Tang, Q. Yang et al., A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew. Chem. Int. Edit. 58, 15707 (2019). https://doi.org/10.1002/anie.201908985
H. Li, H. Zheng, Y.J. Tan, S.B. Tor, K. Zhou, Development of an ultrastretchable double-network hydrogel for flexible strain sensors. ACS Appl. Mater. Interfaces 13, 12814 (2021). https://doi.org/10.1021/acsami.0c19104
S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen et al., Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 393, 124728 (2020). https://doi.org/10.1016/j.cej.2020.124728
Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25, 4171 (2013). https://doi.org/10.1002/adma.201300817
D. Chimene, R. Kaunas, A.K. Gaharwar, Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv. Mater. 32, 1902026 (2020). https://doi.org/10.1002/adma.201902026
T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki et al., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013). https://doi.org/10.1038/nmat3713
S. Xia, S. Song, G. Gao, Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 354, 817 (2018). https://doi.org/10.1016/j.cej.2018.08.053
J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11, 2364 (2019). https://doi.org/10.1021/acsami.8b17437
Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8, 3437 (2020). https://doi.org/10.1039/C9TB02570G
B. Yao, H. Wang, Q. Zhou, M. Wu, M. Zhang et al., Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017). https://doi.org/10.1002/adma.201700974
X. Hu, X.-X. Xia, S.-C. Huang, Z.-G. Qian, Development of adhesive and conductive resilin-based hydrogels for wearable sensors. Biomacromol 20, 3283 (2019). https://doi.org/10.1021/acs.biomac.9b00389
X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.102
Z. Chen, J.W.F. To, C. Wang, Z. Lu, N. Liu et al., A three-dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4, 1400207 (2014). https://doi.org/10.1002/aenm.201400207
Z. Wang, H. Zhou, J. Lai, B. Yan, H. Liu et al., Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. J. Mater. Chem. C 6, 9200 (2018). https://doi.org/10.1039/C8TC02505C
J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31, 4553 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao et al., Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. 109, 9287 (2012). https://doi.org/10.1073/pnas.1202636109
J. Wu, K. Tao, J. Miao, L.K. Norford, Improved selectivity and sensitivity of gas sensing using a 3d reduced graphene oxide hydrogel with an integrated microheater. ACS Appl. Mater. Interfaces 7, 27502 (2015). https://doi.org/10.1021/acsami.5b09695
P. Wei, T. Chen, G. Chen, H. Liu, I.T. Mugaanire et al., Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 12, 3068 (2020). https://doi.org/10.1021/acsami.9b20254
W. Zhang, J. Ma, W. Zhang, P. Zhang, W. He et al., A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale 12, 6637 (2020). https://doi.org/10.1039/D0NR01414A
G. Su, J. Cao, X. Zhang, Y. Zhang, S. Yin et al., Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. J. Mater. Chem. A 8, 2074 (2020). https://doi.org/10.1039/C9TA08111A
R. An, B. Zhang, L. Han, X. Wang, Y. Zhang et al., Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J. Mater. Sci. 54, 8515 (2019). https://doi.org/10.1007/s10853-019-03438-3
X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6, 326 (2019). https://doi.org/10.1039/C8MH01188E
Y.-J. Liu, W.-T. Cao, M.-G. Ma, P. Wan, Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces 9, 25559 (2017). https://doi.org/10.1021/acsami.7b07639
Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30, 8062 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
Y. Peng, B. Yan, Y. Li, J. Lan, L. Shi et al., Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J. Mater. Sci. 55, 1280 (2020). https://doi.org/10.1007/s10853-019-04101-7
Y. Peng, M. Pi, X. Zhang, B. Yan, Y. Li et al., High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 196, 122469 (2020). https://doi.org/10.1016/j.polymer.2020.122469
Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039 (2019). https://doi.org/10.1016/j.cej.2019.03.287
L. Guan, S. Yan, X. Liu, X. Li, G. Gao, Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. J. Mater. Chem. B 7, 5230 (2019). https://doi.org/10.1039/C9TB01340G
A. Keller, J. Pham, H. Warren, Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 5318 (2017). https://doi.org/10.1039/C7TB01247K
C.-J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10, 5845 (2018). https://doi.org/10.1021/acsami.7b15934
