Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring
Corresponding Author: Jin Wu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 183
Abstract
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors. However, traditional humidity sensors suffer from a trade-off between deformability, sensitivity, and transparency, and thus the development of high-performance, stretchable, and low-cost humidity sensors is urgently needed as wearable electronics. Here, ultrasensitive, highly deformable, and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels. Concomitantly, a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area, which can be applied to different polymer networks and facilitate the development of flexible integrated electronics. In addition, sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network, exhibiting excellent water adsorption capacity. Through the synergistic optimization of structure and composition, the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH, which is unprecedented. Moreover, the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity. As a proof of concept, we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission, enabling real-time monitoring of human health status. This work provides a general strategy to construct high-performance, stretchable, and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
Highlights:
1 A general strategy of fabricating thickness-controllable hydrogel films with diverse polymer networks for humidity sensing is proposed. The hydrogel film humidity sensor displays an unprecedented sensitivity up to 13,462.1%/%RH.
2 The stretchable humidity sensor can work normally under large tensile strains with even enhanced sensitivity, which makes the humidity responding property of hydrogel mechanically programmable.
3 A wireless respiratory interruption detection mask with Bluetooth transmission function is developed based on the sensor, enabling the real-time, wireless and accurate acquisition of user's breathing state, such as the interval and breathing frequency and apnea.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- M. Xie, K. Hisano, M. Zhu, T. Toyoshi, M. Pan et al., Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 4, 1800626 (2019). https://doi.org/10.1002/admt.201800626
- Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu et al., A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70, 104436 (2020). https://doi.org/10.1016/j.nanoen.2019.104436
- H. Xu, Y. Xie, E. Zhu, Y. Liu, Z. Shi et al., Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 8, 6311–6318 (2020). https://doi.org/10.1039/D0TA00158A
- D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619 (2021). https://doi.org/10.1002/adma.202000619
- T. Li, X. Peng, P. Cui, G. Shi, W. Yang et al., Recent progress and future perspectives of flexible metal-air batteries. SmartMat 2, 519–553 (2021). https://doi.org/10.1002/smm2.1076
- P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 1–12 (2022). https://doi.org/10.1038/s41467-022-28027-y
- C. Ma, M.G. Ma, C. Si, X.X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- Y. Wang, X. Zhang, J. Cao, X. Huang, X. Zhang, Multifunctional e-textiles based on biological phytic acid-doped polyaniline/protein fabric nanocomposites. Adv. Mater. Technol. 6, 2100003 (2021). https://doi.org/10.1002/admt.202100003
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019). https://doi.org/10.1002/adma.201801072
- W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
- Y. Lu, Y. Fujita, S. Honda, S.H. Yang, Y. Xuan et al., Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv. Healthcare Mater. 10, 2100103 (2021). https://doi.org/10.1002/adhm.202100103
- T.Q. Trung, N.-E. Lee, Materials and devices for transparent stretchable electronics. J. Mater. Chem. C 5, 2202–2222 (2017). https://doi.org/10.1039/C6TC05346G
- J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
- Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi et al., Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 84, 105925 (2021). https://doi.org/10.1016/j.nanoen.2021.105925
- Q. Xie, Z. Yan, S. Wang, Y. Wang, L. Mei et al., Transparent, flexible, and stable polyethersulfone/copper-nanowires/polyethylene terephthalate sandwich-structured films for high-performance electromagnetic interference shielding. Adv. Eng. Mater. 23, 2100283 (2021). https://doi.org/10.1002/adem.202100283
- Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13, 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
