Engineering Smart Composite Hydrogels for Wearable Disease Monitoring
Corresponding Author: Jin Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 105
Abstract
Growing health awareness triggers the public’s concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person’s physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Highlights:
1 The common performance optimization strategies of smart composite hydrogel are summarized.
2 The recent advanced progress of smart composite hydrogel-based wearable sensors is systematically discussed from the aspect of health monitoring.
3 The current challenges and future prospects of smart composite hydrogel-based wearable sensors are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Van den Akker, F. Buntinx, J.F. Metsemakers, S. Roos, J.A. Knottnerus, Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J. Clin. Epidemiol. 51(5), 367–375 (1998). https://doi.org/10.1016/S0895-4356(97)00306-5
- K. Strong, C. Mathers, S. Leeder, R. Beaglehole, Preventing chronic diseases: how many lives can we save? Lancet 366(9496), 1578–1582 (2005). https://doi.org/10.1016/S0140-6736(05)67341-2
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
- Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
- F. Han, T. Wang, G. Liu, H. Liu, X. Xie et al., Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 34(26), 2109055 (2022). https://doi.org/10.1002/adma.202109055
- Y. Cheng, K. Wang, H. Xu, T. Li, Q. Jin et al., Recent developments in sensors for wearable device applications. Anal. Bioanal. Chem. 413(24), 6037–6057 (2021). https://doi.org/10.1007/s00216-021-03602-2
- S. Nasiri, M.R. Khosravani, Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuat. A: Phys. 312, 112105 (2020). https://doi.org/10.1016/j.sna.2020.112105
- T. Yang, D. Xie, Z. Li, H. Zhu, Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater. Sci. Engin. R: Rep. 115, 1–37 (2017). https://doi.org/10.1016/j.mser.2017.02.001
- L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida et al., A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008). https://doi.org/10.1126/science.1160309
- J-S. Noh, Conductive elastomers for stretchable electronics, sensors and energy harvesters. Polymers 8(4), 123 (2016). https://doi.org/10.3390/polym8040123
- F. Han, T. Armstrong, A. Andres-Arroyo, D. Bennett, A. Soeriyadi et al., Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 12(3), 1680–1687 (2020). https://doi.org/10.1039/C9NR07891F
- L. Hu, Y. Wan, Q. Zhang, M.J. Serpe, Harnessing the power of stimuli-responsive polymers for actuation. Adv. Funct. Mater. 30(2), 1903471 (2020). https://doi.org/10.1002/adfm.201903471
- F. Han, A.H. Soeriyadi, S.R.C. Vivekchand, J.J. Gooding, Simple method for tuning the optical properties of thermoresponsive plasmonic nanogels. ACS Macro Lett. 5(5), 626–630 (2016). https://doi.org/10.1021/acsmacrolett.6b00222
- L. Hu, Q. Zhang, X. Li, M.J. Serpe, Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 6(9), 1774–1793 (2019). https://doi.org/10.1039/C9MH00490D
- C. Won, C. Kwon, K. Park, J. Seo, T. Lee, Electronic drugs: spatial and temporal medical treatment of human diseases. Adv. Mater. 33(47), 2005930 (2021). https://doi.org/10.1002/adma.202005930
- G. Chen, W. Tang, X. Wang, X. Zhao, C. Chen et al., Applications of hydrogels with special physical properties in biomedicine. Polymers 11(9), 1420 (2019). https://doi.org/10.3390/polym11091420
- F. Liu, X. Liu, H. Gu, Multi-network poly (β-cyclodextrin)/PVA/gelatin/carbon nanotubes composite hydrogels constructed by multiple dynamic crosslinking as flexible electronic devices. Macromol. Mater. Eng. 307(3), 2100724 (2022). https://doi.org/10.1002/mame.202100724
- D. Xu, J. Huang, D. Zhao, B. Ding, L. Zhang et al., High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 28(28), 5844–5849 (2016). https://doi.org/10.1002/adma.201600448
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), 500 (2017). https://doi.org/10.1126/science.aaf3627
- J. Wu, S. Han, T. Yang, Z. Li, Z. Wu et al., Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl. Mater. Interfaces 10(22), 19097–19105 (2018). https://doi.org/10.1021/acsami.8b03524
- J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11(2), 2364–2373 (2018). https://doi.org/10.1021/acsami.8b17437
- J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/C8MH01160E
- Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13(2), 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
- Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
- X. Sun, Z. Qin, L. Ye, H. Zhang, Q. Yu et al., Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 382, 122832 (2020). https://doi.org/10.1016/j.cej.2019.122832Get
- S. Liu, L. Li, Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9(31), 26429–26437 (2017). https://doi.org/10.1021/acsami.7b07445
- X. Li, L. Jin, A. Ni, L. Zhang, L. He et al., Tough and antifreezing MXene@ Au hydrogel for low-temperature trimethylamine gas sensing. ACS Appl. Mater. Interfaces 14(26), 30182–30191 (2022). https://doi.org/10.1021/acsami.2c06749
- I.Y. Jung, J.S. Kim, B.R. Choi, K. Lee, H. Lee, Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthcare Mater. 6(12), 1601475 (2017). https://doi.org/10.1002/adhm.201601475
- B. Mirani, E. Pagan, B. Currie, M.A. Siddiqui, R. Hosseinzadeh et al., An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv. Healthcare Mater. 6(19), 1700718 (2017). https://doi.org/10.1002/adhm.201700718
- Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat 4(1), e1141 (2022). https://doi.org/10.1002/smm2.1141
- Q. Ding, H. Wang, Z. Zhou, Z. Wu, K. Tao et al., Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat 4(2), e1147 (2022). https://doi.org/10.1002/smm2.1147
- L. Wang, T. Xu, C. Fan, X. Zhang, Wearable strain sensor for real-time sweat volume monitoring. IScience 24(1), 102028 (2021). https://doi.org/10.1016/j.isci.2020.102028
- R. Zhong, Q. Tang, S. Wang, H. Zhang, F. Zhang et al., Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 30(12), 1706887 (2018). https://doi.org/10.1002/adma.201706887
- A. Choe, J. Yeom, R. Shanker, M.P. Kim, S. Kang et al., Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10(9), 912–922 (2018). https://doi.org/10.1038/s41427-018-0086-6
- H.-Y. Leu, N. Farhoudi, C.F. Reiche, J. Körner, S. Mohanty et al., Low-cost microfluidic sensors with smart hydrogel patterned arrays using electronic resistive channel sensing for readout. Gels 4(4), 84 (2018). https://doi.org/10.3390/gels4040084
- F. Mo, Y. Huang, Q. Li, Z. Wang, R. Jiang et al., A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 31(28), 2010830 (2021). https://doi.org/10.1002/adfm.202010830
- F. Han, X. Xie, T. Wang, C. Cao, J. Li et al., Wearable hydrogel-based epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi-signals monitoring. Adv. Healthcare Mater. 12(3), 2201730 (2023). https://doi.org/10.1002/adhm.202201730
- Y. Shao, H. Jia, T. Cao, D. Liu, Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 50(4), 659–668 (2017). https://doi.org/10.1021/acs.accounts.6b00524
- L. Zhang, W. Lee, X. Li, Y. Jiang, N.X. Fang et al., 3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioact. Mater. 10, 48–55 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.015
- Y. Ko, D. Kim, G. Kwon, J. You, High-performance resistive pressure sensor based on elastic composite hydrogel of silver nanowires and poly (ethylene glycol). Micromachines 9(9), 438 (2018). https://doi.org/10.3390/mi9090438
- Y. Ichimura, T. Kuritsubo, K. Nagamine, A. Nomura, I. Shitanda et al., A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal. Bioanal. Chem. 413(7), 1883–1891 (2021). https://doi.org/10.1007/s00216-021-03156-3
- G.J. Kim, K.O. Kim, Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10(1), 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9
- Y. Miao, M. Xu, J. Yu, L. Zhang, Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine interaction control over artificial limbs. Sens. Actuat. B 327, 128916 (2021). https://doi.org/10.1016/j.snb.2020.128916
- K. Kaniewska, M. Karbarz, E. Katz, Nanocomposite hydrogel films and coatings–Features and applications. Appl. Mater. Today 20, 100776 (2020). https://doi.org/10.1016/j.apmt.2020.100776
- Y. Niu, H. Liu, R. He, Z. Li, H. Ren et al., The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Mater. Today 41, 219–242 (2020). https://doi.org/10.1016/j.mattod.2020.10.004
- X. Du, J. Zhai, X. Li, Y. Zhang, N. Li et al., Hydrogel-based optical ion sensors: principles and challenges for point-of-care testing and environmental monitoring. ACS Sens. 6(6), 1990–2001 (2021). https://doi.org/10.1021/acssensors.1c00756
- L. Wang, J. Wang, C. Fan, T. Xu, X. Zhang, Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chem. Eng. J. 455, 140609 (2023). https://doi.org/10.1016/j.cej.2022.140609
- L. Wang, T. Xu, X. Zhang, Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends in Anal. Chem. 134, 116130 (2021). https://doi.org/10.1016/j.trac.2020.116130
- L-H. Fu, C. Qi, M-G. Ma, P. Wan, Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B 7(10), 1541–1562 (2019). https://doi.org/10.1039/C8TB02331J
- Z. Deng, R. Yu, B. Guo, Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5(5), 2092–2123 (2021). https://doi.org/10.1039/D0QM00868K
