Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting
Corresponding Author: Weizheng Yuan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 123
Abstract
Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm−3 (or 2.48 mW g−1) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.
Highlights:
1 Create a hierarchical honeycomb-inspired triboelectric nanogenerator (TENG) with excellent transparency, compactness, lightweight and deformability.
2 Amplify capacitance variation by dividing large hollow space into numerous energy generation units with porous honeycomb architecture.
3 Demonstrate self-powered insole plantar pressure mapping applications by the self-sustained elastic nature of the h-TENG device.
4 Integrate the h-TENG into the morphing wing of small-unmanned aerial vehicles for converting flapping motions into electricity for the first time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—a recall on the original thoughts for coining these fields. Nano Energy 54(54), 477–483 (2018). https://doi.org/10.1016/j.nanoen.2018.09.068
- Y. Jie, J. Ma, Y. Chen, X. Cao, N. Wang et al., Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using maxwell’s displacement currents. Adv. Energy Mater. 8(31), 1802084 (2018). https://doi.org/10.1002/aenm.201802084
- X.-S. Zhang, M. Han, B. Kim, J.-F. Bao, J. Brugger et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
- Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13(2), 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
- D.-L. Wen, X. Liu, H.-T. Deng, D.-H. Sun, H.-Y. Qian et al., Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 66, 104123 (2019). https://doi.org/10.1016/j.nanoen.2019.104123
- X. Zhang, X. Shan, T. Xie, J. Miao, A new sensor inspired by the lateral-line system of fish using the self-powered d33 mode piezoelectric diaphragm for hydrodynamic sensing. Mech. Syst. Signal Proc. 141, 106476 (2020). https://doi.org/10.1016/j.ymssp.2019.106476
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in vr/ar applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
- Q. Jiang, B. Chen, K. Zhang, Y. Yang, Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. ACS Appl. Mater. Interfaces 9(50), 43716–43723 (2017). https://doi.org/10.1021/acsami.7b14618
- Q. Jiang, B. Chen, Y. Yang, Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1(8), 4269–4276 (2018). https://doi.org/10.1021/acsaem.8b00902
- T. He, X. Guo, C. Lee, Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. iScience 24(1), 101934 (2021). https://doi.org/10.1016/j.isci.2020.101934
- S. Zhukov, H. von Seggern, X. Zhang, Y. Xue, O. Ben Dali et al., Microenergy harvesters based on fluorinated ethylene propylene piezotubes. Adv. Eng. Mater. 22(5), 1901399 (2020). https://doi.org/10.1002/adem.201901399
- K. Tao, H. Yi, L. Tang, J. Wu, P. Wang et al., Piezoelectric zno thin films for 2DOF MEMS vibrational energy harvesting. Surf. Coat. Technol. 359, 289–295 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.102
- K. Yang, J. Wang, D. Yurchenko, A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019). https://doi.org/10.1063/1.5126476
- Y. Li, Q. Cao, W. Zhang, Y. Zhang, J.A. Cao, A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils. Smart Mater. Struct. 27(11), 115040 (2018). https://doi.org/10.1088/1361-665X/aae239
- T. Ueno, Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. J. Appl. Phys. 117(17), 17A740 (2015). https://doi.org/10.1063/1.4917464
- L.-C. Zhao, H.-X. Zou, G. Yan, F.-R. Liu, T. Tan et al., Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conv. Manag. 201, 112166 (2019). https://doi.org/10.1016/j.enconman.2019.112166
- Q.X. Tan, K.Q. Fan, K. Tao, L.Y. Zhao, M.L. Cai, A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations. Energy 196, 117107 (2020). https://doi.org/10.1016/j.energy.2020.117107
- B. Yan, H. Ma, W. Zheng, B. Jian, K. Wang et al., Nonlinear electromagnetic shunt damping for nonlinear vibration isolators. IEEE/ASME Trans. Mechatron. 24(4), 1851–1860 (2019). https://doi.org/10.1109/TMECH.2019.2928583
