Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of “Branch-Leaf” Electrode for High-Energy Sodium–Sulfur Batteries
Corresponding Author: Maowen Xu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 50
Abstract
Rechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.
Highlights:
1 3D “branch-leaf” biomimetic design is proposed for high-performance Na-S batteries.
2 The conductive “branch” can ensure adequate electron and electrolyte supply with the “leaf” can catalyze the conversion of polysulfides.
3 DFT calculation reveals that the Co nanoparticles can enable fast reduction reaction of the polysulfides;
4 The prepared CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204–204 (2018). https://doi.org/10.1038/s41928-018-0048-6
- M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O Co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li-S batteries. Nano-Micro Lett. 12, 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
- Y. Wang, B. Zhang, W. Lai, Y. Xu, S. Chou et al., A comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829
- P. Adelhelm, P. Hartmann, C. Bender, M. Busche, C. Eufinger et al., From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein. J. Nanotech. 6, 1016–1055 (2015). https://doi.org/10.3762/bjnano.6.105
- J. Kim, Y. Lee, S. Cho, J. Gwon, H. Cho et al., Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019). https://doi.org/10.1039/C8EE01879K
- D. Liu, W. Li, Y. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-Co doped nanotube-like carbon as advanced anode material: α→β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30, 1706317 (2018). https://doi.org/10.1002/adma.201706317
- D. Gueon, J. Hwang, S. Yang, E. Cho, K. Sohn et al., Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12, 226–2339 (2018). https://doi.org/10.1021/acsnano.7b05869
- T. Yang, W. Gao, B. Guo, R. Zhan, Q. Xu et al., A railway-like network electrode design for room temperature Na-S battery. J. Mater. Chem. A 7, 150–156 (2019). https://doi.org/10.1039/c8ta09556f
- Y. Wang, W. Lai, Y. Wang, S. Chou, X. Ai et al., Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage. Angew. Chem. Int. Ed. 58, 18324–18337 (2019). https://doi.org/10.1002/ange.201902552
- Y. Wang, W. Lai, S. Chou, H. Liu, S. Dou, Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries. Adv. Mater. 32, 1903952 (2020). https://doi.org/10.1002/adma.201903952
- A. Ghosh, S. Shukla, M. Monisha, A. Kumar, B. Lochab et al., Sulfur copolymer: a new cathode structure for room-temperature sodium-sulfur batteries. ACS Energy Lett. 2, 2478–2485 (2017). https://doi.org/10.1021/acsenergylett.7b00714
- G. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm
- S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu et al., A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722 (2016). https://doi.org/10.1038/ncomms11722
- C. Fan, S. Liu, H. Li, Y. Shi, H. Wang et al., Synergistic mediation of sulfur conversion in lithium-sulfur batteries by a Gerber tree-like interlayer with multiple components. J. Mater. Chem. A 5, 11255–11262 (2017). https://doi.org/10.1039/c7ta02231j
- B. Zhang, T. Sheng, Y. Liu, Y. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9, 4082 (2018). https://doi.org/10.1021/jacs.8b12973
- X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10.1002/aenm.201602829
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018). https://doi.org/10.1002/advs.201700270
- H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 9, 1902096 (2019). https://doi.org/10.1002/aenm.201902096
- J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang et al., Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy 64, 103905 (2019). https://doi.org/10.1016/j.nanoen.2019.103905
- Y. Zhan, A. Buffa, L. Yu, Z.C. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 12, 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
- L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang et al., Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 12, 9578–9586 (2018). https://doi.org/10.1021/acsnano.8b05466
- N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium-sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1021/jacs.7b11434
