Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm
Corresponding Author: Jin Wu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 256
Abstract
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks. Most of the current rescue robots lack the ability to interact with environments, leading to low rescue efficiency. The multimodal electronic skin (e-skin) proposed not only reproduces the pressure, temperature, and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas. Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin. Rescue robots integrated with multimodal e-skin and artificial intelligence (AI) algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping, laying the foundation for automated post-earthquake rescue. Besides, the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time, thereby adopting appropriate measures to protect trapped people from the toxic environment. Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities, which, as an interface for interaction with the physical world, dramatically expands intelligent robots’ application scenarios.
Highlights:
1 A novel organohydrogel-based multimodal e-skin with excellent sensing performance for temperature, humidity, pressure, proximity, and NO2 is proposed for the first time, showing powerful sensing capabilities beyond natural skin.
2 The developed multimodal e-skin exhibited extraordinary sensing performance at room temperature, including fast pressure response time (0.2 s), high temperature sensitivity (9.38% °C-1), a wide range of humidity response (22%–98% RH), high NO2 sensitivity (254% ppm-1), a low detection limit (11.1 ppb NO2) and the abilities to sense the proximity of objects accurately, which are yet achieved by previous e-skins.
3 The multimodal e-skin was combined with the deep neural network algorithm and wireless alarm circuit to achieve zero-error classification of different objects and rapid response to NOx leak incidents, proving the feasibility of the e-skin-assisted rescue robot for post-earthquake rescue.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- EM-DAT, CRED / UCLouvain, Brussels, Belgium.
- A.G. MacIntyre, J.A. Barbera, E.R. Smith, Surviving collapsed structure entrapment after earthquakes: a “time-to-rescue” analysis. Prehosp. Disaster Med. 21, 4–17;discussion 18–19 (2006). https://doi.org/10.1017/s1049023x00003253
- P. Cao, J. Zheng, M. Li, Post-earthquake scheduling of rescuers: a method considering multiple disaster areas and rescuer collaboration. Sustainability 15, 11586 (2023). https://doi.org/10.3390/su151511586
- X. Wang, X. Yang, Structure design of a miniature and jumping robot for search and rescue. J. Eng. 2019, 219–224 (2019). https://doi.org/10.1049/joe.2018.8952
- J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo et al., The Current state and future outlook of rescue robotics. J. Field Robot. 36, 1171–1191 (2019). https://doi.org/10.1002/rob.21887
- E. Faruk Kececi, Design and prototype of mobile robots for rescue operations. Robotica 27(05), 729–737 (2009). https://doi.org/10.1017/S0263574708005109
- Y. Meng, C. Lu, Y. Yan, L. Shi, J. Liu, Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: a simulation approach. Process. Saf. Environ. Prot. 94, 366–379 (2015). https://doi.org/10.1016/j.psep.2014.09.001
- F. Celano, M. Dolšek, Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes. Reliab. Eng. Syst. Saf. 206, 107287 (2021). https://doi.org/10.1016/j.ress.2020.107287
- J.E. Lai-Cheong, J.A. McGrath, Structure and function of skin, hair and nails. Medicine 41, 317–320 (2013). https://doi.org/10.1016/j.mpmed.2013.04.017
- X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015). https://doi.org/10.1002/advs.201500169
- W. Wu, L. Li, Z. Li, J. Sun, L. Wang, Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv. Mater. 35, e2304596 (2023). https://doi.org/10.1002/adma.202304596
- Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan et al., Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 36, e2304182 (2024). https://doi.org/10.1002/adma.202304182
- B. Zhong, X. Qin, H. Xu, L. Liu, L. Li et al., Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 15, 624 (2024). https://doi.org/10.1038/s41467-024-44751-z
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023). https://doi.org/10.1002/adfm.202300046
- Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
- J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021). https://doi.org/10.1002/adfm.202104686
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021). https://doi.org/10.1002/adma.202005902
- R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010). https://doi.org/10.1109/TRO.2009.2033627
- C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18, 948 (2018). https://doi.org/10.3390/s18040948
- C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
- P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021). https://doi.org/10.1038/s41467-021-24946-4
- K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33, e2008701 (2021). https://doi.org/10.1002/adma.202008701
- L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano. 18, 15754–15768 (2024). https://doi.org/10.1021/acsnano.4c02359
- K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 17, 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
- S. Guo, Y. Zhang, S.C. Tan, Device design and optimization of sorption-based atmospheric water harvesters. Device 1, 100099 (2023). https://doi.org/10.1016/j.device.2023.100099
- S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35, e2207916 (2023). https://doi.org/10.1002/adma.202207916
- S. Zhang, Y. Zhou, A. Libanori, Y. Deng, M. Liu et al., Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6(5), 338–348 (2023). https://doi.org/10.1038/s41928-023-00960-w