X. Li, H. Charaya, G.M. Bernard, J.A.W. Elliott, V.K. Michaelis et al., Low-temperature ionic conductivity enhanced by disrupted ice formation in polyampholyte hydrogels. Macromolecules 51, 2723 (2018). https://doi.org/10.1021/acs.macromol.7b02498
Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, 2104997 (2021). https://doi.org/10.1002/smll.202104997
H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
Z. Wu, Q. Ding, Z. Li, Z. Zhou, L. Luo et al., Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. Sci. China Mater. 65, 2540 (2022). https://doi.org/10.1007/s40843-021-2022-1
G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4, 1600190 (2017). https://doi.org/10.1002/advs.201600190
T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4, 1600404 (2017). https://doi.org/10.1002/advs.201600404
X.-F. Zhang, X. Ma, T. Hou, K. Guo, J. Yin et al., Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 58, 7366 (2019). https://doi.org/10.1002/anie.201902578
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, 2110140 (2022). https://doi.org/10.1002/adma.202110140
G. Chen, J. Huang, J. Gu, S. Peng, X. Xiang et al., Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 8, 6776 (2020). https://doi.org/10.1039/D0TA00002G
Y. Bai, B. Chen, F. Xiang, J. Zhou, H. Wang et al., Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105, 151903 (2014). https://doi.org/10.1063/1.4898189
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430 (2020). https://doi.org/10.1002/adfm.202003430
D.H. Rasmussen, A.P. Mackenzie, Phase diagram for the system water–dimethylsulphoxide. Nature 220, 1315 (1968). https://doi.org/10.1038/2201315a0
W.P. Williams, P.J. Quinn, L.I. Tsonev, R.D. Koynova, The effects of glycerol on the phase behaviour of hydrated distearoylphosphatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim. Biophys. Acta-Biomembr. 1062, 123 (1991). https://doi.org/10.1016/0005-2736(91)90383-J
M. Matsugami, T. Takamuku, T. Otomo, T. Yamaguchi, Thermal properties and mixing state of ethylene glycol-water binary solutions by calorimetry, large-angle X-ray scattering, and small-angle neutron scattering. J. Phys. Chem. B 110, 12372 (2006). https://doi.org/10.1021/jp061456r
Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou et al., Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Edit. 56, 14159 (2017). https://doi.org/10.1002/anie.201708614
D. Xia, P. Wang, X. Ji, N.M. Khashab, J.L. Sessler et al., Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 120, 6070 (2020). https://doi.org/10.1021/acs.chemrev.9b00839
Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu et al., Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions. Macromolecules 51, 5294 (2018). https://doi.org/10.1021/acs.macromol.8b01124
Z. Qin, X. Sun, Q. Yu, H. Zhang, X. Wu et al., Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944 (2020). https://doi.org/10.1021/acsami.9b21659
R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
X. Dai, Y. Zhang, L. Gao, T. Bai, W. Wang et al., A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27, 3566 (2015). https://doi.org/10.1002/adma.201500534
D. Zhao, M. Feng, L. Zhang, B. He, X. Chen et al., Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 256, 117580 (2021). https://doi.org/10.1016/j.carbpol.2020.117580
C.-H. Li, J.-L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32, 1903762 (2020). https://doi.org/10.1002/adma.201903762
Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446 (2013). https://doi.org/10.1039/C3CS60109A
Y. Wang, Q. Chen, M. Chen, Y. Guan, Y. Zhang, PHEMA hydrogel films crosslinked with dynamic disulfide bonds: Synthesis, swelling-induced mechanical instability and self-healing. Polym. Chem. 10, 4844 (2019). https://doi.org/10.1039/C9PY00670B
M. Chen, J. Tian, Y. Liu, H. Cao, R. Li et al., Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 373, 413 (2019). https://doi.org/10.1016/j.cej.2019.05.043
G. Deng, F. Li, H. Yu, F. Liu, C. Liu et al., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1, 275 (2012). https://doi.org/10.1021/mz200195n
P. Li, S. Liu, X. Yang, S. Du, W. Tang et al., Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem. Eng. J. 403, 126387 (2021). https://doi.org/10.1016/j.cej.2020.126387
S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi et al., Self-healing hydrogels: The next paradigm shift in tissue engineering? Adv. Sci. 6, 1801664 (2019). https://doi.org/10.1002/advs.201801664