- Z. Wang, Y. Liu, Z. Wang, X. Huang, W. Huang, Hydrogel-based composites: unlimited platforms for biosensors and diagnostics. VIEW 2(6), 20200165 (2021). https://doi.org/10.1002/VIW.20200165
- J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review. Am. J. Polym. Sci. 4(2), 25–31 (2014). https://doi.org/10.5923/j.ajps.20140402.01
- Z.L. Wu, J.P. Gong, Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater. 3(6), 57–64 (2011). https://doi.org/10.1038/asiamat.2010.200
- G. Song, Z. Zhao, X. Peng, C. He, R. Weiss et al., Rheological behavior of tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules 49(21), 8265–8273 (2016). https://doi.org/10.1021/acs.macromol.6b01448
- Y-N. Chen, C. Jiao, Y. Zhao, J. Zhang, H. Wang, Self-assembled polyvinyl alcohol–tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3(9), 11788–11795 (2018). https://doi.org/10.1021/acsomega.8b02041
- W. Wang, Y. Zhang, W. Liu, Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71, 1–25 (2017). https://doi.org/10.1016/j.progpolymsci.2017.04.001
- M. Djabourov, J. Leblond, P. Papon, Gelation of aqueous gelatin solutions I: structural investigation. J. Phys. 49(2), 319–332 (1988). https://doi.org/10.1051/jphys:01988004902031900
- M. Djabourov, J. Leblond, P. Papon, Gelation of aqueous gelatin solutions: II: rheology of the sol-gel transition. J. Phys. 49(2), 333–343 (1988). https://doi.org/10.1051/jphys:01988004902033300
- L. Gasperini, J.F. Mano, R.L. Reis, Natural polymers for the microencapsulation of cells. J. Royal Soc. Interface 11(100), 20140817 (2014). https://doi.org/10.1098/rsif.2014.0817
- M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011). https://doi.org/10.3390/polym3031215
- B.L. Ekerdt, C.M. Fuentes, Y. Lei, M.M. Adil, A. Ramasubramanian et al., Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture. Adv. Healthcare Mater. 7(12), 1800225 (2018). https://doi.org/10.1002/adhm.201800225
- J. Seuring, F.M. Bayer, K. Huber, S. Agarwal, Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property. Macromolecules 45(1), 374–384 (2012). https://doi.org/10.1021/ma202059t
- F. Puza, Y. Zheng, L. Han, L. Xue, J. Cui, Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability. Polym. Chem. 11(13), 2339–2345 (2020). https://doi.org/10.1039/D0PY00294A
- C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
- L.E.R. O’Leary, J.A. Fallas, E.L. Bakota, M.K. Kang, J.D. Hartgerink, Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3(10), 821–828 (2011). https://doi.org/10.1038/nchem.1123
- S. Mane, S. Ponrathnam, N. Chavan, Effect of chemical cross-linking on properties of polymer microbeads: a review. Can. Chem. Trans. 3(4), 473–485 (2015). https://doi.org/10.13179/canchemtrans.2015.03.04.0245
- P. Song, H. Wang, High-performance polymeric materials through hydrogen-bond cross-linking. Adv. Mater. 32(18), 1901244 (2020). https://doi.org/10.1002/adma.201901244
- L. Guo, W.-B. Ma, Y. Wang, X.-Z. Song, J. Ma et al., A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J. Alloys Compd. 843, 155895 (2020). https://doi.org/10.1016/j.jallcom.2020.155895
- M.H. Kim, W.H. Park, Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int. J. Nanomed. 11, 2967 (2016). https://doi.org/10.2147/IJN.S106467
- M.L. Oyen, Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59(1), 44–59 (2014). https://doi.org/10.1179/1743280413Y.0000000022
- S. Summonte, G.F. Racaniello, A. Lopedota, N. Denora, A. Bernkop-Schnürch, Thiolated polymeric hydrogels for biomedical application: cross-linking mechanisms. J. Control. Release 330, 470–482 (2021). https://doi.org/10.1016/j.jconrel.2020.12.037
- G. Rajesh Krishnan, C. Cheah, D. Sarkar, Hybrid cross-linking characteristics of hydrogel control stem cell fate. Macromol. Biosci. 15(6), 747–755 (2015). https://doi.org/10.1002/mabi.201400535
- M. Hu, X. Gu, Y. Hu, T. Wang, J. Huang et al., Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states. Macromolecules 49(8), 3174–3183 (2016). https://doi.org/10.1021/acs.macromol.5b02352
- X. Zhang, R. Zhang, S. Wu, Y. Sun, H. Yang et al., Physically and chemically dual-crosslinked hydrogels with superior mechanical properties and self-healing behavior. New J. Chem. 44(23), 9903–9911 (2020). https://doi.org/10.1039/D0NJ00348D
- K. Haraguchi, T. Takehisa, M. Ebato, Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromol 7(11), 3267–3275 (2006). https://doi.org/10.1021/bm060549b
- Y. Yang, Y. Yang, Y. Cao, X. Wang, Y. Chen et al., Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 403, 126431 (2021). https://doi.org/10.1016/j.cej.2020.126431
- W.R. Illeperuma, J.-Y. Sun, Z. Suo, J.J. Vlassak, Fiber-reinforced tough hydrogels. Extreme Mech. Lett. 1, 90–96 (2014). https://doi.org/10.1016/j.eml.2014.11.001
- K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14(16), 1120–1124 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9
- C. Norioka, Y. Inamoto, C. Hajime, A. Kawamura, T. Miyata, A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 13(1), 1–10 (2021). https://doi.org/10.1038/s41427-021-00302-2
- M-M. Song, Y-M. Wang, B. Wang, X-Y. Liang, Z-Y. Chang et al., Super tough, ultrastretchable hydrogel with multistimuli responsiveness. ACS Appl. Mater. Interfaces 10(17), 15021–15029 (2018). https://doi.org/10.1021/acsami.8b01410
- T. Nakajima, Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym. J. 49(6), 477–485 (2017). https://doi.org/10.1038/pj.2017.12
- J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010). https://doi.org/10.1039/B924290B
- H. Sun, K. Zhou, Y. Yu, X. Yue, K. Dai et al., Highly stretchable, transparent, and bio-friendly strain sensor based on self-recovery ionic-covalent hydrogels for human motion monitoring. Macromol. Mater. Eng. 304(10), 1900227 (2019). https://doi.org/10.1002/mame.201900227
- K. Pan, S. Peng, Y. Chu, K. Liang, C.H. Wang et al., Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels. J. Polym. Sci. 58(21), 3069–3081 (2020). https://doi.org/10.1002/pol.20200567
- A. Bin Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito et al., Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5(1), 5124 (2014). https://doi.org/10.1038/ncomms6124
- Q. Rong, W. Lei, M. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chem. Eur. J. 24(64), 16930–16943 (2018). https://doi.org/10.1002/chem.201801302
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
- H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39(4), 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
- F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc. Chem. Res. 50(7), 1734–1743 (2017). https://doi.org/10.1021/acs.accounts.7b00191
- Y.Y. Lee, H.Y. Kang, S.H. Gwon, G.M. Choi, S.M. Lim et al., A strain-insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv. Mater. 28(8), 1636–1643 (2016). https://doi.org/10.1002/adma.201504606
- C. Hu, Y. Zhang, X. Wang, L. Xing, L. Shi et al., Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl. Mater. Interfaces 10(50), 44000–44010 (2018). https://doi.org/10.1021/acsami.8b15287
- G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34(15), 2200261 (2022). https://doi.org/10.1021/acsami.8b15287
- B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
- Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
- Y. Peng, B. Yan, Y. Li, J. Lan, L. Shi et al., Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J. Mater. Sci. 55(3), 1280–1291 (2020). https://doi.org/10.1007/s10853-019-04101-7
- Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3(4), 1196–1210 (2020). https://doi.org/10.1016/j.matt.2020.08.024
- J. Hur, K. Im, S.W. Kim, J. Kim, D.-Y. Chung et al., Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10), 10066–10076 (2014). https://doi.org/10.1021/nn502704g
- Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
- W. Li, F. Gao, X. Wang, N. Zhang, M. Ma, Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed. 128(32), 9342–9347 (2016). https://doi.org/10.1002/ange.201603417
- Y. Shi, M. Wang, C. Ma, Y. Wang, X. Li et al., A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett. 15(9), 6276–6281 (2015). https://doi.org/10.1021/acs.nanolett.5b03069
- M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang et al., Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 29(31), 1700533 (2017). https://doi.org/10.1002/adma.201700533
- A. Alam, Q. Meng, G. Shi, S. Arabi, J. Ma et al., Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos. Sci. Technol. 127, 119–126 (2016). https://doi.org/10.1016/j.compscitech.2016.02.024
- C. Chen, Y. Wang, T. Meng, Q. Wu, L. Fang et al., Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26(16), 8843–8851 (2019). https://doi.org/10.1007/s10570-019-02710-8
- C. Chen, D. Li, K. Abe, H. Yano, Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25(9), 5089–5097 (2018). https://doi.org/10.1007/s10570-018-1938-5
- H. Huang, L. Han, J. Li, X. Fu, Y. Wang et al., Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J. Mater. Chem. A 8(20), 10291–10300 (2020). https://doi.org/10.1039/D0TA02902E
- S. Das, P. Martin, G. Vasilyev, R. Nandi, N. Amdursky et al., Processable, ion-conducting hydrogel for flexible electronic devices with self-healing capability. Macromolecules 53(24), 11130–11141 (2020). https://doi.org/10.1021/acs.macromol.0c02060