- A. Luo, Y. Zhang, X. Dai, Y. Wang, W. Xu et al., An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Appl. Energy 279, 115762 (2020). https://doi.org/10.1016/j.apenergy.2020.115762
- K. Tao, J. Wu, L. Tang, L. Hu, S.W. Lye et al., Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. J. Micromech. Microeng. 27(4), 044002 (2017). https://doi.org/10.1088/1361-6439/aa5e73
- M. Bi, S. Wang, X. Wang, X. Ye, Freestanding-electret rotary generator at an average conversion efficiency of 56%: theoretical and experimental studies. Nano Energy 41, 434–442 (2017). https://doi.org/10.1016/j.nanoen.2017.09.057
- Z. Yang, L. Tang, K. Tao, K. Aw, A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 28(10), 10LT02 (2019). https://doi.org/10.1088/1361-665X/ab3ae1
- X. Guo, Y. Zhang, K. Fan, C. Lee, F. Wang, A comprehensive study of non-linear air damping and “pull-in”effects on the electrostatic energy harvesters. Energy Conv. Manag. 203, 112264 (2020). https://doi.org/10.1016/j.enconman.2019.112264
- V. Slabov, S. Kopyl, M.P.S. dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12(1), 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- Y. Zhang, Q.X. Zeng, Y. Wu, J. Wu, S.L. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12(1), 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
- P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433–9440 (2018). https://doi.org/10.1021/acsnano.8b04654
- Y. Ji, K. Zhang, Y. Yang, A one-structure-based multieffects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 5(2), 1700622 (2018). https://doi.org/10.1002/advs.201700622
- B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
- M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless iot sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
- X. Shan, H. Li, Y. Yang, J. Feng, Y. Wang et al., Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy 172, 134–140 (2019). https://doi.org/10.1016/j.energy.2019.01.120
- Y.P. Wu, J.H. Qiu, S.P. Zhou, H.L. Ji, Y. Chen et al., A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 231, 600–614 (2018). https://doi.org/10.1016/j.apenergy.2018.09.082
- S. Zhou, L. Zuo, Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. 61, 271–284 (2018). https://doi.org/10.1016/j.cnsns.2018.02.017
- X. Ma, X. Zhang, P. Fang, Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices. Sens. Actuator A-Phys. 256, 35–42 (2017). https://doi.org/10.1016/j.sna.2017.01.014
- J. Wang, L. Tang, L. Zhao, G. Hu, R. Song et al., Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. Int. J. Energy Res. 44(6), 4516–4528 (2020). https://doi.org/10.1002/er.5228
- K. Zhang, S. Wang, Y. Yang, A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7(6), 1601852 (2016). https://doi.org/10.1002/aenm.201601852
- Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in batio3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12(4), 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen et al., Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
- J. Zhong, H. Zhu, Q. Zhong, J. Dai, W. Li et al., Self-powered human-interactive transparent nanopaper systems. ACS Nano 9(7), 7399–7406 (2015). https://doi.org/10.1021/acsnano.5b02414
- S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6(1), 8975 (2015). https://doi.org/10.1038/ncomms9975
- S. Li, J. Wang, W. Peng, L. Lin, Y. Zi et al., Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 7(13), 1602832 (2017). https://doi.org/10.1002/aenm.201602832
- P. Bai, G. Zhu, Z.H. Lin, Q. Jing, J. Chen et al., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4), 3713–3719 (2013). https://doi.org/10.1021/nn4007708
- X. Wen, W. Yang, Q. Jing, Z.L. Wang, Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8(7), 7405–7412 (2014). https://doi.org/10.1021/nn502618f
- W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen et al., 3d stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090–4096 (2014). https://doi.org/10.1002/adfm.201304211
- J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin et al., All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 26(7), 1070–1076 (2016). https://doi.org/10.1002/adfm.201504675