- S. Kano, Y. Dobashi, M. Fujii, Silica nanop-based portable respiration sensor for analysis of respiration rate, pattern, and phase during exercise. IEEE Sens. Lett. 2, 1–4 (2018). https://doi.org/10.1109/LSENS.2017.2787099
- Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
- L. Zhang, Q. Tan, Y. Wang, Z. Fan, L. Lin et al., Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sen. Actuat. B 329, 129077 (2021). https://doi.org/10.1016/j.snb.2020.129077
- S. Kano, K. Kim, M. Fujii, Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2, 828–833 (2017). https://doi.org/10.1021/acssensors.7b00199
- W. Jeong, J. Song, J. Bae, K.R. Nandanapalli, S. Lee, Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 11, 44758–44763 (2019). https://doi.org/10.1021/acsami.9b17584
- L. Lan, X. Le, H. Dong, J. Xie, Y. Ying et al., One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020). https://doi.org/10.1016/j.bios.2020.112360
- Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14, 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
- H. Kim, S. Park, Y. Park, D. Choi, B. Yoo et al., Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuat. B 274, 331–337 (2018). https://doi.org/10.1016/j.snb.2018.07.127
- B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 6, 4549–4554 (2018). https://doi.org/10.1039/C8TC00238J
- J. Wu, Y.M. Sun, Z. Wu, X. Li, N. Wang et al., Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11, 4242–4251 (2019). https://doi.org/10.1021/acsami.8b18599
- M.-S. Tsai, P.-G. Su, C.-J. Lu, Fabrication of a highly sensitive flexible humidity sensor based on Pt/polythiophene/reduced graphene oxide ternary nanocomposite films using a simple one-pot method. Sens. Actuat. B 324, 128728 (2020). https://doi.org/10.1016/j.snb.2020.128728
- Y. Lu, K. Xu, M.-Q. Yang, S.-Y. Tang, T.-Y. Yang et al., Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horizons 6, 260–270 (2021). https://doi.org/10.1039/D0NH00594K
- J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10, 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- G. Zhou, J.H. Byun, Y. Oh, B.M. Jung, H.J. Cha et al., Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9, 4788–4797 (2017). https://doi.org/10.1021/acsami.6b12448
- Y. Komazaki, S. Uemura, Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sens. Actuat. B 297, 126711 (2019). https://doi.org/10.1016/j.snb.2019.126711
- P.-G. Su, C.-F. Chang, Fabrication and electrical and humidity-sensing properties of a flexible and stretchable textile humidity sensor. J. Taiwan Inst. Chem. Eng. 87, 36–43 (2018). https://doi.org/10.1016/j.jtice.2018.03.050
- R. Das Mahapatra, K.B.C. Imani, J. Yoon, Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness. ACS Appl. Mater. Interfaces 12, 40786–40793 (2020). https://doi.org/10.1021/acsami.0c11167
- Y. Liang, L. Ye, X. Sun, Q. Lv, H. Liang, Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors. ACS Appl. Mater. Interfaces 12, 1577–1587 (2020). https://doi.org/10.1021/acsami.9b18796
- C. Luo, X. Deng, S. Xie, Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. J. Mater. Chem. C 9, 17042–17049 (2021). https://doi.org/10.1039/D1TC03232A
- Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
- H. Ding, Z. Wu, H. Wang, Z. Zhou, Y. Wei et al., An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater. Horiz. 9, 1935–1946 (2022). https://doi.org/10.1039/D2MH00281G
- Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668–13679 (2021). https://doi.org/10.1039/d1tc02506f
- K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
- M.B. Sobhanimatin, S. Pourmahdian, M.M. Tehranchi, Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel. Mater. Today Commun. 26, 101997 (2021). https://doi.org/10.1016/j.mtcomm.2020.101997
- Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13, 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
- J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao et al., Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14, 10886–10897 (2022). https://doi.org/10.1021/acsami.2c00513
- J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6, 595–603 (2019). https://doi.org/10.1039/C8MH01160E
- Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang et al., An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. 56, 9141–9145 (2017). https://doi.org/10.1002/anie.201705212
- X. Li, D. Lou, H. Wang, X. Sun, J. Li et al., Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 30, 2007291 (2020). https://doi.org/10.1002/adfm.202007291