- Q. Peng, J. Chen, T. Wang, X. Peng, J. Liu et al., Recent Advances in designing conductive hydrogels for flexible electronics. InfoMat 2(5), 843–865 (2020). https://doi.org/10.1002/inf2.12113
- Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8(16), 3437–3459 (2020). https://doi.org/10.1039/C9TB02570G
- C. Zhou, T. Wu, X. Xie, G. Song, X. Ma et al., Advances and challenges in conductive hydrogels: from properties to applications. Eur. Polym. J. 177, 111454 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111454
- C. Xie, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30(25), 1909954 (2020). https://doi.org/10.1002/adfm.201909954
- Y. Yi, C. Xie, J. Liu, Y. Zheng, J. Wang et al., Self-adhesive hydrogels for tissue engineering. J. Mater. Chem. B 9(42), 8739–8767 (2021). https://doi.org/10.1039/D1TB01503F
- Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin et al., Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 122(6), 5604–5640 (2022). https://doi.org/10.1021/acs.chemrev.1c00815
- L. Zhang, M. Liu, Y. Zhang, R. Pei, Recent progress of highly adhesive hydrogels as wound dressings. Biomacromol 21(10), 3966–3983 (2020). https://doi.org/10.1021/acs.biomac.0c01069
- S. Li, Y. Cong, J. Fu, Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 9(22), 4423–4443 (2021). https://doi.org/10.1039/D1TB00523E
- B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
- J. Chen, D. Wang, L.H. Wang, W. Liu, A. Chiu et al., An adhesive hydrogel with “Load-Sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32(43), 2001628 (2020). https://doi.org/10.1002/adma.202001628
- Z. Ren, T. Ke, Q. Ling, L. Zhao, H. Gu, Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr. Polym. 273, 118533 (2021). https://doi.org/10.1016/j.carbpol.2021.118533
- P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), 1801884 (2018). https://doi.org/10.1002/adma.201801884
- L. Han, K. Liu, M. Wang, K. Wang, L. Fang et al., Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 28(3), 1704195 (2018). https://doi.org/10.1002/adfm.201704195
- Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin et al., Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 18(2), 645 (2018). https://doi.org/10.3390/s18020645
- J. Wang, T. Dai, H. Wu, M. Ye, G. Yuan et al., Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors. Compos. Sci. Technol. 221, 109345 (2022). https://doi.org/10.1016/j.compscitech.2022.109345
- D.L. Taylor, M in het Panhuis, self-healing hydrogels. Adv. Mater. 28(41), 9060–9093 (2016). https://doi.org/10.1002/adma.201601613
- T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013). https://doi.org/10.1002/adma.201205321
- W. Lu, X. Le, J. Zhang, Y. Huang, T. Chen, Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem. Soc. Rev. 46(5), 1284–1294 (2017). https://doi.org/10.1039/C6CS00754F
- G. Deng, F. Li, H. Yu, F. Liu, C. Liu et al., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012). https://doi.org/10.1021/mz200195n
- M. Chen, J. Tian, Y. Liu, H. Cao, R. Li et al., Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 373, 413–424 (2019). https://doi.org/10.1021/mz200195n
- J.R. McKee, E.A. Appel, J. Seitsonen, E. Kontturi, O.A. Scherman et al., Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 24(18), 2706–2713 (2014). https://doi.org/10.1002/adfm.201303699
- D.C. Tuncaboylu, A. Argun, M.P. Algi, O. Okay, Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer 54(23), 6381–6388 (2013). https://doi.org/10.1016/j.polymer.2013.09.051
- Q. Chen, H. Chen, L. Zhu, J. Zheng, Fundamentals of double network hydrogels. J. Mater. Chem. B 3(18), 3654–3676 (2015). https://doi.org/10.1039/C5TB00123D
- S. Bauer, P. Schmuki, K. Von Der Mark, J. Park, Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013). https://doi.org/10.1016/j.pmatsci.2012.09.001
- D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023
- X. Xue, Y. Hu, Y. Deng, J. Su, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 31(19), 2009432 (2021). https://doi.org/10.1002/adfm.202009432
- K. Ravishankar, M. Venkatesan, R.P. Desingh, A. Mahalingam, B. Sadhasivam et al., Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C 102, 447–457 (2019). https://doi.org/10.1016/j.msec.2019.04.038
- Y. Hong, Z. Lin, Y. Yang, T. Jiang, J. Shang et al., Biocompatible conductive hydrogels: applications in the field of biomedicine. Int. J. Mol. Sci. 23(9), 4578 (2022). https://doi.org/10.3390/ijms23094578
- C.E. Campiglio, N. Contessi Negrini, S. Farè, L. Draghi, Cross-linking strategies for electrospun gelatin scaffolds. Materials 12(15), 2476 (2019). https://doi.org/10.3390/ma12152476
- L. Lu, S. Yuan, J. Wang, Y. Shen, S. Deng et al., The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 13(7), 490–496 (2018). https://doi.org/10.2174/1574888X12666170612102706
- S. Naja, M. Makhlouf, M.A.H. Chehab, An ageing world of the 21st century: a literature review. Int. J. Commun. Med. Public Health. 4(12), 4363–4369 (2017). https://doi.org/10.18203/2394-6040.ijcmph20175306
- Y.H. Caplan, B.A. Goldberger, Alternative specimens for workplace drug testing. J. Anal. Toxicol. 25(5), 396–399 (2001). https://doi.org/10.1093/jat/25.5.396
- K. Sato, W. Kang, K. Saga, K. Sato, Biology of sweat glands and their disorders: I—normal sweat gland function. J. Am. Acad. Dermatol. 20(4), 537–563 (1989). https://doi.org/10.1016/S0190-9622(89)70063-3
- M.M. Raiszadeh, M.M. Ross, P.S. Russo, M.A. Schaepper, W. Zhou et al., Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res. 11(4), 2127–2139 (2012). https://doi.org/10.1021/pr2007957
- T. Siripongpreda, B. Somchob, N. Rodthongkum, V.P. Hoven, Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydr. Polym. 256, 117506 (2021). https://doi.org/10.1016/j.carbpol.2020.117506
- R. He, H. Liu, T. Fang, Y. Niu, H. Zhang et al., A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv. Sci. 8(24), 2103030 (2021). https://doi.org/10.1002/Adv.s.202103030
- R. Ghaffari, J. Choi, M.S. Raj, S. Chen, S.P. Lee et al., Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 30(37), 1907269 (2020). https://doi.org/10.1002/adfm.201907269
- L. Wang, T. Xu, X. He, X. Zhang, Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. J. Mater. Chem. C 9(41), 14938–14945 (2021). https://doi.org/10.1039/D1TC03905A
- M. Caldara, C. Colleoni, E. Guido, V. Re, G. Rosace, Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuat. B 222, 213–220 (2016). https://doi.org/10.1016/j.snb.2015.08.073
- K.H. Lee, Y.Z. Zhang, H. Kim, Y. Lei, S. Hong et al., Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods 5(12), 2100819 (2021). https://doi.org/10.1002/smtd.202100819
- Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201846
- B. Shen, W. Peng, B. Su, L. Wu, Z. Liu et al., Elastic–electric coefficient-sensitive hydrogel sensors toward sweat detection. Anal. Chem. 94(3), 1910–1917 (2022). https://doi.org/10.1021/acs.analchem.1c05363
- Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127(41), 14505–14510 (2005). https://doi.org/10.1021/ja0546424
- Q. He, Y. Huang, S. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
- S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly (vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
- N.S. Cherniack, G. Longobardo, Oxygen and carbon dioxide gas stores of the body. Physiol. Rev. 50(2), 196–243 (1970). https://doi.org/10.1152/physrev.1970.50.2.196
- Z. Lei, P. Wu, Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano 12(12), 12860–12868 (2018). https://doi.org/10.1021/acsnano.8b08062
- C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
- B. Guo, Z. Ma, L. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. B Polym. Phys. 57(23), 1606–1621 (2019). https://doi.org/10.1002/polb.24899
- Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17(52), 2104997 (2021). https://doi.org/10.1002/smll.202104997
- H. Zhi, J. Gao, L. Feng, Hydrogel-based gas sensors for NO2 and NH3. ACS Sens. 5(3), 772–780 (2020). https://doi.org/10.1021/acssensors.9b02383
- S. Xia, S. Song, F. Jia, G. Gao, A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 7(30), 4638–4648 (2019). https://doi.org/10.1039/C9TB01039D
- Y. Wang, M. Tebyetekerwa, Y. Liu, M. Wang, J. Zhu et al., Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 420, 127637 (2021). https://doi.org/10.1016/j.cej.2020.127637
- Q. Ling, T. Ke, W. Liu, Z. Ren, L. Zhao et al., Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring. Ind. Eng. Chem. Res. 60(50), 18373–18383 (2021). https://doi.org/10.1021/acs.iecr.1c03358
- X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/D0MH00361A
- S. Zeng, J. Zhang, G. Zu, J. Huang, Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr. Polym. 267, 118198 (2021). https://doi.org/10.1016/j.carbpol.2021.118198
- Z. Wu, Q. Ding, Z. Li, Z. Zhou, L. Luo et al., Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. Sci. China Mater. 65, 2540–2552 (2022). https://doi.org/10.1007/s40843-021-2022-1
- X. Li, J. Li, T. Wang, S.A. Khan, Z. Yuan et al., Self-powered respiratory monitoring strategy based on adaptive dual-network thermogalvanic hydrogels. ACS Appl. Mater. Interfaces 14(43), 48743–48751 (2022). https://doi.org/10.1021/acsami.2c14239