- S. Zheng, P. Han, Z. Han, P. Li, H. Zhang et al., Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries. Adv. Energy Mater. 4, 140022625 (2014). https://doi.org/10.1002/aenm.201400226
- N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang et al., High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy. Environ. Sci. 13, 562–570 (2020). https://doi.org/10.1039/C9EE03251G
- S. Zhang, T. Pollard, X. Feng, O. Borodin, K. Xu et al., Altering the electrochemical pathway of sulfur chemistry with oxygen for high energy density and low shuttling in a Na/S battery. ACS Energy Lett. 5, 1070–1076 (2020). https://doi.org/10.1021/acsenergylett.9b02746
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- B. Guo, W. Du, T. Yang, J. Deng, D. Liu et al., Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv. Sci. 7, 1902617 (2020). https://doi.org/10.1002/advs.201902617
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13, 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
- Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30, 1703824 (2018). https://doi.org/10.1002/adma.201703824
- K. He,T. Tsegaye Tsega, X. Liu, J. Zai, X. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 11903–11909 (2019). https://doi.org/https://doi.org/10.1002/anie.201905281
- D. Ma, B. Hu, W. Wu, X. Liu, J. Zai et al., Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 10, 3367 (2019). https://doi.org/10.1038/s41467-019-11176-y
- Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
- J. Liu, W. Zhang, Y. Chen, P. Zhou, K. Zhang, A novel biomimetic dandelion structure-inspired carbon nanotube coating with sulfur as a lithium-sulfur battery cathode. Nanotechnology 30, 155401 (2019). https://doi.org/10.1088/1361-6528/aafe46
- Y. Zhang, J. Zai, K. He, X. Qian, Fe3C nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chem. Commun. 54, 3158 (2018). https://doi.org/10.1039/c8cc01057a
- K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbala et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B-Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb.2020.118594
- D. Ji, S. Peng, L. Fan, L. Li, X. Qin et al., Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 5, 23898–23908 (2017). https://doi.org/10.1039/c7ta08166a
- L. Zhang, H. Chen, G. Hou, L. Zhang, Q. Li et al., Puzzle-inspired carbon dots coupled with cobalt phosphide for constructing a highly-effective overall water splitting interface. Chem. Commun. 56, 257–260 (2020). https://doi.org/10.1039/c9cc08032e
- L. Fan, R. Ma, Y. Yang, S. Chen, B. Lu, Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 28, 304–310 (2016). https://doi.org/10.1016/j.nanoen
- J. Wang, G. Yang, J. Chen, Y. Liu, Y. Wang et al., Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv. Energy Mater. 9, 1902001 (2019). https://doi.org/10.1002/aenm.201902001
- C. Dai, J. Lim, M. Wang, L. Hu, Y. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for lithium-sulfur batteries. Adv. Funct. Mater. 28, 1704443 (2018). https://doi.org/10.1002/adfm.201704443
- R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A.P. Cohn et al., A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett. 17, 1863–1869 (2017). https://doi.org/10.1021/acs.nanolett.6b05172
- Q. Lu, X. Wang, J. Cao, C. Chen, K. Chen et al., Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Mater. 8, 77-84 (2017). https://doi.org/10.1016/j.ensm
- Y. Wang, J. Yang, W. Lai, S. Chou, Q. Gu et al., Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138, 16576–16579 (2016). https://doi.org/10.1021/jacs.6b08685
- Q. Ma, G. Du, B. Guo, W. Tang, Y. Li et al., Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chem. Eng. J. 388, 124210 (2020). https://doi.org/10.1016/j.cej.2020.124210
- W. Du, W. Gao, T. Yang, B. Guo, L. Zhang et al., Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries. J. Colloid. Interface Sci. 565, 63–69 (2020). https://doi.org/10.1016/j.jcis.2020.01.010
- K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbala et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Cataly. B-Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb
- T. Yang, B. Guo, W. Du, K. Aslam, T. Tao et al., Design and construction of sodium polysulfides defense system for room-temperature Na-S battery. Adv. Sci. 6, 1901557 (2019). https://doi.org/10.1002/advs.201901557