- B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
- Q. Yang, Z. Ye, R. Wu, H. Lv, C. Li et al., A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin. Adv. Mater. Technol. 8, 2370113 (2023). https://doi.org/10.1002/admt.202370113
- Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang et al., Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018). https://doi.org/10.1126/sciadv.aaq0508
- J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022). https://doi.org/10.1039/d1mh01871j
- H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023). https://doi.org/10.1002/adma.202300593
- H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024). https://doi.org/10.1002/adma.202309868
- W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
- Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023). https://doi.org/10.1038/s41928-023-01091-y
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 2316339 (2024). https://doi.org/10.1002/adfm.202316339
- K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
- Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021). https://doi.org/10.1002/adfm.202008020
- Z. Lei, Q. Wang, P. Wu, A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017). https://doi.org/10.1039/C7MH00262A
- Z. Wang, N. Li, X. Yang, Z. Zhang, H. Zhang et al., Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst. Nanoeng. 10, 55 (2024). https://doi.org/10.1038/s41378-024-00693-6
- H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6, 2000239 (2020). https://doi.org/10.1002/aelm.202000239
- W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
- Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024). https://doi.org/10.1002/inf2.12544
- F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total. Environ. 714, 136712 (2020). https://doi.org/10.1016/j.scitotenv.2020.136712
- Y. Wang, L. Xiong, M. Tang, Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 37, 644–667 (2017). https://doi.org/10.1002/jat.3451
- R. Nieder, D.K. Benbi, Reactive nitrogen compounds and their influence on human health: an overview. Rev. Environ. Health 37, 229–246 (2022). https://doi.org/10.1515/reveh-2021-0021
- L. Pan, L. Zan, F.S. Foster, Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med. Biol. 24, 995–1007 (1998). https://doi.org/10.1016/s0301-5629(98)00071-4
- S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12, 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
- Z. Gao, Z. Lou, W. Han, G. Shen, A self-healable bifunctional electronic skin. ACS Appl. Mater. Interfaces 12, 24339–24347 (2020). https://doi.org/10.1021/acsami.0c05119
- Y. Zhang, Y. Zhao, W. Zhai, G. Zheng, Y. Ji et al., Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem. Eng. J. 407, 127960 (2021). https://doi.org/10.1016/j.cej.2020.127960
- B. Liang, B. Huang, J. He, R. Yang, C. Zhao et al., Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 15, 3614–3620 (2022). https://doi.org/10.1007/s12274-021-3906-x
- D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
- Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022). https://doi.org/10.1016/j.cej.2021.132152
- H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11, 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
- H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sources 378, 537–545 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
- S.R. Taylor, E. Gileadi, Physical interpretation of the Warburg impedance. Corrosion 51, 664–671 (1995). https://doi.org/10.5006/1.3293628
- S. Gao, Z. Liu, S. Xu, A. Zheng, P. Wu et al., Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. J. Catal. 377, 51–62 (2019). https://doi.org/10.1016/j.jcat.2019.07.010
- J. Kärger, H. Pfeifer, F. Stallmach, N.N. Feoktistova, S.P. Zhdanov, 129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13(1), 50–55 (1993). https://doi.org/10.1016/0144-2449(93)90022-U
- J. Sheng, H. Chen, B. Li, L. Chang, Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A 110, 511–515 (2013). https://doi.org/10.1007/s00339-012-7254-2
- P. Fryń, S. Lalik, N. Górska, A. Iwan, M. Marzec, Comparison of the dielectric properties of ecoflex® with L, D-poly(lactic acid) or polycaprolactone in the presence of SWCN or 5CB. Materials 14, 1719 (2021). https://doi.org/10.3390/ma14071719
- A. Nanda, V. Singh, R.K. Jha, J. Sinha, S. Avasthi et al., Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Appl. Mater. Interfaces 13, 21936–21943 (2021). https://doi.org/10.1021/acsami.1c01085
- M.L. Jin, S. Park, H. Kweon, H.J. Koh, M. Gao et al., Scalable superior chemical sensing performance of stretchable ionotronic skin via a π-hole receptor effect. Adv. Mater. 33, e2007605 (2021). https://doi.org/10.1002/adma.202007605
- L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022). https://doi.org/10.1038/s41378-022-00414-x
- T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y
- X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12, 4895 (2021). https://doi.org/10.1038/s41467-021-25192-4
- H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu et al., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783 (2021). https://doi.org/10.1016/j.snb.2021.129783
- Y. Hu, T. Li, J. Zhang, J. Guo, W. Wang et al., High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuat. B Chem. 352, 130912 (2022). https://doi.org/10.1016/j.snb.2021.130912
- D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human–robot interaction. Adv. Intell. Syst. 4, 2270027 (2022). https://doi.org/10.1002/aisy.202270027
- Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10, e2303949 (2023). https://doi.org/10.1002/advs.202303949
References
EM-DAT, CRED / UCLouvain, Brussels, Belgium.