- E. Mejía-Mejía, J.M. May, R. Torres, P.A. Kyriacou, Pulse rate variability in cardiovascular health: a review on its applications and relationship with heart rate variability. Physiol. Meas. 41(7), 07TR01 (2020). https://doi.org/10.1088/1361-6579/ab998c
- W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(S1), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
- A.L. Pauca, M.F. O’Rourke, N.D. Kon, Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38(4), 932–937 (2001). https://doi.org/10.1161/hy1001.096106
- M.E. Safar, B.I. Levy, H. Struijker-Boudier, Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107(22), 2864–2869 (2003). https://doi.org/10.1161/01.CIR.0000069826.36125.B4
- Y-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciAdv.aat0098
- B. Shen, J. Li, Y. Tang, H. Xu, F. Li, An ultra-stretchable sensitive hydrogel sensor for human motion and pulse monitoring. Micromachines 12(7), 789 (2021). https://doi.org/10.3390/mi12070789
- W. Zhang, L. Xu, M. Zhao, Y. Ma, T. Zheng et al., Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion–contraction motion monitoring. Soft Matter 18(8), 1644–1652 (2022). https://doi.org/10.1039/D1SM01622A
- I. Campbell, Body temperature and its regulation. Anaesth. Intens. Care Med. 9(6), 259–263 (2008). https://doi.org/10.1016/j.mpaic.2008.04.009
- Z. Wang, X. Chen, Y. Lu, F. Chen, W. Zhang, Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. BioSci. Trends 14, 64–68 (2020). https://doi.org/10.5582/bst.2020.01030
- Y. Tan, Y. Zhang, Y. Zhang, J. Zheng, H. Wu et al., Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring. Chem. Mater. 32(18), 7670–7678 (2020). https://doi.org/10.1021/acs.chemmater.0c01589
- C. Lu, J. Qiu, W. Zhao, E. Sakai, G. Zhang et al., Low-temperature adaptive conductive hydrogel based on ice structuring proteins/CaCl2 anti-freeze system as wearable strain and temperature sensor. Int. J. Biol. Macromol. 188, 534–541 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.060
- X. Li, L. Kong, G. Gao, A bio-inspired self-recoverable polyampholyte hydrogel with low temperature sensing. J. Mater. Chem. B 9(8), 2010–2015 (2021). https://doi.org/10.1039/D0TB02895A
- Q. Pang, H. Hu, H. Zhang, B. Qiao, L. Ma, Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Appl. Mater. Interfaces 14, 26536–26547 (2022). https://doi.org/10.1021/acsami.2c06952
- H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9(40), 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
- Y. Li, C. Hu, J. Lan, B. Yan, Y. Zhang et al., Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer 186, 122027 (2020). https://doi.org/10.1016/j.polymer.2019.122027
- J. Chen, H. Wen, G. Zhang, F. Lei, Q. Feng et al., Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors. ACS Appl. Mater. Interfaces 12(6), 7565–7574 (2020). https://doi.org/10.1021/acsami.9b20612
- X. Xuan, Y. Zhou, A. Chen, S. Zheng, Y. An et al., Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing. J. Mater. Chem. B 8(7), 1359–1370 (2020). https://doi.org/10.1039/C9TB02331C
- K. Cutting, K. Harding, Criteria for identifying wound infection. J. Wound. Care 3(4), 198–201 (1994). https://doi.org/10.12968/jowc.1994.3.4.198
- M. Gompelman, S.A. van Asten, E.J. Peters, Update on the role of infection and biofilms in wound healing: pathophysiology and treatment. Plast. Reconstr. Surg. 138(3S), 61S-70S (2016). https://doi.org/10.1097/PRS.0000000000002679
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14(1), 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
- M. Abrigo, S.L. McArthur, P. Kingshott, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci. 14(6), 772–792 (2014). https://doi.org/10.1002/mabi.201300561
- Y. Hattori, L. Falgout, W. Lee, S.Y. Jung, E. Poon et al., Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthcare Mater. 3(10), 1597–1607 (2014). https://doi.org/10.1002/adhm.201400073
- S. Jiang, S. Liu, W. Feng, PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4(7), 1228–1233 (2011). https://doi.org/10.1016/j.jmbbm.2011.04.005
- F. Oveissi, S. Naficy, T.Y.L. Le, D.F. Fletcher, F. Dehghani, Tough hydrophilic polyurethane-based hydrogels with mechanical properties similar to human soft tissues. J. Mater. Chem. B 7(22), 3512–3519 (2019). https://doi.org/10.1039/C9TB00080A
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017). https://doi.org/10.1016/j.jare.2017.01.005
- X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30(17), 1910748 (2020). https://doi.org/10.1002/adfm.201910748
- K. Zheng, Y. Tong, S. Zhang, R. He, L. Xiao et al., Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing. Adv. Funct. Mater. 31(34), 2102599 (2021). https://doi.org/10.1002/adfm.202102599
- L. Wang, M. Zhou, T. Xu, X. Zhang, Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 433, 134625 (2022). https://doi.org/10.1016/j.cej.2022.134625
- F. Chen, M. Wu, Q. Dong, M. Ke, X. Liang et al., Arbitrarily shapeable and conductive hydrogel with “Magic Cube” like structure for real-time monitoring and promoting wound healing. Compos. B Eng. 238, 109903 (2022). https://doi.org/10.1016/j.compositesb.2022.109903
- R.M. Esclamado, G.A. Damiano, C.W. Cummings, Effect of local hypothermia on early wound repair. Arch Otolaryngol. Head Neck. Surg. 116(7), 803–808 (1990). https://doi.org/10.1001/archotol.1990.01870070051009
- S. Lin, H. Yuk, T. Zhang, G.A. Parada, H. Koo et al., Stretchable hydrogel electronics and devices. Adv. Mater. 28(22), 4497–4505 (2016). https://doi.org/10.1002/adma.201504152
- A.I. Robby, G. Lee, K.D. Lee, Y.C. Jang, S.Y. Park, GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 39, 101178 (2021). https://doi.org/10.1016/j.nantod.2021.101178
- A.I. Robby, S.G. Kim, H.J. Jo, G. Lee, H.S. Lee et al., Tumor microenvironment-responsive touch sensor-based pH-triggered controllable conductive hydrogel. Appl. Mater. Today 25, 101259 (2021). https://doi.org/10.1016/j.apmt.2021.101259
- J-N. Kim, J. Lee, H. Lee, I.-K. Oh, Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 82, 105705 (2021). https://doi.org/10.1016/j.nanoen.2020.105705
- J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32(40), 2204686 (2022). https://doi.org/10.1002/adfm.202204686
- S. Xia, S. Song, G. Gao, Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 354, 817–824 (2018). https://doi.org/10.1016/j.cej.2018.08.053
- K. Zhai, H. Wang, Q. Ding, Z. Wu, M. Ding et al., High-performance strain sensors based on organohydrogel microsphere film for wearable human–computer interfacing. Adv. Sci. (2022). https://doi.org/10.1002/Adv.s.202205632
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300046
- M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
- W-Y. Guo, Q. Yuan, L.-Z. Huang, W. Zhang, D.-D. Li et al., Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J. Colloid. Interface Sci. 608, 820–829 (2022). https://doi.org/10.1016/j.jcis.2021.10.057
- Y. Liu, H. He, A. Gao, J. Ling, F. Yi et al., Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery. Chem. Eng. J. 446, 137021 (2022). https://doi.org/10.1016/j.cej.2022.137021
- S. Zhang, Y. Wang, Y. Li, M. Wei, K. Wang, Anticorrosion of hydrophobic membrane on aluminum electrode for alkaline quasi solid Al-air batteries. J. Power Sources 545, 231907 (2022). https://doi.org/10.1016/j.jpowsour.2022.231907
- J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
- S. Tang, Z. Liu, X. Xiang, Graphene oxide composite hydrogels for wearable devices. Carbon Lett. 32(6), 1395–1410 (2022). https://doi.org/10.1007/s42823-022-00402-1
- S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2023). https://doi.org/10.1002/adma.202206793
- X. Liu, Y. Liu, J. Du, X. Li, J. Yu et al., Breathable, stretchable and adhesive nanofibrous hydrogels as wound dressing materials. Eng. Regen. 2, 63–69 (2021). https://doi.org/10.1016/j.engreg.2021.05.001
- X. Liu, Z. Huang, C. Ye, Z. Luo, L. Chen et al., Graphene-based hydrogel strain sensors with excellent breathability for motion detection and communication. Macromol. Mater. Eng. 307(8), 2200001 (2022). https://doi.org/10.1002/mame.202200001
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- N. Bokka, V. Selamneni, P. Sahatiya, A water destructible SnS2 QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Mater. Adv. 1(8), 2818–2830 (2020). https://doi.org/10.1039/D0MA00573H
- H. Van Der Linden, W. Olthuis, P. Bergveld, An efficient method for the fabrication of temperature-sensitive hydrogel microactuators. Lab Chip 4(6), 619–624 (2004). https://doi.org/10.1039/B406247G
- A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, R. Liska, 3D photografting: selective functionalization of 3D matrices via multiphoton grafting and subsequent click chemistry. Adv. Funct. Mater. 22(16), 3527–3527 (2012). https://doi.org/10.1002/adfm.201290098
- X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. USA 113(8), 2206–2211 (2016). https://doi.org/10.1073/pnas.1524510113
- Y-S. Torisawa, B. Mosadegh, G.D. Luker, M. Morell, K.S. O’Shea et al., Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1(11–12), 649–654 (2009). https://doi.org/10.1039/b915965g
- B. O’Grady, D.A. Balikov, J.X. Wang, E.K. Neal, Y.-C. Ou et al., Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater. Sci. 7(4), 1358–1371 (2019). https://doi.org/10.1039/C8BM01199K