- W. Zhu, A. Paolella, C. Kim, D. Liu, Z. Feng et al., Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustain. Energy Fuels 1, 737–747 (2017). https://doi.org/10.1039/C6SE00104A
- Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 12, 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
- L. Zhou, L. Yao, S. Li, J. Zai, S. Li et al., The combination of intercalation and conversion reactions to improve the volumetric capacity of the cathode in Li-S batteries. J. Mater. Chem. A 7, 3618 (2019). https://doi.org/10.1039/c8ta11375k
References
J. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204–204 (2018). https://doi.org/10.1038/s41928-018-0048-6
M. Shi, S. Zhang, Y. Jiang, Z. Jiang, L. Zhang et al., Sandwiching sulfur into the dents between N, O Co-doped graphene layered blocks with strong physicochemical confinements for stable and high-rate Li-S batteries. Nano-Micro Lett. 12, 146 (2020). https://doi.org/10.1007/s40820-020-00477-3
Y. Wang, B. Zhang, W. Lai, Y. Xu, S. Chou et al., A comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829
P. Adelhelm, P. Hartmann, C. Bender, M. Busche, C. Eufinger et al., From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein. J. Nanotech. 6, 1016–1055 (2015). https://doi.org/10.3762/bjnano.6.105
J. Kim, Y. Lee, S. Cho, J. Gwon, H. Cho et al., Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019). https://doi.org/10.1039/C8EE01879K
D. Liu, W. Li, Y. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-Co doped nanotube-like carbon as advanced anode material: α→β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30, 1706317 (2018). https://doi.org/10.1002/adma.201706317
D. Gueon, J. Hwang, S. Yang, E. Cho, K. Sohn et al., Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12, 226–2339 (2018). https://doi.org/10.1021/acsnano.7b05869
T. Yang, W. Gao, B. Guo, R. Zhan, Q. Xu et al., A railway-like network electrode design for room temperature Na-S battery. J. Mater. Chem. A 7, 150–156 (2019). https://doi.org/10.1039/c8ta09556f
Y. Wang, W. Lai, Y. Wang, S. Chou, X. Ai et al., Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage. Angew. Chem. Int. Ed. 58, 18324–18337 (2019). https://doi.org/10.1002/ange.201902552
Y. Wang, W. Lai, S. Chou, H. Liu, S. Dou, Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries. Adv. Mater. 32, 1903952 (2020). https://doi.org/10.1002/adma.201903952
A. Ghosh, S. Shukla, M. Monisha, A. Kumar, B. Lochab et al., Sulfur copolymer: a new cathode structure for room-temperature sodium-sulfur batteries. ACS Energy Lett. 2, 2478–2485 (2017). https://doi.org/10.1021/acsenergylett.7b00714
G. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm
S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu et al., A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722 (2016). https://doi.org/10.1038/ncomms11722
C. Fan, S. Liu, H. Li, Y. Shi, H. Wang et al., Synergistic mediation of sulfur conversion in lithium-sulfur batteries by a Gerber tree-like interlayer with multiple components. J. Mater. Chem. A 5, 11255–11262 (2017). https://doi.org/10.1039/c7ta02231j
B. Zhang, T. Sheng, Y. Liu, Y. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9, 4082 (2018). https://doi.org/10.1021/jacs.8b12973
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10.1002/aenm.201602829
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018). https://doi.org/10.1002/advs.201700270
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 9, 1902096 (2019). https://doi.org/10.1002/aenm.201902096
J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang et al., Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy 64, 103905 (2019). https://doi.org/10.1016/j.nanoen.2019.103905
Y. Zhan, A. Buffa, L. Yu, Z.C. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 12, 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang et al., Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 12, 9578–9586 (2018). https://doi.org/10.1021/acsnano.8b05466
N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium-sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1021/jacs.7b11434