- A. Naranjo, C. Martín, A. López-Díaz, A. Martín-Pacheco, A.M. Rodríguez et al., Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Appl. Mater. Today 21, 100806 (2020). https://doi.org/10.1016/j.apmt.2020.100806
- B. Liu, F. Li, P. Niu, H. Li, Tough adhesion of freezing- and drying-tolerant transparent nanocomposite organohydrogels. ACS Appl. Mater. Interfaces 13, 21822–21830 (2021). https://doi.org/10.1021/acsami.1c04758
- Z. Xu, F. Zhou, H. Yan, G. Gao, H. Li et al., Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at − 30 °C. Nano Energy 90, 106614 (2021). https://doi.org/10.1016/j.nanoen.2021.106614
- L. Wu, L. Li, M. Qu, H. Wang, Y. Bin, Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing application. ACS Appl. Polym. Mater. 2, 3094–3106 (2020). https://doi.org/10.1021/acsapm.0c00264
- Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- Y. Wei, H. Wang, Q. Ding, Z. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horiz. 9, 1921–1934 (2022). https://doi.org/10.1039/D2MH00284A
- X. Pan, Q. Wang, D. Ning, L. Dai, K. Liu et al., Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397–3404 (2018). https://doi.org/10.1021/acsbiomaterials.8b00657
- Y. Xia, Y. Wu, T. Yu, S. Xue, M. Guo et al., Multifunctional glycerol-water hydrogel for biomimetic human skin with resistance memory function. ACS Appl. Mater. Interfaces 11, 21117–21125 (2019). https://doi.org/10.1021/acsami.9b05554
- J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu et al., Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 11, 6483–6490 (2019). https://doi.org/10.1021/acsami.8b18904
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- Y. Zhang, X. Zheng, T. Zhang, L. Gong, S. Dai et al., Humidity sensing properties of the sensor based on Bi0.5K0.5TiO3 powder. Sens. Actuat. B 147, 180–184 (2010). https://doi.org/10.1016/j.snb.2010.03.045
- C. Caddeo, D. Marongiu, S. Meloni, A. Filippetti, F. Quochi et al., Hydrophilicity and water contact angle on methylammonium lead iodide. Adv. Mater. Interfaces 6, 1801173 (2018). https://doi.org/10.1002/admi.201801173
- K. Wu, Q. Zhu, H. Qian, M. Xiao, H. Corke et al., Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids 79, 301–309 (2018). https://doi.org/10.1016/j.foodhyd.2017.12.034
- L. Lu, Y. Zhou, J. Pan, T. Chen, Y. Hu et al., Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability. ACS Appl. Mater. Interfaces 11, 4345–4352 (2019). https://doi.org/10.1021/acsami.8b17666
- Y. Lu, Z. Liu, H. Yan, Q. Peng, R. Wang et al., Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability. ACS Appl. Mater. Interfaces 11, 20453–20464 (2019). https://doi.org/10.1021/acsami.9b05464
- K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita et al., Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7, 9609–9617 (2019). https://doi.org/10.1039/C9TC01874C
- Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, e2104997 (2021). https://doi.org/10.1002/smll.202104997
- T. Syrový, S. Maronová, P. Kuberský, N.V. Ehman, M.E. Vallejos et al., Wide range humidity sensors printed on biocomposite films of cellulose nanofibril and poly(ethylene glycol). J. Appl. Polym. Sci. 136, 47920 (2019). https://doi.org/10.1002/app.47920
- L. Zhu, X. Li, T. Kasuga, K. Uetani, M. Nogi et al., All-cellulose-derived humidity sensor prepared via direct laser writing of conductive and moisture-stable electrodes on tempo-oxidized cellulose paper. J. Mater. Chem. C 10, 3712–3719 (2022). https://doi.org/10.1039/d1tc05339f
References
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
M. Xie, K. Hisano, M. Zhu, T. Toyoshi, M. Pan et al., Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 4, 1800626 (2019). https://doi.org/10.1002/admt.201800626
Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu et al., A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70, 104436 (2020). https://doi.org/10.1016/j.nanoen.2019.104436
H. Xu, Y. Xie, E. Zhu, Y. Liu, Z. Shi et al., Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 8, 6311–6318 (2020). https://doi.org/10.1039/D0TA00158A
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619 (2021). https://doi.org/10.1002/adma.202000619
T. Li, X. Peng, P. Cui, G. Shi, W. Yang et al., Recent progress and future perspectives of flexible metal-air batteries. SmartMat 2, 519–553 (2021). https://doi.org/10.1002/smm2.1076
P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 1–12 (2022). https://doi.org/10.1038/s41467-022-28027-y
C. Ma, M.G. Ma, C. Si, X.X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