- L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes et al., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13), 2202–2211 (2014). https://doi.org/10.1039/C4LC00030G
- B. Nestor, E. Samiei, R. Samanipour, A. Gupta, A. Van den Berg et al., Digital microfluidic platform for dielectrophoretic patterning of cells encapsulated in hydrogel droplets. RSC Adv. 6(62), 57409–57416 (2016). https://doi.org/10.1039/C6RA10412F
- A. Majkowska, C. Redondo-Gómez, A. Rice, M. Gonzalez, K.E. Inostroza-Brito et al., Interfacial self-assembly to spatially organize graphene oxide into hierarchical and bioactive structures. Front. Mater. 7, 167 (2020). https://doi.org/10.3389/fmats.2020.00167
References
M. Van den Akker, F. Buntinx, J.F. Metsemakers, S. Roos, J.A. Knottnerus, Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J. Clin. Epidemiol. 51(5), 367–375 (1998). https://doi.org/10.1016/S0895-4356(97)00306-5
K. Strong, C. Mathers, S. Leeder, R. Beaglehole, Preventing chronic diseases: how many lives can we save? Lancet 366(9496), 1578–1582 (2005). https://doi.org/10.1016/S0140-6736(05)67341-2
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
F. Han, T. Wang, G. Liu, H. Liu, X. Xie et al., Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 34(26), 2109055 (2022). https://doi.org/10.1002/adma.202109055
Y. Cheng, K. Wang, H. Xu, T. Li, Q. Jin et al., Recent developments in sensors for wearable device applications. Anal. Bioanal. Chem. 413(24), 6037–6057 (2021). https://doi.org/10.1007/s00216-021-03602-2
S. Nasiri, M.R. Khosravani, Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuat. A: Phys. 312, 112105 (2020). https://doi.org/10.1016/j.sna.2020.112105
T. Yang, D. Xie, Z. Li, H. Zhu, Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater. Sci. Engin. R: Rep. 115, 1–37 (2017). https://doi.org/10.1016/j.mser.2017.02.001
L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida et al., A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008). https://doi.org/10.1126/science.1160309
J-S. Noh, Conductive elastomers for stretchable electronics, sensors and energy harvesters. Polymers 8(4), 123 (2016). https://doi.org/10.3390/polym8040123
F. Han, T. Armstrong, A. Andres-Arroyo, D. Bennett, A. Soeriyadi et al., Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 12(3), 1680–1687 (2020). https://doi.org/10.1039/C9NR07891F
L. Hu, Y. Wan, Q. Zhang, M.J. Serpe, Harnessing the power of stimuli-responsive polymers for actuation. Adv. Funct. Mater. 30(2), 1903471 (2020). https://doi.org/10.1002/adfm.201903471
F. Han, A.H. Soeriyadi, S.R.C. Vivekchand, J.J. Gooding, Simple method for tuning the optical properties of thermoresponsive plasmonic nanogels. ACS Macro Lett. 5(5), 626–630 (2016). https://doi.org/10.1021/acsmacrolett.6b00222
L. Hu, Q. Zhang, X. Li, M.J. Serpe, Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 6(9), 1774–1793 (2019). https://doi.org/10.1039/C9MH00490D
C. Won, C. Kwon, K. Park, J. Seo, T. Lee, Electronic drugs: spatial and temporal medical treatment of human diseases. Adv. Mater. 33(47), 2005930 (2021). https://doi.org/10.1002/adma.202005930
G. Chen, W. Tang, X. Wang, X. Zhao, C. Chen et al., Applications of hydrogels with special physical properties in biomedicine. Polymers 11(9), 1420 (2019). https://doi.org/10.3390/polym11091420
F. Liu, X. Liu, H. Gu, Multi-network poly (β-cyclodextrin)/PVA/gelatin/carbon nanotubes composite hydrogels constructed by multiple dynamic crosslinking as flexible electronic devices. Macromol. Mater. Eng. 307(3), 2100724 (2022). https://doi.org/10.1002/mame.202100724
D. Xu, J. Huang, D. Zhao, B. Ding, L. Zhang et al., High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 28(28), 5844–5849 (2016). https://doi.org/10.1002/adma.201600448
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), 500 (2017). https://doi.org/10.1126/science.aaf3627
J. Wu, S. Han, T. Yang, Z. Li, Z. Wu et al., Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl. Mater. Interfaces 10(22), 19097–19105 (2018). https://doi.org/10.1021/acsami.8b03524
J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11(2), 2364–2373 (2018). https://doi.org/10.1021/acsami.8b17437
J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/C8MH01160E
Z. Wu, X. Yang, J. Wu, Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 13(2), 2128–2144 (2021). https://doi.org/10.1021/acsami.0c21841
Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
X. Sun, Z. Qin, L. Ye, H. Zhang, Q. Yu et al., Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 382, 122832 (2020). https://doi.org/10.1016/j.cej.2019.122832Get
S. Liu, L. Li, Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9(31), 26429–26437 (2017). https://doi.org/10.1021/acsami.7b07445
X. Li, L. Jin, A. Ni, L. Zhang, L. He et al., Tough and antifreezing MXene@ Au hydrogel for low-temperature trimethylamine gas sensing. ACS Appl. Mater. Interfaces 14(26), 30182–30191 (2022). https://doi.org/10.1021/acsami.2c06749
I.Y. Jung, J.S. Kim, B.R. Choi, K. Lee, H. Lee, Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthcare Mater. 6(12), 1601475 (2017). https://doi.org/10.1002/adhm.201601475
B. Mirani, E. Pagan, B. Currie, M.A. Siddiqui, R. Hosseinzadeh et al., An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv. Healthcare Mater. 6(19), 1700718 (2017). https://doi.org/10.1002/adhm.201700718
Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat 4(1), e1141 (2022). https://doi.org/10.1002/smm2.1141
Q. Ding, H. Wang, Z. Zhou, Z. Wu, K. Tao et al., Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat 4(2), e1147 (2022). https://doi.org/10.1002/smm2.1147
L. Wang, T. Xu, C. Fan, X. Zhang, Wearable strain sensor for real-time sweat volume monitoring. IScience 24(1), 102028 (2021). https://doi.org/10.1016/j.isci.2020.102028
R. Zhong, Q. Tang, S. Wang, H. Zhang, F. Zhang et al., Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 30(12), 1706887 (2018). https://doi.org/10.1002/adma.201706887
A. Choe, J. Yeom, R. Shanker, M.P. Kim, S. Kang et al., Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10(9), 912–922 (2018). https://doi.org/10.1038/s41427-018-0086-6
H.-Y. Leu, N. Farhoudi, C.F. Reiche, J. Körner, S. Mohanty et al., Low-cost microfluidic sensors with smart hydrogel patterned arrays using electronic resistive channel sensing for readout. Gels 4(4), 84 (2018). https://doi.org/10.3390/gels4040084
F. Mo, Y. Huang, Q. Li, Z. Wang, R. Jiang et al., A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 31(28), 2010830 (2021). https://doi.org/10.1002/adfm.202010830
F. Han, X. Xie, T. Wang, C. Cao, J. Li et al., Wearable hydrogel-based epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi-signals monitoring. Adv. Healthcare Mater. 12(3), 2201730 (2023). https://doi.org/10.1002/adhm.202201730
Y. Shao, H. Jia, T. Cao, D. Liu, Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 50(4), 659–668 (2017). https://doi.org/10.1021/acs.accounts.6b00524
L. Zhang, W. Lee, X. Li, Y. Jiang, N.X. Fang et al., 3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioact. Mater. 10, 48–55 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.015
Y. Ko, D. Kim, G. Kwon, J. You, High-performance resistive pressure sensor based on elastic composite hydrogel of silver nanowires and poly (ethylene glycol). Micromachines 9(9), 438 (2018). https://doi.org/10.3390/mi9090438
Y. Ichimura, T. Kuritsubo, K. Nagamine, A. Nomura, I. Shitanda et al., A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal. Bioanal. Chem. 413(7), 1883–1891 (2021). https://doi.org/10.1007/s00216-021-03156-3
G.J. Kim, K.O. Kim, Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10(1), 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9
Y. Miao, M. Xu, J. Yu, L. Zhang, Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine interaction control over artificial limbs. Sens. Actuat. B 327, 128916 (2021). https://doi.org/10.1016/j.snb.2020.128916
K. Kaniewska, M. Karbarz, E. Katz, Nanocomposite hydrogel films and coatings–Features and applications. Appl. Mater. Today 20, 100776 (2020). https://doi.org/10.1016/j.apmt.2020.100776
Y. Niu, H. Liu, R. He, Z. Li, H. Ren et al., The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Mater. Today 41, 219–242 (2020). https://doi.org/10.1016/j.mattod.2020.10.004
X. Du, J. Zhai, X. Li, Y. Zhang, N. Li et al., Hydrogel-based optical ion sensors: principles and challenges for point-of-care testing and environmental monitoring. ACS Sens. 6(6), 1990–2001 (2021). https://doi.org/10.1021/acssensors.1c00756
L. Wang, J. Wang, C. Fan, T. Xu, X. Zhang, Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chem. Eng. J. 455, 140609 (2023). https://doi.org/10.1016/j.cej.2022.140609
L. Wang, T. Xu, X. Zhang, Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends in Anal. Chem. 134, 116130 (2021). https://doi.org/10.1016/j.trac.2020.116130
L-H. Fu, C. Qi, M-G. Ma, P. Wan, Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B 7(10), 1541–1562 (2019). https://doi.org/10.1039/C8TB02331J
Z. Deng, R. Yu, B. Guo, Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5(5), 2092–2123 (2021). https://doi.org/10.1039/D0QM00868K
Z. Wang, Y. Liu, Z. Wang, X. Huang, W. Huang, Hydrogel-based composites: unlimited platforms for biosensors and diagnostics. VIEW 2(6), 20200165 (2021). https://doi.org/10.1002/VIW.20200165