J. Amirian, Y. Zeng, M.I. Shekh, G. Sharma, F.J. Stadler et al., In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing. Carbohydr. Polym. 251, 117005 (2021). https://doi.org/10.1016/j.carbpol.2020.117005
H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1, 1233 (2012). https://doi.org/10.1021/mz300451r
S. Owusu-Nkwantabisah, J. Gillmor, S. Switalski, M.R. Mis, G. Bennett et al., Synergistic thermoresponsive optical properties of a composite self-healing hydrogel. Macromolecules 50, 3671 (2017). https://doi.org/10.1021/acs.macromol.7b00355
D.C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44, 4997 (2011). https://doi.org/10.1021/ma200579v
N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith et al., PH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108, 2651 (2011). https://doi.org/10.1073/pnas.1015862108
L. Shi, H. Carstensen, K. Hölzl, M. Lunzer, H. Li et al., Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem. Mater. 29, 5816 (2017). https://doi.org/10.1021/acs.chemmater.7b00128
T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25, 2849 (2013). https://doi.org/10.1002/adma.201205321
K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984 (2015). https://doi.org/10.1002/anie.201502957
L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11, 2561 (2017). https://doi.org/10.1021/acsnano.6b05318
L. Li, W. Smitthipong, H. Zeng, Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 6, 353 (2015). https://doi.org/10.1039/c4py01415d
L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater. 27, 1294 (2015). https://doi.org/10.1002/adma.201405166
G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43, 1191 (2010). https://doi.org/10.1021/ma9022197
T. Elshaarani, H. Yu, L. Wang, R.S.U. Zain-ul-Abdin et al., Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J. Mater. Chem. B 6, 3831 (2018). https://doi.org/10.1039/C7TB03332J
Y. Chen, Z. Tan, W. Wang, Y.Y. Peng, R. Narain, Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups. Biomacromol 20, 1028 (2019). https://doi.org/10.1021/acs.biomac.8b01652
V. Yesilyurt, M.J. Webber, E.A. Appel, C. Godwin, R. Langer et al., Injectable self-healing glucose-responsive hydrogels with ph-regulated mechanical properties. Adv. Mater. 28, 86 (2016). https://doi.org/10.1002/adma.201502902
J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ et al., Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142 (2012). https://doi.org/10.1021/ma2015134
J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44, 2536 (2011). https://doi.org/10.1021/ma2001492
Y. Zhang, L. Tao, S. Li, Y. Wei, Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12, 2894 (2011). https://doi.org/10.1021/bm200423f
Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrínyi et al., Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114 (2014). https://doi.org/10.1039/C4CS00219A
G.A. Barcan, X. Zhang, R.M. Waymouth, Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 137, 5650 (2015). https://doi.org/10.1021/jacs.5b02161
Z. Wei, J.H. Yang, X.J. Du, F. Xu, M. Zrinyi et al., Dextran-based self-healing hydrogels formed by reversible diels–alder reaction under physiological conditions. Macromol. Rapid Commun. 34, 1464 (2013). https://doi.org/10.1002/marc.201300494
L. Zhou, C. Dai, L. Fan, Y. Jiang, C. Liu et al., Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 31, 2007457 (2021). https://doi.org/10.1002/adfm.202007457
F. Gao, Z. Xu, Q. Liang, H. Li, L. Peng et al., Osteochondral regeneration with 3d-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv. Sci. 6, 1900867 (2019). https://doi.org/10.1002/advs.201900867
J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang et al., Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5, 1700848 (2018). https://doi.org/10.1002/advs.201700848
Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15, 7078 (2021). https://doi.org/10.1021/acsnano.1c00204
D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanops-triggered dynamic redox catechol chemistry. Nat. Commun. 10, 1487 (2019). https://doi.org/10.1038/s41467-019-09351-2
L. Han, L. Yan, M. Wang, K. Wang, L. Fang et al., Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater. 30, 5561 (2018). https://doi.org/10.1021/acs.chemmater.8b01446
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
Z. Chen, J. Wang, A. Umar, Y. Wang, H. Li et al., Three-dimensional crumpled graphene-based nanosheets with ultrahigh NO2 gas sensibility. ACS Appl. Mater. Interfaces 9, 11819 (2017). https://doi.org/10.1021/acsami.7b01229
J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4, 1600319 (2017). https://doi.org/10.1002/advs.201600319
