ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries
Corresponding Author: Hao Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 74
Abstract
Electrolytic aqueous zinc-manganese (Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn2+ deposition reaction and induces phase and structure change of the deposited manganese oxide (Zn2Mn3O8·H2O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm−2 after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn2+, and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.
Highlights:
1 Low pH value of electrolyte suppresses the charge capabilities of electrolytic Zn–Mn batteries.
2 Unique solid phase alkaline properties of zinc sulfate hydroxide hydrate endow the electrolytic Zn–Mn batteries with greatly enhanced charge capabilities.
3 The highly active Zn2Mn3O8·H2O nanorods array deposited during the charge process improve the discharge efficiency and stability of electrolytic Zn–Mn batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 (2022). https://doi.org/10.1002/anie.202200598
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
- M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 (2023). https://doi.org/10.1002/anie.202214966
- J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10, 860–884 (2017). https://doi.org/10.1039/C6EE03499C
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. 35, e2211527 (2023). https://doi.org/10.1002/adma.202211527
- Q. Lin, L. Wang, Layered double hydroxides as electrode materials for flexible energy storage devices. J. Semicond. 44, 041601 (2023). https://doi.org/10.1088/1674-4926/44/4/041601
- G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
- K. Sada, B. Senthilkumar, P. Barpanda, Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 7, 23981–23988 (2019). https://doi.org/10.1039/c9ta05836b
- Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong et al., Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
- V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo et al., The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater. 28, 407–417 (2020). https://doi.org/10.1016/j.ensm.2019.12.021
- X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao et al., Highly reversible aqueous Zn–MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 31, 2101579 (2021). https://doi.org/10.1002/adfm.202101579
- H. Chen, S. Cai, Y. Wu, W. Wang, M. Xu et al., Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive. Mater. Today Energy 20, 100646 (2021). https://doi.org/10.1016/j.mtener.2021.100646
- H. Yang, W. Zhou, D. Chen, J. Liu, Z. Yuan, M. Lu, D. Chao, The origin of capacity fluctuation and rescue of dead Mn-based Zn–ion batteries: a Mn-based competitive capacity evolution protocol. Energy Environ. Sci. 15(3), 1106–1118 (2022). https://doi.org/10.1039/D1EE03547A
- T. Xue, H.J. Fan, From aqueous Zn-ion battery to Zn–MnO2 flow battery: a brief story. J. Energy Chem. 54, 194–201 (2021). https://doi.org/10.1016/j.jechem.2020.05.056
- H. Chen, H. Kuang, F. Liu, Y. Wu, S. Cai et al., A self-healing neutral aqueous rechargeable Zn/MnO2 battery based on modified carbon nanotubes substrate cathode. J. Colloid Interface Sci. 600, 83–89 (2021). https://doi.org/10.1016/j.jcis.2021.04.097
- X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
- M. Han, L. Qin, Z. Liu, L. Zhang, X. Li et al., Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 20, 100626 (2021). https://doi.org/10.1016/j.mtener.2020.100626
- B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022). https://doi.org/10.1016/j.chempr.2022.03.019
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. Engl. 58, 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, e2001894 (2020). https://doi.org/10.1002/adma.202001894
- C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10, 1903589 (2020). https://doi.org/10.1002/aenm.201903589
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5, 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
- P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, e2300577 (2023). https://doi.org/10.1002/adma.202300577
- M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 34, e2203249 (2022). https://doi.org/10.1002/adma.202203249
- Y. Yuan, J. Yang, Z. Liu, R. Tan, M. Chuai et al., A proton-barrier separator induced via hofmeister effect for high-performance electrolytic MnO2–Zn batteries. Adv. Energy Mater. 12, 2103705 (2022). https://doi.org/10.1002/aenm.202103705
- M. Wang, X. Zheng, X. Zhang, D. Chao, S.-Z. Qiao et al., Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv. Energy Mater. 11, 2002904 (2021). https://doi.org/10.1002/aenm.202002904
- C. Dai, L. Hu, X. Jin, Y. Zhao, L. Qu, The emerging of aqueous zinc-based dual electrolytic batteries. Small 17, e2008043 (2021). https://doi.org/10.1002/smll.202008043
- H. Yang, T. Zhang, D. Chen, Y. Tan, W. Zhou et al., Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH. Adv. Mater. 35, e2300053 (2023). https://doi.org/10.1002/adma.202300053
- C. Xie, T. Li, C. Deng, Y. Song, H. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020). https://doi.org/10.1039/c9ee03702k
- H. Moon, K.H. Ha, Y. Park, J. Lee, M.S. Kwon et al., Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn–MnO2 batteries with porous carbon interlayers. Adv. Sci. 8, 2003714 (2021). https://doi.org/10.1002/advs.202003714
- H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous Zn–Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, e2109092 (2022). https://doi.org/10.1002/adma.202109092
- M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j
- X. Li, C. Ji, J. Shen, J. Feng, H. Mi et al., Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage. Adv. Sci. 10, e2205794 (2023). https://doi.org/10.1002/advs.202205794
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- X. Zhang, S. Deng, Y. Zeng, M. Yu, Y. Zhong et al., Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv. Funct. Mater. 28, 1805618 (2018). https://doi.org/10.1002/adfm.201805618
- S. Deng, Y. Zhang, D. Xie, L. Yang, G. Wang et al., Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 58, 355–364 (2019). https://doi.org/10.1016/j.nanoen.2019.01.051