- T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang et al., Multilayered electret films based triboelectric nanogenerator. Nano Res. 9(5), 1442–1451 (2016). https://doi.org/10.1007/s12274-016-1040-y
- L. Gao, D. Hu, M. Qi, J. Gong, H. Zhou et al., A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 10(42), 19781–19790 (2018). https://doi.org/10.1039/c8nr05957h
- L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
- X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017). https://doi.org/10.1021/acsnano.6b07633
- M. Xu, P. Wang, Y.-C. Wang, S.L. Zhang, A.C. Wang et al., A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 8(9), 1702432 (2018). https://doi.org/10.1002/aenm.201702432
- X. Chen, M. Han, H. Chen, X. Cheng, Y. Song et al., A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on p(VDF-TRFE) nanofibers. Nanoscale 9(3), 1263–1270 (2017). https://doi.org/10.1039/c6nr07781a
- Y. Feng, Y. Zheng, Z.U. Rahman, D. Wang, F. Zhou et al., Based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 4(46), 18022–18030 (2016). https://doi.org/10.1039/C6TA07288G
- H. Guo, J. Chen, Q. Leng, Y. Xi, M. Wang et al., Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dual-functional self-powered sensor. Nano Energy 12, 626–635 (2015). https://doi.org/10.1016/j.nanoen.2014.09.021
- X. Cheng, Z. Song, L. Miao, H. Guo, Z. Su et al., Wide range fabrication of wrinkle patterns for maximizing surface charge density of a triboelectric nanogenerator. Microelectromech. Syst. 27(1), 106–112 (2017). https://doi.org/10.1109/JMEMS.2017.2778735
- X. Xia, J. Chen, H. Guo, G. Liu, D. Wei et al., Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 10(1), 320–330 (2017). https://doi.org/10.1007/s12274-016-1294-4
- Y.C. Lai, Y.C. Hsiao, H.M. Wu, Z.L. Wang, Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 6(5), 1801883 (2019). https://doi.org/10.1002/advs.201801883
- S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 26(39), 6720–6728 (2014). https://doi.org/10.1002/adma.201402491
- L. Xu, T.Z. Bu, X.D. Yang, C. Zhang, Z.L. Wang, Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49, 625–633 (2018). https://doi.org/10.1016/j.nanoen.2018.05.011
- S. Gong, J. Zhang, C. Wang, K. Ren, Z.L. Wang, Monocharged electret nanogenerators: a monocharged electret nanogenerator-based self-powered device for pressure and tactile sensor applications. Adv. Funct. Mater. 29(41), 1970284 (2019). https://doi.org/10.1002/adfm.201970284
- X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13(3), 1168–1172 (2013). https://doi.org/10.1021/nl3045684
- T. Gao, K. Zhao, X. Liu, Y. Yang, Implanting a solid li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy. Nano Energy 41, 210–216 (2017). https://doi.org/10.1016/j.nanoen.2017.09.037
- X. Liu, K. Zhao, Y. Yang, Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53, 622–629 (2018). https://doi.org/10.1016/j.nanoen.2018.09.026
- Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for iot-based gait analysis and vr applications. NPJ Flexible Electron. 4(1), 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
- T. Quan, Y. Wu, Y. Yang, Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 8(10), 3272–3280 (2015). https://doi.org/10.1007/s12274-015-0827-6
- H. Zhang, Y. Lu, A. Ghaffarinejad, P. Basset, Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a bennet doubler conditioning circuit. Nano Energy 51, 10–18 (2018). https://doi.org/10.1016/j.nanoen.2018.06.038
- C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu et al., Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2(2), 1900129 (2020). https://doi.org/10.1002/aisy.201900129
- X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019). https://doi.org/10.1016/j.nanoen.2019.04.096
- K. Tao, H.P. Yi, Y. Yang, H.L. Chang, J. Wu et al., Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 67, 104197 (2020). https://doi.org/10.1016/j.nanoen.2019.104197
- X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen et al., Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 9(40), 1902460 (2019). https://doi.org/10.1002/aenm.201902460