J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review. Am. J. Polym. Sci. 4(2), 25–31 (2014). https://doi.org/10.5923/j.ajps.20140402.01
Z.L. Wu, J.P. Gong, Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater. 3(6), 57–64 (2011). https://doi.org/10.1038/asiamat.2010.200
G. Song, Z. Zhao, X. Peng, C. He, R. Weiss et al., Rheological behavior of tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules 49(21), 8265–8273 (2016). https://doi.org/10.1021/acs.macromol.6b01448
Y-N. Chen, C. Jiao, Y. Zhao, J. Zhang, H. Wang, Self-assembled polyvinyl alcohol–tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3(9), 11788–11795 (2018). https://doi.org/10.1021/acsomega.8b02041
W. Wang, Y. Zhang, W. Liu, Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71, 1–25 (2017). https://doi.org/10.1016/j.progpolymsci.2017.04.001
M. Djabourov, J. Leblond, P. Papon, Gelation of aqueous gelatin solutions I: structural investigation. J. Phys. 49(2), 319–332 (1988). https://doi.org/10.1051/jphys:01988004902031900
M. Djabourov, J. Leblond, P. Papon, Gelation of aqueous gelatin solutions: II: rheology of the sol-gel transition. J. Phys. 49(2), 333–343 (1988). https://doi.org/10.1051/jphys:01988004902033300
L. Gasperini, J.F. Mano, R.L. Reis, Natural polymers for the microencapsulation of cells. J. Royal Soc. Interface 11(100), 20140817 (2014). https://doi.org/10.1098/rsif.2014.0817
M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011). https://doi.org/10.3390/polym3031215
B.L. Ekerdt, C.M. Fuentes, Y. Lei, M.M. Adil, A. Ramasubramanian et al., Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture. Adv. Healthcare Mater. 7(12), 1800225 (2018). https://doi.org/10.1002/adhm.201800225
J. Seuring, F.M. Bayer, K. Huber, S. Agarwal, Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property. Macromolecules 45(1), 374–384 (2012). https://doi.org/10.1021/ma202059t
F. Puza, Y. Zheng, L. Han, L. Xue, J. Cui, Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability. Polym. Chem. 11(13), 2339–2345 (2020). https://doi.org/10.1039/D0PY00294A
C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
L.E.R. O’Leary, J.A. Fallas, E.L. Bakota, M.K. Kang, J.D. Hartgerink, Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3(10), 821–828 (2011). https://doi.org/10.1038/nchem.1123
S. Mane, S. Ponrathnam, N. Chavan, Effect of chemical cross-linking on properties of polymer microbeads: a review. Can. Chem. Trans. 3(4), 473–485 (2015). https://doi.org/10.13179/canchemtrans.2015.03.04.0245
P. Song, H. Wang, High-performance polymeric materials through hydrogen-bond cross-linking. Adv. Mater. 32(18), 1901244 (2020). https://doi.org/10.1002/adma.201901244
L. Guo, W.-B. Ma, Y. Wang, X.-Z. Song, J. Ma et al., A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J. Alloys Compd. 843, 155895 (2020). https://doi.org/10.1016/j.jallcom.2020.155895
M.H. Kim, W.H. Park, Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int. J. Nanomed. 11, 2967 (2016). https://doi.org/10.2147/IJN.S106467
M.L. Oyen, Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59(1), 44–59 (2014). https://doi.org/10.1179/1743280413Y.0000000022
S. Summonte, G.F. Racaniello, A. Lopedota, N. Denora, A. Bernkop-Schnürch, Thiolated polymeric hydrogels for biomedical application: cross-linking mechanisms. J. Control. Release 330, 470–482 (2021). https://doi.org/10.1016/j.jconrel.2020.12.037
G. Rajesh Krishnan, C. Cheah, D. Sarkar, Hybrid cross-linking characteristics of hydrogel control stem cell fate. Macromol. Biosci. 15(6), 747–755 (2015). https://doi.org/10.1002/mabi.201400535
M. Hu, X. Gu, Y. Hu, T. Wang, J. Huang et al., Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states. Macromolecules 49(8), 3174–3183 (2016). https://doi.org/10.1021/acs.macromol.5b02352
X. Zhang, R. Zhang, S. Wu, Y. Sun, H. Yang et al., Physically and chemically dual-crosslinked hydrogels with superior mechanical properties and self-healing behavior. New J. Chem. 44(23), 9903–9911 (2020). https://doi.org/10.1039/D0NJ00348D
K. Haraguchi, T. Takehisa, M. Ebato, Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromol 7(11), 3267–3275 (2006). https://doi.org/10.1021/bm060549b
Y. Yang, Y. Yang, Y. Cao, X. Wang, Y. Chen et al., Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 403, 126431 (2021). https://doi.org/10.1016/j.cej.2020.126431
W.R. Illeperuma, J.-Y. Sun, Z. Suo, J.J. Vlassak, Fiber-reinforced tough hydrogels. Extreme Mech. Lett. 1, 90–96 (2014). https://doi.org/10.1016/j.eml.2014.11.001
K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14(16), 1120–1124 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9
C. Norioka, Y. Inamoto, C. Hajime, A. Kawamura, T. Miyata, A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 13(1), 1–10 (2021). https://doi.org/10.1038/s41427-021-00302-2
M-M. Song, Y-M. Wang, B. Wang, X-Y. Liang, Z-Y. Chang et al., Super tough, ultrastretchable hydrogel with multistimuli responsiveness. ACS Appl. Mater. Interfaces 10(17), 15021–15029 (2018). https://doi.org/10.1021/acsami.8b01410
T. Nakajima, Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym. J. 49(6), 477–485 (2017). https://doi.org/10.1038/pj.2017.12
J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010). https://doi.org/10.1039/B924290B
H. Sun, K. Zhou, Y. Yu, X. Yue, K. Dai et al., Highly stretchable, transparent, and bio-friendly strain sensor based on self-recovery ionic-covalent hydrogels for human motion monitoring. Macromol. Mater. Eng. 304(10), 1900227 (2019). https://doi.org/10.1002/mame.201900227
K. Pan, S. Peng, Y. Chu, K. Liang, C.H. Wang et al., Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels. J. Polym. Sci. 58(21), 3069–3081 (2020). https://doi.org/10.1002/pol.20200567
A. Bin Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito et al., Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5(1), 5124 (2014). https://doi.org/10.1038/ncomms6124
Q. Rong, W. Lei, M. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chem. Eur. J. 24(64), 16930–16943 (2018). https://doi.org/10.1002/chem.201801302
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39(4), 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc. Chem. Res. 50(7), 1734–1743 (2017). https://doi.org/10.1021/acs.accounts.7b00191
Y.Y. Lee, H.Y. Kang, S.H. Gwon, G.M. Choi, S.M. Lim et al., A strain-insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv. Mater. 28(8), 1636–1643 (2016). https://doi.org/10.1002/adma.201504606
C. Hu, Y. Zhang, X. Wang, L. Xing, L. Shi et al., Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl. Mater. Interfaces 10(50), 44000–44010 (2018). https://doi.org/10.1021/acsami.8b15287
G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34(15), 2200261 (2022). https://doi.org/10.1021/acsami.8b15287
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
Y. Peng, B. Yan, Y. Li, J. Lan, L. Shi et al., Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J. Mater. Sci. 55(3), 1280–1291 (2020). https://doi.org/10.1007/s10853-019-04101-7
Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3(4), 1196–1210 (2020). https://doi.org/10.1016/j.matt.2020.08.024
J. Hur, K. Im, S.W. Kim, J. Kim, D.-Y. Chung et al., Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10), 10066–10076 (2014). https://doi.org/10.1021/nn502704g
Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
W. Li, F. Gao, X. Wang, N. Zhang, M. Ma, Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed. 128(32), 9342–9347 (2016). https://doi.org/10.1002/ange.201603417
Y. Shi, M. Wang, C. Ma, Y. Wang, X. Li et al., A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett. 15(9), 6276–6281 (2015). https://doi.org/10.1021/acs.nanolett.5b03069
M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang et al., Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 29(31), 1700533 (2017). https://doi.org/10.1002/adma.201700533
A. Alam, Q. Meng, G. Shi, S. Arabi, J. Ma et al., Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos. Sci. Technol. 127, 119–126 (2016). https://doi.org/10.1016/j.compscitech.2016.02.024
C. Chen, Y. Wang, T. Meng, Q. Wu, L. Fang et al., Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26(16), 8843–8851 (2019). https://doi.org/10.1007/s10570-019-02710-8
C. Chen, D. Li, K. Abe, H. Yano, Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25(9), 5089–5097 (2018). https://doi.org/10.1007/s10570-018-1938-5
H. Huang, L. Han, J. Li, X. Fu, Y. Wang et al., Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J. Mater. Chem. A 8(20), 10291–10300 (2020). https://doi.org/10.1039/D0TA02902E
S. Das, P. Martin, G. Vasilyev, R. Nandi, N. Amdursky et al., Processable, ion-conducting hydrogel for flexible electronic devices with self-healing capability. Macromolecules 53(24), 11130–11141 (2020). https://doi.org/10.1021/acs.macromol.0c02060
Q. Peng, J. Chen, T. Wang, X. Peng, J. Liu et al., Recent Advances in designing conductive hydrogels for flexible electronics. InfoMat 2(5), 843–865 (2020). https://doi.org/10.1002/inf2.12113
Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8(16), 3437–3459 (2020). https://doi.org/10.1039/C9TB02570G