Y. Wang, X. Zhang, J. Cao, X. Huang, X. Zhang, Multifunctional e-textiles based on biological phytic acid-doped polyaniline/protein fabric nanocomposites. Adv. Mater. Technol. 6, 2100003 (2021). https://doi.org/10.1002/admt.202100003
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019). https://doi.org/10.1002/adma.201801072
W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
Y. Lu, Y. Fujita, S. Honda, S.H. Yang, Y. Xuan et al., Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv. Healthcare Mater. 10, 2100103 (2021). https://doi.org/10.1002/adhm.202100103
T.Q. Trung, N.-E. Lee, Materials and devices for transparent stretchable electronics. J. Mater. Chem. C 5, 2202–2222 (2017). https://doi.org/10.1039/C6TC05346G
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi et al., Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 84, 105925 (2021). https://doi.org/10.1016/j.nanoen.2021.105925
Q. Xie, Z. Yan, S. Wang, Y. Wang, L. Mei et al., Transparent, flexible, and stable polyethersulfone/copper-nanowires/polyethylene terephthalate sandwich-structured films for high-performance electromagnetic interference shielding. Adv. Eng. Mater. 23, 2100283 (2021). https://doi.org/10.1002/adem.202100283
Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13, 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
S. Kano, Y. Dobashi, M. Fujii, Silica nanop-based portable respiration sensor for analysis of respiration rate, pattern, and phase during exercise. IEEE Sens. Lett. 2, 1–4 (2018). https://doi.org/10.1109/LSENS.2017.2787099
Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
L. Zhang, Q. Tan, Y. Wang, Z. Fan, L. Lin et al., Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sen. Actuat. B 329, 129077 (2021). https://doi.org/10.1016/j.snb.2020.129077
S. Kano, K. Kim, M. Fujii, Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2, 828–833 (2017). https://doi.org/10.1021/acssensors.7b00199
W. Jeong, J. Song, J. Bae, K.R. Nandanapalli, S. Lee, Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 11, 44758–44763 (2019). https://doi.org/10.1021/acsami.9b17584
L. Lan, X. Le, H. Dong, J. Xie, Y. Ying et al., One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020). https://doi.org/10.1016/j.bios.2020.112360
Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14, 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
H. Kim, S. Park, Y. Park, D. Choi, B. Yoo et al., Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuat. B 274, 331–337 (2018). https://doi.org/10.1016/j.snb.2018.07.127
B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 6, 4549–4554 (2018). https://doi.org/10.1039/C8TC00238J
J. Wu, Y.M. Sun, Z. Wu, X. Li, N. Wang et al., Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11, 4242–4251 (2019). https://doi.org/10.1021/acsami.8b18599
M.-S. Tsai, P.-G. Su, C.-J. Lu, Fabrication of a highly sensitive flexible humidity sensor based on Pt/polythiophene/reduced graphene oxide ternary nanocomposite films using a simple one-pot method. Sens. Actuat. B 324, 128728 (2020). https://doi.org/10.1016/j.snb.2020.128728
Y. Lu, K. Xu, M.-Q. Yang, S.-Y. Tang, T.-Y. Yang et al., Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horizons 6, 260–270 (2021). https://doi.org/10.1039/D0NH00594K
J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10, 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
G. Zhou, J.H. Byun, Y. Oh, B.M. Jung, H.J. Cha et al., Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9, 4788–4797 (2017). https://doi.org/10.1021/acsami.6b12448
Y. Komazaki, S. Uemura, Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sens. Actuat. B 297, 126711 (2019). https://doi.org/10.1016/j.snb.2019.126711
P.-G. Su, C.-F. Chang, Fabrication and electrical and humidity-sensing properties of a flexible and stretchable textile humidity sensor. J. Taiwan Inst. Chem. Eng. 87, 36–43 (2018). https://doi.org/10.1016/j.jtice.2018.03.050
R. Das Mahapatra, K.B.C. Imani, J. Yoon, Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness. ACS Appl. Mater. Interfaces 12, 40786–40793 (2020). https://doi.org/10.1021/acsami.0c11167
Y. Liang, L. Ye, X. Sun, Q. Lv, H. Liang, Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors. ACS Appl. Mater. Interfaces 12, 1577–1587 (2020). https://doi.org/10.1021/acsami.9b18796
C. Luo, X. Deng, S. Xie, Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. J. Mater. Chem. C 9, 17042–17049 (2021). https://doi.org/10.1039/D1TC03232A
Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
H. Ding, Z. Wu, H. Wang, Z. Zhou, Y. Wei et al., An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater. Horiz. 9, 1935–1946 (2022). https://doi.org/10.1039/D2MH00281G
Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668–13679 (2021). https://doi.org/10.1039/d1tc02506f
K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
M.B. Sobhanimatin, S. Pourmahdian, M.M. Tehranchi, Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel. Mater. Today Commun. 26, 101997 (2021). https://doi.org/10.1016/j.mtcomm.2020.101997
Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13, 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao et al., Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14, 10886–10897 (2022). https://doi.org/10.1021/acsami.2c00513
J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6, 595–603 (2019). https://doi.org/10.1039/C8MH01160E
Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang et al., An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. 56, 9141–9145 (2017). https://doi.org/10.1002/anie.201705212
X. Li, D. Lou, H. Wang, X. Sun, J. Li et al., Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 30, 2007291 (2020). https://doi.org/10.1002/adfm.202007291
A. Naranjo, C. Martín, A. López-Díaz, A. Martín-Pacheco, A.M. Rodríguez et al., Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Appl. Mater. Today 21, 100806 (2020). https://doi.org/10.1016/j.apmt.2020.100806
B. Liu, F. Li, P. Niu, H. Li, Tough adhesion of freezing- and drying-tolerant transparent nanocomposite organohydrogels. ACS Appl. Mater. Interfaces 13, 21822–21830 (2021). https://doi.org/10.1021/acsami.1c04758
Z. Xu, F. Zhou, H. Yan, G. Gao, H. Li et al., Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at − 30 °C. Nano Energy 90, 106614 (2021). https://doi.org/10.1016/j.nanoen.2021.106614
L. Wu, L. Li, M. Qu, H. Wang, Y. Bin, Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing application. ACS Appl. Polym. Mater. 2, 3094–3106 (2020). https://doi.org/10.1021/acsapm.0c00264
Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
Y. Wei, H. Wang, Q. Ding, Z. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horiz. 9, 1921–1934 (2022). https://doi.org/10.1039/D2MH00284A
X. Pan, Q. Wang, D. Ning, L. Dai, K. Liu et al., Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397–3404 (2018). https://doi.org/10.1021/acsbiomaterials.8b00657
Y. Xia, Y. Wu, T. Yu, S. Xue, M. Guo et al., Multifunctional glycerol-water hydrogel for biomimetic human skin with resistance memory function. ACS Appl. Mater. Interfaces 11, 21117–21125 (2019). https://doi.org/10.1021/acsami.9b05554
J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu et al., Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 11, 6483–6490 (2019). https://doi.org/10.1021/acsami.8b18904
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
Y. Zhang, X. Zheng, T. Zhang, L. Gong, S. Dai et al., Humidity sensing properties of the sensor based on Bi0.5K0.5TiO3 powder. Sens. Actuat. B 147, 180–184 (2010). https://doi.org/10.1016/j.snb.2010.03.045
C. Caddeo, D. Marongiu, S. Meloni, A. Filippetti, F. Quochi et al., Hydrophilicity and water contact angle on methylammonium lead iodide. Adv. Mater. Interfaces 6, 1801173 (2018). https://doi.org/10.1002/admi.201801173
K. Wu, Q. Zhu, H. Qian, M. Xiao, H. Corke et al., Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids 79, 301–309 (2018). https://doi.org/10.1016/j.foodhyd.2017.12.034
L. Lu, Y. Zhou, J. Pan, T. Chen, Y. Hu et al., Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability. ACS Appl. Mater. Interfaces 11, 4345–4352 (2019). https://doi.org/10.1021/acsami.8b17666
Y. Lu, Z. Liu, H. Yan, Q. Peng, R. Wang et al., Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability. ACS Appl. Mater. Interfaces 11, 20453–20464 (2019). https://doi.org/10.1021/acsami.9b05464
K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita et al., Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7, 9609–9617 (2019). https://doi.org/10.1039/C9TC01874C
Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, e2104997 (2021). https://doi.org/10.1002/smll.202104997
T. Syrový, S. Maronová, P. Kuberský, N.V. Ehman, M.E. Vallejos et al., Wide range humidity sensors printed on biocomposite films of cellulose nanofibril and poly(ethylene glycol). J. Appl. Polym. Sci. 136, 47920 (2019). https://doi.org/10.1002/app.47920
L. Zhu, X. Li, T. Kasuga, K. Uetani, M. Nogi et al., All-cellulose-derived humidity sensor prepared via direct laser writing of conductive and moisture-stable electrodes on tempo-oxidized cellulose paper. J. Mater. Chem. C 10, 3712–3719 (2022). https://doi.org/10.1039/d1tc05339f