J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang et al., Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl. Mater. Interfaces 12, 20623 (2020). https://doi.org/10.1021/acsami.0c00578
J. Wu, Z. Wu, H. Ding, Y. Wei, W. Huang et al., Three-dimensional graphene hydrogel decorated with SnO2 for high-performance no2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 12, 2634 (2020). https://doi.org/10.1021/acsami.9b18098
H.D. Kim, J. Heo, Y. Hwang, S.Y. Kwak, O.K. Park et al., Extracellular-matrix-based and Arg-Gly-Asp–modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng. Part A 21, 757 (2014). https://doi.org/10.1089/ten.tea.2014.0233
X. Pan, Q. Wang, D. Ning, L. Dai, K. Liu et al., Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397 (2018). https://doi.org/10.1021/acsbiomaterials.8b00657
Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668 (2021). https://doi.org/10.1039/D1TC02506F
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300046
R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Adv. 5, 50165 (2015). https://doi.org/10.1039/C5RA06696D
A. Bag, D.-B. Moon, K.-H. Park, C.-Y. Cho, N.-E. Lee, Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sens. Actuator B-Chem. 296, 126684 (2019). https://doi.org/10.1016/j.snb.2019.126684
S.Y. Hong, J.H. Oh, H. Park, J.Y. Yun, S.W. Jin et al., Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater. 9, e448 (2017). https://doi.org/10.1038/am.2017.194
S. Davies, P. Spanel, D. Smith, Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52, 223 (1997). https://doi.org/10.1038/ki.1997.324
G. Konvalina, H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47, 66 (2014). https://doi.org/10.1021/ar400070m
C. Turner, P. Španěl, D. Smith, A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS. Physiol. Meas. 27, 321 (2006). https://doi.org/10.1088/0967-3334/27/4/001
Y.R. Choi, Y.-G. Yoon, K.S. Choi, J.H. Kang, Y.-S. Shim et al., Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91, 178 (2015). https://doi.org/10.1016/j.carbon.2015.04.082
W. Yuan, A. Liu, L. Huang, C. Li, G. Shi, High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25, 766 (2013). https://doi.org/10.1002/adma.201203172
R. Maughan, Carbohydrate metabolism. Surgery 27, 6 (2009). https://doi.org/10.1016/j.mpsur.2008.12.002
G. Hedenstierna, Oxygen and anesthesia: what lung do we deliver to the post-operative ward? Acta Anaesthesiol. Scand. 56, 675 (2012). https://doi.org/10.1111/j.1399-6576.2012.02689.x
Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.-S. Shim, J.-M. Jeon et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanops. J. Mater. Chem. A 4, 6070 (2016). https://doi.org/10.1039/C6TA01277A
R. Arieli, Calculated risk of pulmonary and central nervous system oxygen toxicity: A toxicity index derived from the power equation. Diving Hyperb. Med. 49, 154 (2019). https://doi.org/10.28920/dhm49.3.154-160
A.L. Harabin, S.S. Survanshi, L.D. Homer, A model for predicting central nervous system oxygen toxicity from hyperbaric oxygen exposures in humans. Toxicol. Appl. Pharmacol. 132, 19 (1995). https://doi.org/10.1006/taap.1995.1082
R. Arieli, M. Truman, A. Abramovich, Recovery from central nervous system oxygen toxicity in the rat at oxygen pressures between 100 and 300 kPa. Eur. J. Appl. Physiol. 104, 867 (2008). https://doi.org/10.1007/s00421-008-0843-2
J. Ernsting, Breathing systems in aerospace. in IEE Seminar on Low Flow Anaesthesia Breathing Systems - Technology, Safety and Economics (Ref. No. 1999/060) 7/1 (1999). https://doi.org/10.1049/ic:19990341
C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
V. De Santis, M. Singer, Tissue oxygen tension monitoring of organ perfusion: rationale, methodologies, and literature review. Br. J. Anaesth. 115, 357 (2015). https://doi.org/10.1093/bja/aev162
K.K. Tremper, W.C. Shoemaker, Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock. Crit. Care Med. 9, 706 (1981). https://doi.org/10.1097/00003246-198110000-00007
F. Liebisch, A. Weltin, J. Marzioch, G.A. Urban, J. Kieninger, Zero-consumption Clark-type microsensor for oxygen monitoring in cell culture and organ-on-chip systems. Sens. Actuator B Chem. 322, 128652 (2020). https://doi.org/10.1016/j.snb.2020.128652
C.A. Erdmann, M.G. Apte, Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 14, 127 (2004). https://doi.org/10.1111/j.1600-0668.2004.00298.x