- L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
- X. Xia, G. Liu, H. Guo, Q. Leng, C. Hu et al., Honeycomb-like three electrodes based triboelectric generator for harvesting energy in full space and as a self-powered vibration alertor. Nano Energy 15, 766–775 (2015). https://doi.org/10.1016/j.nanoen.2015.05.033
- K. Tao, L. Tang, J. Wu, S.W. Lye, H. Chang et al., Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity. J. Microelectromech. Syst. 27(2), 276–288 (2018). https://doi.org/10.1109/JMEMS.2018.2792686
References
Z.L. Wang, Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—a recall on the original thoughts for coining these fields. Nano Energy 54(54), 477–483 (2018). https://doi.org/10.1016/j.nanoen.2018.09.068
Y. Jie, J. Ma, Y. Chen, X. Cao, N. Wang et al., Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using maxwell’s displacement currents. Adv. Energy Mater. 8(31), 1802084 (2018). https://doi.org/10.1002/aenm.201802084
X.-S. Zhang, M. Han, B. Kim, J.-F. Bao, J. Brugger et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13(2), 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
D.-L. Wen, X. Liu, H.-T. Deng, D.-H. Sun, H.-Y. Qian et al., Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 66, 104123 (2019). https://doi.org/10.1016/j.nanoen.2019.104123
X. Zhang, X. Shan, T. Xie, J. Miao, A new sensor inspired by the lateral-line system of fish using the self-powered d33 mode piezoelectric diaphragm for hydrodynamic sensing. Mech. Syst. Signal Proc. 141, 106476 (2020). https://doi.org/10.1016/j.ymssp.2019.106476
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in vr/ar applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
Q. Jiang, B. Chen, K. Zhang, Y. Yang, Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. ACS Appl. Mater. Interfaces 9(50), 43716–43723 (2017). https://doi.org/10.1021/acsami.7b14618
Q. Jiang, B. Chen, Y. Yang, Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1(8), 4269–4276 (2018). https://doi.org/10.1021/acsaem.8b00902
T. He, X. Guo, C. Lee, Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. iScience 24(1), 101934 (2021). https://doi.org/10.1016/j.isci.2020.101934
S. Zhukov, H. von Seggern, X. Zhang, Y. Xue, O. Ben Dali et al., Microenergy harvesters based on fluorinated ethylene propylene piezotubes. Adv. Eng. Mater. 22(5), 1901399 (2020). https://doi.org/10.1002/adem.201901399
K. Tao, H. Yi, L. Tang, J. Wu, P. Wang et al., Piezoelectric zno thin films for 2DOF MEMS vibrational energy harvesting. Surf. Coat. Technol. 359, 289–295 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.102
K. Yang, J. Wang, D. Yurchenko, A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019). https://doi.org/10.1063/1.5126476
Y. Li, Q. Cao, W. Zhang, Y. Zhang, J.A. Cao, A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils. Smart Mater. Struct. 27(11), 115040 (2018). https://doi.org/10.1088/1361-665X/aae239
T. Ueno, Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. J. Appl. Phys. 117(17), 17A740 (2015). https://doi.org/10.1063/1.4917464
L.-C. Zhao, H.-X. Zou, G. Yan, F.-R. Liu, T. Tan et al., Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conv. Manag. 201, 112166 (2019). https://doi.org/10.1016/j.enconman.2019.112166
Q.X. Tan, K.Q. Fan, K. Tao, L.Y. Zhao, M.L. Cai, A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations. Energy 196, 117107 (2020). https://doi.org/10.1016/j.energy.2020.117107
B. Yan, H. Ma, W. Zheng, B. Jian, K. Wang et al., Nonlinear electromagnetic shunt damping for nonlinear vibration isolators. IEEE/ASME Trans. Mechatron. 24(4), 1851–1860 (2019). https://doi.org/10.1109/TMECH.2019.2928583
A. Luo, Y. Zhang, X. Dai, Y. Wang, W. Xu et al., An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Appl. Energy 279, 115762 (2020). https://doi.org/10.1016/j.apenergy.2020.115762
K. Tao, J. Wu, L. Tang, L. Hu, S.W. Lye et al., Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. J. Micromech. Microeng. 27(4), 044002 (2017). https://doi.org/10.1088/1361-6439/aa5e73