C. Zhou, T. Wu, X. Xie, G. Song, X. Ma et al., Advances and challenges in conductive hydrogels: from properties to applications. Eur. Polym. J. 177, 111454 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111454
C. Xie, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30(25), 1909954 (2020). https://doi.org/10.1002/adfm.201909954
Y. Yi, C. Xie, J. Liu, Y. Zheng, J. Wang et al., Self-adhesive hydrogels for tissue engineering. J. Mater. Chem. B 9(42), 8739–8767 (2021). https://doi.org/10.1039/D1TB01503F
Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin et al., Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 122(6), 5604–5640 (2022). https://doi.org/10.1021/acs.chemrev.1c00815
L. Zhang, M. Liu, Y. Zhang, R. Pei, Recent progress of highly adhesive hydrogels as wound dressings. Biomacromol 21(10), 3966–3983 (2020). https://doi.org/10.1021/acs.biomac.0c01069
S. Li, Y. Cong, J. Fu, Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 9(22), 4423–4443 (2021). https://doi.org/10.1039/D1TB00523E
B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
J. Chen, D. Wang, L.H. Wang, W. Liu, A. Chiu et al., An adhesive hydrogel with “Load-Sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32(43), 2001628 (2020). https://doi.org/10.1002/adma.202001628
Z. Ren, T. Ke, Q. Ling, L. Zhao, H. Gu, Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr. Polym. 273, 118533 (2021). https://doi.org/10.1016/j.carbpol.2021.118533
P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), 1801884 (2018). https://doi.org/10.1002/adma.201801884
L. Han, K. Liu, M. Wang, K. Wang, L. Fang et al., Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 28(3), 1704195 (2018). https://doi.org/10.1002/adfm.201704195
Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin et al., Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 18(2), 645 (2018). https://doi.org/10.3390/s18020645
J. Wang, T. Dai, H. Wu, M. Ye, G. Yuan et al., Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors. Compos. Sci. Technol. 221, 109345 (2022). https://doi.org/10.1016/j.compscitech.2022.109345
D.L. Taylor, M in het Panhuis, self-healing hydrogels. Adv. Mater. 28(41), 9060–9093 (2016). https://doi.org/10.1002/adma.201601613
T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013). https://doi.org/10.1002/adma.201205321
W. Lu, X. Le, J. Zhang, Y. Huang, T. Chen, Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem. Soc. Rev. 46(5), 1284–1294 (2017). https://doi.org/10.1039/C6CS00754F
G. Deng, F. Li, H. Yu, F. Liu, C. Liu et al., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012). https://doi.org/10.1021/mz200195n
M. Chen, J. Tian, Y. Liu, H. Cao, R. Li et al., Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 373, 413–424 (2019). https://doi.org/10.1021/mz200195n
J.R. McKee, E.A. Appel, J. Seitsonen, E. Kontturi, O.A. Scherman et al., Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 24(18), 2706–2713 (2014). https://doi.org/10.1002/adfm.201303699
D.C. Tuncaboylu, A. Argun, M.P. Algi, O. Okay, Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer 54(23), 6381–6388 (2013). https://doi.org/10.1016/j.polymer.2013.09.051
Q. Chen, H. Chen, L. Zhu, J. Zheng, Fundamentals of double network hydrogels. J. Mater. Chem. B 3(18), 3654–3676 (2015). https://doi.org/10.1039/C5TB00123D
S. Bauer, P. Schmuki, K. Von Der Mark, J. Park, Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013). https://doi.org/10.1016/j.pmatsci.2012.09.001
D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023
X. Xue, Y. Hu, Y. Deng, J. Su, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 31(19), 2009432 (2021). https://doi.org/10.1002/adfm.202009432
K. Ravishankar, M. Venkatesan, R.P. Desingh, A. Mahalingam, B. Sadhasivam et al., Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C 102, 447–457 (2019). https://doi.org/10.1016/j.msec.2019.04.038
Y. Hong, Z. Lin, Y. Yang, T. Jiang, J. Shang et al., Biocompatible conductive hydrogels: applications in the field of biomedicine. Int. J. Mol. Sci. 23(9), 4578 (2022). https://doi.org/10.3390/ijms23094578
C.E. Campiglio, N. Contessi Negrini, S. Farè, L. Draghi, Cross-linking strategies for electrospun gelatin scaffolds. Materials 12(15), 2476 (2019). https://doi.org/10.3390/ma12152476
L. Lu, S. Yuan, J. Wang, Y. Shen, S. Deng et al., The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 13(7), 490–496 (2018). https://doi.org/10.2174/1574888X12666170612102706
S. Naja, M. Makhlouf, M.A.H. Chehab, An ageing world of the 21st century: a literature review. Int. J. Commun. Med. Public Health. 4(12), 4363–4369 (2017). https://doi.org/10.18203/2394-6040.ijcmph20175306
Y.H. Caplan, B.A. Goldberger, Alternative specimens for workplace drug testing. J. Anal. Toxicol. 25(5), 396–399 (2001). https://doi.org/10.1093/jat/25.5.396
K. Sato, W. Kang, K. Saga, K. Sato, Biology of sweat glands and their disorders: I—normal sweat gland function. J. Am. Acad. Dermatol. 20(4), 537–563 (1989). https://doi.org/10.1016/S0190-9622(89)70063-3
M.M. Raiszadeh, M.M. Ross, P.S. Russo, M.A. Schaepper, W. Zhou et al., Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res. 11(4), 2127–2139 (2012). https://doi.org/10.1021/pr2007957
T. Siripongpreda, B. Somchob, N. Rodthongkum, V.P. Hoven, Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydr. Polym. 256, 117506 (2021). https://doi.org/10.1016/j.carbpol.2020.117506
R. He, H. Liu, T. Fang, Y. Niu, H. Zhang et al., A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv. Sci. 8(24), 2103030 (2021). https://doi.org/10.1002/Adv.s.202103030
R. Ghaffari, J. Choi, M.S. Raj, S. Chen, S.P. Lee et al., Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 30(37), 1907269 (2020). https://doi.org/10.1002/adfm.201907269
L. Wang, T. Xu, X. He, X. Zhang, Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. J. Mater. Chem. C 9(41), 14938–14945 (2021). https://doi.org/10.1039/D1TC03905A
M. Caldara, C. Colleoni, E. Guido, V. Re, G. Rosace, Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuat. B 222, 213–220 (2016). https://doi.org/10.1016/j.snb.2015.08.073
K.H. Lee, Y.Z. Zhang, H. Kim, Y. Lei, S. Hong et al., Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods 5(12), 2100819 (2021). https://doi.org/10.1002/smtd.202100819
Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201846
B. Shen, W. Peng, B. Su, L. Wu, Z. Liu et al., Elastic–electric coefficient-sensitive hydrogel sensors toward sweat detection. Anal. Chem. 94(3), 1910–1917 (2022). https://doi.org/10.1021/acs.analchem.1c05363
Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127(41), 14505–14510 (2005). https://doi.org/10.1021/ja0546424
Q. He, Y. Huang, S. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly (vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
N.S. Cherniack, G. Longobardo, Oxygen and carbon dioxide gas stores of the body. Physiol. Rev. 50(2), 196–243 (1970). https://doi.org/10.1152/physrev.1970.50.2.196
Z. Lei, P. Wu, Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano 12(12), 12860–12868 (2018). https://doi.org/10.1021/acsnano.8b08062
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
B. Guo, Z. Ma, L. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. B Polym. Phys. 57(23), 1606–1621 (2019). https://doi.org/10.1002/polb.24899
Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17(52), 2104997 (2021). https://doi.org/10.1002/smll.202104997
H. Zhi, J. Gao, L. Feng, Hydrogel-based gas sensors for NO2 and NH3. ACS Sens. 5(3), 772–780 (2020). https://doi.org/10.1021/acssensors.9b02383
S. Xia, S. Song, F. Jia, G. Gao, A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 7(30), 4638–4648 (2019). https://doi.org/10.1039/C9TB01039D
Y. Wang, M. Tebyetekerwa, Y. Liu, M. Wang, J. Zhu et al., Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 420, 127637 (2021). https://doi.org/10.1016/j.cej.2020.127637
Q. Ling, T. Ke, W. Liu, Z. Ren, L. Zhao et al., Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring. Ind. Eng. Chem. Res. 60(50), 18373–18383 (2021). https://doi.org/10.1021/acs.iecr.1c03358
X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/D0MH00361A
S. Zeng, J. Zhang, G. Zu, J. Huang, Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr. Polym. 267, 118198 (2021). https://doi.org/10.1016/j.carbpol.2021.118198
Z. Wu, Q. Ding, Z. Li, Z. Zhou, L. Luo et al., Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. Sci. China Mater. 65, 2540–2552 (2022). https://doi.org/10.1007/s40843-021-2022-1
X. Li, J. Li, T. Wang, S.A. Khan, Z. Yuan et al., Self-powered respiratory monitoring strategy based on adaptive dual-network thermogalvanic hydrogels. ACS Appl. Mater. Interfaces 14(43), 48743–48751 (2022). https://doi.org/10.1021/acsami.2c14239
E. Mejía-Mejía, J.M. May, R. Torres, P.A. Kyriacou, Pulse rate variability in cardiovascular health: a review on its applications and relationship with heart rate variability. Physiol. Meas. 41(7), 07TR01 (2020). https://doi.org/10.1088/1361-6579/ab998c
W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(S1), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
A.L. Pauca, M.F. O’Rourke, N.D. Kon, Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38(4), 932–937 (2001). https://doi.org/10.1161/hy1001.096106
M.E. Safar, B.I. Levy, H. Struijker-Boudier, Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107(22), 2864–2869 (2003). https://doi.org/10.1161/01.CIR.0000069826.36125.B4