H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang et al., Carbon dioxide gas sensor using a graphene sheet. Sens. Actuator B Chem. 157, 310 (2011). https://doi.org/10.1016/j.snb.2011.03.035
S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuator B Chem. 193, 692 (2014). https://doi.org/10.1016/j.snb.2013.12.017
X. Li, B. Tang, B. Wu, C. Hsu, X. Wang, Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection. Ind. Eng. Chem. Res. 60, 4639 (2021). https://doi.org/10.1021/acs.iecr.1c00211
X. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019 (2015). https://doi.org/10.1039/C5CS00496A
L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection. Mater. Today 11, 28 (2008). https://doi.org/10.1016/S1369-7021(08)70017-8
P.-C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev et al., 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900 (2010). https://doi.org/10.1002/adma.200904005
S. Armenta, F.A. Esteve-Turrillas, M. Alcalà, Analysis of hazardous chemicals by “stand alone” drift tube ion mobility spectrometry: a review. Anal. Methods 12, 1163 (2020). https://doi.org/10.1039/C9AY02268F
L. Barron, E. Gilchrist, Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal. Chim. Acta 806, 27 (2014). https://doi.org/10.1016/j.aca.2013.10.047
M.N. Baldin, S.M. Bobrovnikov, A.B. Vorozhtsov, E.V. Gorlov, V.M. Gruznov et al., Effectiveness of combined laser and gas chromatographic remote detection of traces of explosives. Atmos. Ocean. Opt. 32, 227 (2019). https://doi.org/10.1134/S1024856019020039
M.E. Walsh, Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54, 427 (2001). https://doi.org/10.1016/S0039-9140(00)00541-5
C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, P. Ponard, Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization. Nucl. Instrum. Methods Phys. Res. Sect A-Accel. Spectrom. Dect. Assoc. Equip. 623, 1050 (2010). https://doi.org/10.1016/j.nima.2010.08.023
H. Itozaki, Nuclear quadrupole resonance for explosive detection. in Anti-personnel Landmine Detection for Humanitarian Demining: The Current Situation and Future Direction for Japanese Research and Development (eds. Furuta, K. & Ishikawa, J.) 147 (Springer, 2009). https://doi.org/10.1007/978-1-84882-346-4_9
J. Choi, J.-H. Kim, J.-W. Oh, J.-M. Nam, Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. Nanoscale 11, 20379 (2019). https://doi.org/10.1039/C9NR07439B
A.S. Chajistamatiou, E.B. Bakeas, Identification of thiocyanates by gas chromatography – mass spectrometry in explosive residues used as a possible marker to indicate black powder usage. Talanta 195, 456 (2019). https://doi.org/10.1016/j.talanta.2018.11.097
T. Puttasakul, C. Pintavirooj, C. Sangma, W. Sukjee, Hydrogel based-electrochemical gas sensor for explosive material detection. IEEE Sens. J. 19, 8556 (2019). https://doi.org/10.1109/JSEN.2019.2922170
G. Wang, Y. Li, Z. Cai, X. Dou, A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, 1907043 (2020). https://doi.org/10.1002/adma.201907043
R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible no2 sensor at room temperature. ACS Sens. 2, 1744 (2017). https://doi.org/10.1021/acssensors.7b00731
S.-J. Choi, H.-J. Choi, W.-T. Koo, D. Huh, H. Lee et al., Metal–organic framework-templated PdO-Co3O4 nanocubes functionalized by SWCNTs: Improved NO2 reaction kinetics on flexible heating film. ACS Appl. Mater. Interfaces 9, 40593 (2017). https://doi.org/10.1021/acsami.7b11317
U. Yaqoob, D.-T. Phan, A.S.M.I. Uddin, G.-S. Chung, Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanops hybrid on a PET substrate. Sens. Actuator B Chem. 221, 760 (2015). https://doi.org/10.1016/j.snb.2015.06.137
S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale et al., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuator B Chem. 240, 426 (2017). https://doi.org/10.1016/j.snb.2016.08.177
S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han et al., Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuator B Chem. 282, 917 (2019). https://doi.org/10.1016/j.snb.2018.11.142
J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao et al., Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuator B Chem. 249, 715 (2017). https://doi.org/10.1016/j.snb.2017.04.190
C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuator B Chem. 261, 587 (2018). https://doi.org/10.1016/j.snb.2017.12.022
B. Sakthivel, L. Manjakkal, G. Nammalvar, High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 17, 6529 (2017). https://doi.org/10.1109/JSEN.2017.2749334
D.K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler et al., Ultra-sensitive polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964 (2015). https://doi.org/10.1039/C5RA11512D