M. Bi, S. Wang, X. Wang, X. Ye, Freestanding-electret rotary generator at an average conversion efficiency of 56%: theoretical and experimental studies. Nano Energy 41, 434–442 (2017). https://doi.org/10.1016/j.nanoen.2017.09.057
Z. Yang, L. Tang, K. Tao, K. Aw, A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 28(10), 10LT02 (2019). https://doi.org/10.1088/1361-665X/ab3ae1
X. Guo, Y. Zhang, K. Fan, C. Lee, F. Wang, A comprehensive study of non-linear air damping and “pull-in”effects on the electrostatic energy harvesters. Energy Conv. Manag. 203, 112264 (2020). https://doi.org/10.1016/j.enconman.2019.112264
V. Slabov, S. Kopyl, M.P.S. dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12(1), 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
Y. Zhang, Q.X. Zeng, Y. Wu, J. Wu, S.L. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12(1), 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433–9440 (2018). https://doi.org/10.1021/acsnano.8b04654
Y. Ji, K. Zhang, Y. Yang, A one-structure-based multieffects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 5(2), 1700622 (2018). https://doi.org/10.1002/advs.201700622
B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless iot sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
X. Shan, H. Li, Y. Yang, J. Feng, Y. Wang et al., Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy 172, 134–140 (2019). https://doi.org/10.1016/j.energy.2019.01.120
Y.P. Wu, J.H. Qiu, S.P. Zhou, H.L. Ji, Y. Chen et al., A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 231, 600–614 (2018). https://doi.org/10.1016/j.apenergy.2018.09.082
S. Zhou, L. Zuo, Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. 61, 271–284 (2018). https://doi.org/10.1016/j.cnsns.2018.02.017
X. Ma, X. Zhang, P. Fang, Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices. Sens. Actuator A-Phys. 256, 35–42 (2017). https://doi.org/10.1016/j.sna.2017.01.014
J. Wang, L. Tang, L. Zhao, G. Hu, R. Song et al., Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. Int. J. Energy Res. 44(6), 4516–4528 (2020). https://doi.org/10.1002/er.5228
K. Zhang, S. Wang, Y. Yang, A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7(6), 1601852 (2016). https://doi.org/10.1002/aenm.201601852
Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in batio3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12(4), 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen et al., Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
J. Zhong, H. Zhu, Q. Zhong, J. Dai, W. Li et al., Self-powered human-interactive transparent nanopaper systems. ACS Nano 9(7), 7399–7406 (2015). https://doi.org/10.1021/acsnano.5b02414
S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6(1), 8975 (2015). https://doi.org/10.1038/ncomms9975
S. Li, J. Wang, W. Peng, L. Lin, Y. Zi et al., Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 7(13), 1602832 (2017). https://doi.org/10.1002/aenm.201602832
P. Bai, G. Zhu, Z.H. Lin, Q. Jing, J. Chen et al., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4), 3713–3719 (2013). https://doi.org/10.1021/nn4007708
X. Wen, W. Yang, Q. Jing, Z.L. Wang, Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8(7), 7405–7412 (2014). https://doi.org/10.1021/nn502618f
W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen et al., 3d stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090–4096 (2014). https://doi.org/10.1002/adfm.201304211
J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin et al., All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 26(7), 1070–1076 (2016). https://doi.org/10.1002/adfm.201504675
T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang et al., Multilayered electret films based triboelectric nanogenerator. Nano Res. 9(5), 1442–1451 (2016). https://doi.org/10.1007/s12274-016-1040-y
L. Gao, D. Hu, M. Qi, J. Gong, H. Zhou et al., A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 10(42), 19781–19790 (2018). https://doi.org/10.1039/c8nr05957h
L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017). https://doi.org/10.1021/acsnano.6b07633