A.G. MacIntyre, J.A. Barbera, E.R. Smith, Surviving collapsed structure entrapment after earthquakes: a “time-to-rescue” analysis. Prehosp. Disaster Med. 21, 4–17;discussion 18–19 (2006). https://doi.org/10.1017/s1049023x00003253
P. Cao, J. Zheng, M. Li, Post-earthquake scheduling of rescuers: a method considering multiple disaster areas and rescuer collaboration. Sustainability 15, 11586 (2023). https://doi.org/10.3390/su151511586
X. Wang, X. Yang, Structure design of a miniature and jumping robot for search and rescue. J. Eng. 2019, 219–224 (2019). https://doi.org/10.1049/joe.2018.8952
J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo et al., The Current state and future outlook of rescue robotics. J. Field Robot. 36, 1171–1191 (2019). https://doi.org/10.1002/rob.21887
E. Faruk Kececi, Design and prototype of mobile robots for rescue operations. Robotica 27(05), 729–737 (2009). https://doi.org/10.1017/S0263574708005109
Y. Meng, C. Lu, Y. Yan, L. Shi, J. Liu, Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: a simulation approach. Process. Saf. Environ. Prot. 94, 366–379 (2015). https://doi.org/10.1016/j.psep.2014.09.001
F. Celano, M. Dolšek, Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes. Reliab. Eng. Syst. Saf. 206, 107287 (2021). https://doi.org/10.1016/j.ress.2020.107287
J.E. Lai-Cheong, J.A. McGrath, Structure and function of skin, hair and nails. Medicine 41, 317–320 (2013). https://doi.org/10.1016/j.mpmed.2013.04.017
X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015). https://doi.org/10.1002/advs.201500169
W. Wu, L. Li, Z. Li, J. Sun, L. Wang, Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv. Mater. 35, e2304596 (2023). https://doi.org/10.1002/adma.202304596
Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan et al., Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 36, e2304182 (2024). https://doi.org/10.1002/adma.202304182
B. Zhong, X. Qin, H. Xu, L. Liu, L. Li et al., Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 15, 624 (2024). https://doi.org/10.1038/s41467-024-44751-z
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023). https://doi.org/10.1002/adfm.202300046
Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021). https://doi.org/10.1002/adfm.202104686
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021). https://doi.org/10.1002/adma.202005902
R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010). https://doi.org/10.1109/TRO.2009.2033627
C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18, 948 (2018). https://doi.org/10.3390/s18040948
C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021). https://doi.org/10.1038/s41467-021-24946-4
K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33, e2008701 (2021). https://doi.org/10.1002/adma.202008701
L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano. 18, 15754–15768 (2024). https://doi.org/10.1021/acsnano.4c02359
K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 17, 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
S. Guo, Y. Zhang, S.C. Tan, Device design and optimization of sorption-based atmospheric water harvesters. Device 1, 100099 (2023). https://doi.org/10.1016/j.device.2023.100099
S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35, e2207916 (2023). https://doi.org/10.1002/adma.202207916
S. Zhang, Y. Zhou, A. Libanori, Y. Deng, M. Liu et al., Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6(5), 338–348 (2023). https://doi.org/10.1038/s41928-023-00960-w
B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
Q. Yang, Z. Ye, R. Wu, H. Lv, C. Li et al., A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin. Adv. Mater. Technol. 8, 2370113 (2023). https://doi.org/10.1002/admt.202370113
Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang et al., Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018). https://doi.org/10.1126/sciadv.aaq0508
J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022). https://doi.org/10.1039/d1mh01871j
H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023). https://doi.org/10.1002/adma.202300593
H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024). https://doi.org/10.1002/adma.202309868
W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023). https://doi.org/10.1038/s41928-023-01091-y
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 2316339 (2024). https://doi.org/10.1002/adfm.202316339