M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763 (2019). https://doi.org/10.1021/acssensors.9b01308
J.R. Stetter, W.R. Penrose, S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150, S11 (2003). https://doi.org/10.1149/1.1539051
R.N. Dean, A.K. Rane, M.E. Baginski, J. Richard, Z. Hartzog et al., A capacitive fringing field sensor design for moisture measurement based on printed circuit board technology. IEEE Trans. Instrum. Meas. 61, 1105 (2012). https://doi.org/10.1109/TIM.2011.2173041
A. Salehi, A. Nikfarjam, D.J. Kalantari, Highly sensitive humidity sensor using Pd/porous GaAs schottky contact. IEEE Sens. J. 6, 1415 (2006). https://doi.org/10.1109/JSEN.2006.881371
F. Aziz, M.H. Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov et al., Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 014001 (2011). https://doi.org/10.1088/0957-0233/23/1/014001
L. Xu, R. Wang, Q. Xiao, D. Zhang, Y. Liu, Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chinese Phys. Lett. 28, 070702 (2011). https://doi.org/10.1088/0256-307X/28/7/070702
J.-H. Kim, S.-M. Hong, J.-S. Lee, B.-M. Moon, K. Kim, High sensitivity capacitive humidity sensor with a novel polyimide design fabricated by MEMS technology. in 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems 703 (2009). https://doi.org/10.1109/NEMS.2009.5068676
C. Jung, S.-J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022). https://doi.org/10.1126/sciadv.abm8598
M.M.F. Choi, O.L. Tse, Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Anal. Chim. Acta 378, 127 (1999). https://doi.org/10.1016/S0003-2670(98)00614-X
M.C. Moreno-Bondi, G. Orellana, M. Bedoya, Fibre optic sensors for humidity monitoring, in Optical Sensors: Industrial Environmental and Diagnostic Applications. ed. by R. Narayanaswamy, O.S. Wolfbeis (Springer, Germany, 2004), p.251. https://doi.org/10.1007/978-3-662-09111-1_11
J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6, 595 (2019). https://doi.org/10.1039/C8MH01160E
J.C. Tellis, C.A. Strulson, M.M. Myers, K.A. Kneas, Relative humidity sensors based on an environment-sensitive fluorophore in hydrogel films. Anal. Chem. 83, 928 (2011). https://doi.org/10.1021/ac102616w
A. Buchberger, S. Peterka, A.M. Coclite, A. Bergmann, Fast optical humidity sensor based on hydrogel thin film expansion for harsh environment. Sensors 19, 999 (2019). https://doi.org/10.3390/s19050999
Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123 (2018). https://doi.org/10.1016/j.bios.2018.05.038
Y. Wang, R. Duan, Z. Tong, B. Wang, Z. Zhang et al., Sensitively humidity-driven actuator and sensor derived from natural skin system. Sens. Actuator B Chem. 370, 132388 (2022). https://doi.org/10.1016/j.snb.2022.132388
J. Zhang, X.-X. Wang, B. Zhang, S. Ramakrishna, M. Yu et al., In situ assembly of well-dispersed ag nanops throughout electrospun alginate nanofibers for monitoring human breath—smart fabrics. ACS Appl. Mater. Interfaces 10, 19863 (2018). https://doi.org/10.1021/acsami.8b01718
S. Zeng, J. Zhang, G. Zu, J. Huang, Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr. Polym. 267, 118198 (2021). https://doi.org/10.1016/j.carbpol.2021.118198
Q. Ding, H. Wang, Z. Zhou, Z. Wu, K. Tao et al., Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat 4, e1147 (2023). https://doi.org/10.1002/smm2.1147
J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao et al., A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7, 2926 (2015). https://doi.org/10.1039/C4NR06494A
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
H.-H. Chou, A. Nguyen, A. Chortos, J.W.F. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). https://doi.org/10.1038/ncomms9011
F. Zhang, Y. Zang, D. Huang, C. Di, D. Zhu, Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). https://doi.org/10.1038/ncomms9356
S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 (2021). https://doi.org/10.1002/adfm.202100940
Y. Fu, H. He, Y. Liu, Q. Wang, L. Xing et al., Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. J. Mater. Chem. C 5, 1231 (2017). https://doi.org/10.1039/C6TC04272D
B. Ying, Q. Wu, J. Li, X. Liu, An ambient-stable and stretchable ionic skin with multimodal sensation. Mater. Horiz. 7, 477 (2020). https://doi.org/10.1039/C9MH00715F
X. Pan, Q. Wang, R. Guo, S. Cao, H. Wu et al., An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J. Mater. Chem. A 8, 17498 (2020). https://doi.org/10.1039/C9TA13407G