Y-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciAdv.aat0098
B. Shen, J. Li, Y. Tang, H. Xu, F. Li, An ultra-stretchable sensitive hydrogel sensor for human motion and pulse monitoring. Micromachines 12(7), 789 (2021). https://doi.org/10.3390/mi12070789
W. Zhang, L. Xu, M. Zhao, Y. Ma, T. Zheng et al., Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion–contraction motion monitoring. Soft Matter 18(8), 1644–1652 (2022). https://doi.org/10.1039/D1SM01622A
I. Campbell, Body temperature and its regulation. Anaesth. Intens. Care Med. 9(6), 259–263 (2008). https://doi.org/10.1016/j.mpaic.2008.04.009
Z. Wang, X. Chen, Y. Lu, F. Chen, W. Zhang, Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. BioSci. Trends 14, 64–68 (2020). https://doi.org/10.5582/bst.2020.01030
Y. Tan, Y. Zhang, Y. Zhang, J. Zheng, H. Wu et al., Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring. Chem. Mater. 32(18), 7670–7678 (2020). https://doi.org/10.1021/acs.chemmater.0c01589
C. Lu, J. Qiu, W. Zhao, E. Sakai, G. Zhang et al., Low-temperature adaptive conductive hydrogel based on ice structuring proteins/CaCl2 anti-freeze system as wearable strain and temperature sensor. Int. J. Biol. Macromol. 188, 534–541 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.060
X. Li, L. Kong, G. Gao, A bio-inspired self-recoverable polyampholyte hydrogel with low temperature sensing. J. Mater. Chem. B 9(8), 2010–2015 (2021). https://doi.org/10.1039/D0TB02895A
Q. Pang, H. Hu, H. Zhang, B. Qiao, L. Ma, Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Appl. Mater. Interfaces 14, 26536–26547 (2022). https://doi.org/10.1021/acsami.2c06952
H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9(40), 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
Y. Li, C. Hu, J. Lan, B. Yan, Y. Zhang et al., Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer 186, 122027 (2020). https://doi.org/10.1016/j.polymer.2019.122027
J. Chen, H. Wen, G. Zhang, F. Lei, Q. Feng et al., Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors. ACS Appl. Mater. Interfaces 12(6), 7565–7574 (2020). https://doi.org/10.1021/acsami.9b20612
X. Xuan, Y. Zhou, A. Chen, S. Zheng, Y. An et al., Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing. J. Mater. Chem. B 8(7), 1359–1370 (2020). https://doi.org/10.1039/C9TB02331C
K. Cutting, K. Harding, Criteria for identifying wound infection. J. Wound. Care 3(4), 198–201 (1994). https://doi.org/10.12968/jowc.1994.3.4.198
M. Gompelman, S.A. van Asten, E.J. Peters, Update on the role of infection and biofilms in wound healing: pathophysiology and treatment. Plast. Reconstr. Surg. 138(3S), 61S-70S (2016). https://doi.org/10.1097/PRS.0000000000002679
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14(1), 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
M. Abrigo, S.L. McArthur, P. Kingshott, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci. 14(6), 772–792 (2014). https://doi.org/10.1002/mabi.201300561
Y. Hattori, L. Falgout, W. Lee, S.Y. Jung, E. Poon et al., Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthcare Mater. 3(10), 1597–1607 (2014). https://doi.org/10.1002/adhm.201400073
S. Jiang, S. Liu, W. Feng, PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4(7), 1228–1233 (2011). https://doi.org/10.1016/j.jmbbm.2011.04.005
F. Oveissi, S. Naficy, T.Y.L. Le, D.F. Fletcher, F. Dehghani, Tough hydrophilic polyurethane-based hydrogels with mechanical properties similar to human soft tissues. J. Mater. Chem. B 7(22), 3512–3519 (2019). https://doi.org/10.1039/C9TB00080A
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017). https://doi.org/10.1016/j.jare.2017.01.005
X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30(17), 1910748 (2020). https://doi.org/10.1002/adfm.201910748
K. Zheng, Y. Tong, S. Zhang, R. He, L. Xiao et al., Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing. Adv. Funct. Mater. 31(34), 2102599 (2021). https://doi.org/10.1002/adfm.202102599
L. Wang, M. Zhou, T. Xu, X. Zhang, Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 433, 134625 (2022). https://doi.org/10.1016/j.cej.2022.134625
F. Chen, M. Wu, Q. Dong, M. Ke, X. Liang et al., Arbitrarily shapeable and conductive hydrogel with “Magic Cube” like structure for real-time monitoring and promoting wound healing. Compos. B Eng. 238, 109903 (2022). https://doi.org/10.1016/j.compositesb.2022.109903
R.M. Esclamado, G.A. Damiano, C.W. Cummings, Effect of local hypothermia on early wound repair. Arch Otolaryngol. Head Neck. Surg. 116(7), 803–808 (1990). https://doi.org/10.1001/archotol.1990.01870070051009
S. Lin, H. Yuk, T. Zhang, G.A. Parada, H. Koo et al., Stretchable hydrogel electronics and devices. Adv. Mater. 28(22), 4497–4505 (2016). https://doi.org/10.1002/adma.201504152
A.I. Robby, G. Lee, K.D. Lee, Y.C. Jang, S.Y. Park, GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 39, 101178 (2021). https://doi.org/10.1016/j.nantod.2021.101178
A.I. Robby, S.G. Kim, H.J. Jo, G. Lee, H.S. Lee et al., Tumor microenvironment-responsive touch sensor-based pH-triggered controllable conductive hydrogel. Appl. Mater. Today 25, 101259 (2021). https://doi.org/10.1016/j.apmt.2021.101259
J-N. Kim, J. Lee, H. Lee, I.-K. Oh, Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 82, 105705 (2021). https://doi.org/10.1016/j.nanoen.2020.105705
J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32(40), 2204686 (2022). https://doi.org/10.1002/adfm.202204686
S. Xia, S. Song, G. Gao, Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 354, 817–824 (2018). https://doi.org/10.1016/j.cej.2018.08.053
K. Zhai, H. Wang, Q. Ding, Z. Wu, M. Ding et al., High-performance strain sensors based on organohydrogel microsphere film for wearable human–computer interfacing. Adv. Sci. (2022). https://doi.org/10.1002/Adv.s.202205632
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300046
M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
W-Y. Guo, Q. Yuan, L.-Z. Huang, W. Zhang, D.-D. Li et al., Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J. Colloid. Interface Sci. 608, 820–829 (2022). https://doi.org/10.1016/j.jcis.2021.10.057
Y. Liu, H. He, A. Gao, J. Ling, F. Yi et al., Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery. Chem. Eng. J. 446, 137021 (2022). https://doi.org/10.1016/j.cej.2022.137021
S. Zhang, Y. Wang, Y. Li, M. Wei, K. Wang, Anticorrosion of hydrophobic membrane on aluminum electrode for alkaline quasi solid Al-air batteries. J. Power Sources 545, 231907 (2022). https://doi.org/10.1016/j.jpowsour.2022.231907
J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
S. Tang, Z. Liu, X. Xiang, Graphene oxide composite hydrogels for wearable devices. Carbon Lett. 32(6), 1395–1410 (2022). https://doi.org/10.1007/s42823-022-00402-1
S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2023). https://doi.org/10.1002/adma.202206793
X. Liu, Y. Liu, J. Du, X. Li, J. Yu et al., Breathable, stretchable and adhesive nanofibrous hydrogels as wound dressing materials. Eng. Regen. 2, 63–69 (2021). https://doi.org/10.1016/j.engreg.2021.05.001
X. Liu, Z. Huang, C. Ye, Z. Luo, L. Chen et al., Graphene-based hydrogel strain sensors with excellent breathability for motion detection and communication. Macromol. Mater. Eng. 307(8), 2200001 (2022). https://doi.org/10.1002/mame.202200001
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
N. Bokka, V. Selamneni, P. Sahatiya, A water destructible SnS2 QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Mater. Adv. 1(8), 2818–2830 (2020). https://doi.org/10.1039/D0MA00573H
H. Van Der Linden, W. Olthuis, P. Bergveld, An efficient method for the fabrication of temperature-sensitive hydrogel microactuators. Lab Chip 4(6), 619–624 (2004). https://doi.org/10.1039/B406247G
A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, R. Liska, 3D photografting: selective functionalization of 3D matrices via multiphoton grafting and subsequent click chemistry. Adv. Funct. Mater. 22(16), 3527–3527 (2012). https://doi.org/10.1002/adfm.201290098
X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. USA 113(8), 2206–2211 (2016). https://doi.org/10.1073/pnas.1524510113
Y-S. Torisawa, B. Mosadegh, G.D. Luker, M. Morell, K.S. O’Shea et al., Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1(11–12), 649–654 (2009). https://doi.org/10.1039/b915965g
B. O’Grady, D.A. Balikov, J.X. Wang, E.K. Neal, Y.-C. Ou et al., Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater. Sci. 7(4), 1358–1371 (2019). https://doi.org/10.1039/C8BM01199K
L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes et al., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13), 2202–2211 (2014). https://doi.org/10.1039/C4LC00030G
B. Nestor, E. Samiei, R. Samanipour, A. Gupta, A. Van den Berg et al., Digital microfluidic platform for dielectrophoretic patterning of cells encapsulated in hydrogel droplets. RSC Adv. 6(62), 57409–57416 (2016). https://doi.org/10.1039/C6RA10412F
A. Majkowska, C. Redondo-Gómez, A. Rice, M. Gonzalez, K.E. Inostroza-Brito et al., Interfacial self-assembly to spatially organize graphene oxide into hierarchical and bioactive structures. Front. Mater. 7, 167 (2020). https://doi.org/10.3389/fmats.2020.00167