K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021). https://doi.org/10.1002/adfm.202008020
Z. Lei, Q. Wang, P. Wu, A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017). https://doi.org/10.1039/C7MH00262A
Z. Wang, N. Li, X. Yang, Z. Zhang, H. Zhang et al., Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst. Nanoeng. 10, 55 (2024). https://doi.org/10.1038/s41378-024-00693-6
H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6, 2000239 (2020). https://doi.org/10.1002/aelm.202000239
W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024). https://doi.org/10.1002/inf2.12544
F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total. Environ. 714, 136712 (2020). https://doi.org/10.1016/j.scitotenv.2020.136712
Y. Wang, L. Xiong, M. Tang, Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 37, 644–667 (2017). https://doi.org/10.1002/jat.3451
R. Nieder, D.K. Benbi, Reactive nitrogen compounds and their influence on human health: an overview. Rev. Environ. Health 37, 229–246 (2022). https://doi.org/10.1515/reveh-2021-0021
L. Pan, L. Zan, F.S. Foster, Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med. Biol. 24, 995–1007 (1998). https://doi.org/10.1016/s0301-5629(98)00071-4
S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12, 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
Z. Gao, Z. Lou, W. Han, G. Shen, A self-healable bifunctional electronic skin. ACS Appl. Mater. Interfaces 12, 24339–24347 (2020). https://doi.org/10.1021/acsami.0c05119
Y. Zhang, Y. Zhao, W. Zhai, G. Zheng, Y. Ji et al., Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem. Eng. J. 407, 127960 (2021). https://doi.org/10.1016/j.cej.2020.127960
B. Liang, B. Huang, J. He, R. Yang, C. Zhao et al., Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 15, 3614–3620 (2022). https://doi.org/10.1007/s12274-021-3906-x
D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022). https://doi.org/10.1016/j.cej.2021.132152
H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11, 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019). https://doi.org/10.1002/aenm.201802768
H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sources 378, 537–545 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
S.R. Taylor, E. Gileadi, Physical interpretation of the Warburg impedance. Corrosion 51, 664–671 (1995). https://doi.org/10.5006/1.3293628
S. Gao, Z. Liu, S. Xu, A. Zheng, P. Wu et al., Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. J. Catal. 377, 51–62 (2019). https://doi.org/10.1016/j.jcat.2019.07.010
J. Kärger, H. Pfeifer, F. Stallmach, N.N. Feoktistova, S.P. Zhdanov, 129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13(1), 50–55 (1993). https://doi.org/10.1016/0144-2449(93)90022-U
J. Sheng, H. Chen, B. Li, L. Chang, Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A 110, 511–515 (2013). https://doi.org/10.1007/s00339-012-7254-2
P. Fryń, S. Lalik, N. Górska, A. Iwan, M. Marzec, Comparison of the dielectric properties of ecoflex® with L, D-poly(lactic acid) or polycaprolactone in the presence of SWCN or 5CB. Materials 14, 1719 (2021). https://doi.org/10.3390/ma14071719
A. Nanda, V. Singh, R.K. Jha, J. Sinha, S. Avasthi et al., Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Appl. Mater. Interfaces 13, 21936–21943 (2021). https://doi.org/10.1021/acsami.1c01085
M.L. Jin, S. Park, H. Kweon, H.J. Koh, M. Gao et al., Scalable superior chemical sensing performance of stretchable ionotronic skin via a π-hole receptor effect. Adv. Mater. 33, e2007605 (2021). https://doi.org/10.1002/adma.202007605
L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022). https://doi.org/10.1038/s41378-022-00414-x
T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y
X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12, 4895 (2021). https://doi.org/10.1038/s41467-021-25192-4
H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu et al., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783 (2021). https://doi.org/10.1016/j.snb.2021.129783
Y. Hu, T. Li, J. Zhang, J. Guo, W. Wang et al., High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuat. B Chem. 352, 130912 (2022). https://doi.org/10.1016/j.snb.2021.130912
D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human–robot interaction. Adv. Intell. Syst. 4, 2270027 (2022). https://doi.org/10.1002/aisy.202270027
Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10, e2303949 (2023). https://doi.org/10.1002/advs.202303949