M. Xu, P. Wang, Y.-C. Wang, S.L. Zhang, A.C. Wang et al., A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 8(9), 1702432 (2018). https://doi.org/10.1002/aenm.201702432
X. Chen, M. Han, H. Chen, X. Cheng, Y. Song et al., A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on p(VDF-TRFE) nanofibers. Nanoscale 9(3), 1263–1270 (2017). https://doi.org/10.1039/c6nr07781a
Y. Feng, Y. Zheng, Z.U. Rahman, D. Wang, F. Zhou et al., Based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 4(46), 18022–18030 (2016). https://doi.org/10.1039/C6TA07288G
H. Guo, J. Chen, Q. Leng, Y. Xi, M. Wang et al., Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dual-functional self-powered sensor. Nano Energy 12, 626–635 (2015). https://doi.org/10.1016/j.nanoen.2014.09.021
X. Cheng, Z. Song, L. Miao, H. Guo, Z. Su et al., Wide range fabrication of wrinkle patterns for maximizing surface charge density of a triboelectric nanogenerator. Microelectromech. Syst. 27(1), 106–112 (2017). https://doi.org/10.1109/JMEMS.2017.2778735
X. Xia, J. Chen, H. Guo, G. Liu, D. Wei et al., Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 10(1), 320–330 (2017). https://doi.org/10.1007/s12274-016-1294-4
Y.C. Lai, Y.C. Hsiao, H.M. Wu, Z.L. Wang, Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 6(5), 1801883 (2019). https://doi.org/10.1002/advs.201801883
S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 26(39), 6720–6728 (2014). https://doi.org/10.1002/adma.201402491
L. Xu, T.Z. Bu, X.D. Yang, C. Zhang, Z.L. Wang, Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49, 625–633 (2018). https://doi.org/10.1016/j.nanoen.2018.05.011
S. Gong, J. Zhang, C. Wang, K. Ren, Z.L. Wang, Monocharged electret nanogenerators: a monocharged electret nanogenerator-based self-powered device for pressure and tactile sensor applications. Adv. Funct. Mater. 29(41), 1970284 (2019). https://doi.org/10.1002/adfm.201970284
X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13(3), 1168–1172 (2013). https://doi.org/10.1021/nl3045684
T. Gao, K. Zhao, X. Liu, Y. Yang, Implanting a solid li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy. Nano Energy 41, 210–216 (2017). https://doi.org/10.1016/j.nanoen.2017.09.037
X. Liu, K. Zhao, Y. Yang, Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53, 622–629 (2018). https://doi.org/10.1016/j.nanoen.2018.09.026
Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for iot-based gait analysis and vr applications. NPJ Flexible Electron. 4(1), 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
T. Quan, Y. Wu, Y. Yang, Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 8(10), 3272–3280 (2015). https://doi.org/10.1007/s12274-015-0827-6
H. Zhang, Y. Lu, A. Ghaffarinejad, P. Basset, Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a bennet doubler conditioning circuit. Nano Energy 51, 10–18 (2018). https://doi.org/10.1016/j.nanoen.2018.06.038
C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu et al., Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2(2), 1900129 (2020). https://doi.org/10.1002/aisy.201900129
X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019). https://doi.org/10.1016/j.nanoen.2019.04.096
K. Tao, H.P. Yi, Y. Yang, H.L. Chang, J. Wu et al., Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 67, 104197 (2020). https://doi.org/10.1016/j.nanoen.2019.104197
X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen et al., Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 9(40), 1902460 (2019). https://doi.org/10.1002/aenm.201902460
L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
X. Xia, G. Liu, H. Guo, Q. Leng, C. Hu et al., Honeycomb-like three electrodes based triboelectric generator for harvesting energy in full space and as a self-powered vibration alertor. Nano Energy 15, 766–775 (2015). https://doi.org/10.1016/j.nanoen.2015.05.033
K. Tao, L. Tang, J. Wu, S.W. Lye, H. Chang et al., Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity. J. Microelectromech. Syst. 27(2), 276–288 (2018). https://doi.org/10.1109/JMEMS.2018.2792686