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song et al., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- Y. Zhang, S. Deng, M. Luo, G. Pan, Y. Zeng et al., Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 15, e1905452 (2019). https://doi.org/10.1002/smll.201905452
- J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2021). https://doi.org/10.1002/aenm.202003203
- S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim et al., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5, 23299–23309 (2017). https://doi.org/10.1039/C7TA07170A
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 (2022). https://doi.org/10.1002/anie.202200598
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 (2023). https://doi.org/10.1002/anie.202214966
J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10, 860–884 (2017). https://doi.org/10.1039/C6EE03499C
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. 35, e2211527 (2023). https://doi.org/10.1002/adma.202211527
Q. Lin, L. Wang, Layered double hydroxides as electrode materials for flexible energy storage devices. J. Semicond. 44, 041601 (2023). https://doi.org/10.1088/1674-4926/44/4/041601
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
K. Sada, B. Senthilkumar, P. Barpanda, Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 7, 23981–23988 (2019). https://doi.org/10.1039/c9ta05836b
Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong et al., Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo et al., The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater. 28, 407–417 (2020). https://doi.org/10.1016/j.ensm.2019.12.021
X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao et al., Highly reversible aqueous Zn–MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 31, 2101579 (2021). https://doi.org/10.1002/adfm.202101579
H. Chen, S. Cai, Y. Wu, W. Wang, M. Xu et al., Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive. Mater. Today Energy 20, 100646 (2021). https://doi.org/10.1016/j.mtener.2021.100646
H. Yang, W. Zhou, D. Chen, J. Liu, Z. Yuan, M. Lu, D. Chao, The origin of capacity fluctuation and rescue of dead Mn-based Zn–ion batteries: a Mn-based competitive capacity evolution protocol. Energy Environ. Sci. 15(3), 1106–1118 (2022). https://doi.org/10.1039/D1EE03547A
T. Xue, H.J. Fan, From aqueous Zn-ion battery to Zn–MnO2 flow battery: a brief story. J. Energy Chem. 54, 194–201 (2021). https://doi.org/10.1016/j.jechem.2020.05.056
H. Chen, H. Kuang, F. Liu, Y. Wu, S. Cai et al., A self-healing neutral aqueous rechargeable Zn/MnO2 battery based on modified carbon nanotubes substrate cathode. J. Colloid Interface Sci. 600, 83–89 (2021). https://doi.org/10.1016/j.jcis.2021.04.097
X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
M. Han, L. Qin, Z. Liu, L. Zhang, X. Li et al., Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 20, 100626 (2021). https://doi.org/10.1016/j.mtener.2020.100626
B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022). https://doi.org/10.1016/j.chempr.2022.03.019
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. Engl. 58, 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, e2001894 (2020). https://doi.org/10.1002/adma.202001894
C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10, 1903589 (2020). https://doi.org/10.1002/aenm.201903589
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5, 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, e2300577 (2023). https://doi.org/10.1002/adma.202300577
M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 34, e2203249 (2022). https://doi.org/10.1002/adma.202203249
Y. Yuan, J. Yang, Z. Liu, R. Tan, M. Chuai et al., A proton-barrier separator induced via hofmeister effect for high-performance electrolytic MnO2–Zn batteries. Adv. Energy Mater. 12, 2103705 (2022). https://doi.org/10.1002/aenm.202103705
M. Wang, X. Zheng, X. Zhang, D. Chao, S.-Z. Qiao et al., Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv. Energy Mater. 11, 2002904 (2021). https://doi.org/10.1002/aenm.202002904
C. Dai, L. Hu, X. Jin, Y. Zhao, L. Qu, The emerging of aqueous zinc-based dual electrolytic batteries. Small 17, e2008043 (2021). https://doi.org/10.1002/smll.202008043
H. Yang, T. Zhang, D. Chen, Y. Tan, W. Zhou et al., Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH. Adv. Mater. 35, e2300053 (2023). https://doi.org/10.1002/adma.202300053
C. Xie, T. Li, C. Deng, Y. Song, H. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020). https://doi.org/10.1039/c9ee03702k
H. Moon, K.H. Ha, Y. Park, J. Lee, M.S. Kwon et al., Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn–MnO2 batteries with porous carbon interlayers. Adv. Sci. 8, 2003714 (2021). https://doi.org/10.1002/advs.202003714
H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous Zn–Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, e2109092 (2022). https://doi.org/10.1002/adma.202109092
M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j
X. Li, C. Ji, J. Shen, J. Feng, H. Mi et al., Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage. Adv. Sci. 10, e2205794 (2023). https://doi.org/10.1002/advs.202205794
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
X. Zhang, S. Deng, Y. Zeng, M. Yu, Y. Zhong et al., Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv. Funct. Mater. 28, 1805618 (2018). https://doi.org/10.1002/adfm.201805618
S. Deng, Y. Zhang, D. Xie, L. Yang, G. Wang et al., Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 58, 355–364 (2019). https://doi.org/10.1016/j.nanoen.2019.01.051
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song et al., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
Y. Zhang, S. Deng, M. Luo, G. Pan, Y. Zeng et al., Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 15, e1905452 (2019). https://doi.org/10.1002/smll.201905452
J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2021). https://doi.org/10.1002/aenm.202003203
S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim et al., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5, 23299–23309 (2017). https://doi.org/10.1039/C7TA07170A
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445