S. Zheng, P. Han, Z. Han, P. Li, H. Zhang et al., Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries. Adv. Energy Mater. 4, 140022625 (2014). https://doi.org/10.1002/aenm.201400226
N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang et al., High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy. Environ. Sci. 13, 562–570 (2020). https://doi.org/10.1039/C9EE03251G
S. Zhang, T. Pollard, X. Feng, O. Borodin, K. Xu et al., Altering the electrochemical pathway of sulfur chemistry with oxygen for high energy density and low shuttling in a Na/S battery. ACS Energy Lett. 5, 1070–1076 (2020). https://doi.org/10.1021/acsenergylett.9b02746
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
B. Guo, W. Du, T. Yang, J. Deng, D. Liu et al., Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv. Sci. 7, 1902617 (2020). https://doi.org/10.1002/advs.201902617
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13, 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30, 1703824 (2018). https://doi.org/10.1002/adma.201703824
K. He,T. Tsegaye Tsega, X. Liu, J. Zai, X. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 11903–11909 (2019). https://doi.org/https://doi.org/10.1002/anie.201905281
D. Ma, B. Hu, W. Wu, X. Liu, J. Zai et al., Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 10, 3367 (2019). https://doi.org/10.1038/s41467-019-11176-y
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
J. Liu, W. Zhang, Y. Chen, P. Zhou, K. Zhang, A novel biomimetic dandelion structure-inspired carbon nanotube coating with sulfur as a lithium-sulfur battery cathode. Nanotechnology 30, 155401 (2019). https://doi.org/10.1088/1361-6528/aafe46
Y. Zhang, J. Zai, K. He, X. Qian, Fe3C nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chem. Commun. 54, 3158 (2018). https://doi.org/10.1039/c8cc01057a
K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbala et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B-Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb.2020.118594
D. Ji, S. Peng, L. Fan, L. Li, X. Qin et al., Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 5, 23898–23908 (2017). https://doi.org/10.1039/c7ta08166a
L. Zhang, H. Chen, G. Hou, L. Zhang, Q. Li et al., Puzzle-inspired carbon dots coupled with cobalt phosphide for constructing a highly-effective overall water splitting interface. Chem. Commun. 56, 257–260 (2020). https://doi.org/10.1039/c9cc08032e
L. Fan, R. Ma, Y. Yang, S. Chen, B. Lu, Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 28, 304–310 (2016). https://doi.org/10.1016/j.nanoen
J. Wang, G. Yang, J. Chen, Y. Liu, Y. Wang et al., Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv. Energy Mater. 9, 1902001 (2019). https://doi.org/10.1002/aenm.201902001
C. Dai, J. Lim, M. Wang, L. Hu, Y. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for lithium-sulfur batteries. Adv. Funct. Mater. 28, 1704443 (2018). https://doi.org/10.1002/adfm.201704443
R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A.P. Cohn et al., A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett. 17, 1863–1869 (2017). https://doi.org/10.1021/acs.nanolett.6b05172
Q. Lu, X. Wang, J. Cao, C. Chen, K. Chen et al., Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Mater. 8, 77-84 (2017). https://doi.org/10.1016/j.ensm
Y. Wang, J. Yang, W. Lai, S. Chou, Q. Gu et al., Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138, 16576–16579 (2016). https://doi.org/10.1021/jacs.6b08685
Q. Ma, G. Du, B. Guo, W. Tang, Y. Li et al., Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chem. Eng. J. 388, 124210 (2020). https://doi.org/10.1016/j.cej.2020.124210
W. Du, W. Gao, T. Yang, B. Guo, L. Zhang et al., Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries. J. Colloid. Interface Sci. 565, 63–69 (2020). https://doi.org/10.1016/j.jcis.2020.01.010
K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbala et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Cataly. B-Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb
T. Yang, B. Guo, W. Du, K. Aslam, T. Tao et al., Design and construction of sodium polysulfides defense system for room-temperature Na-S battery. Adv. Sci. 6, 1901557 (2019). https://doi.org/10.1002/advs.201901557
W. Zhu, A. Paolella, C. Kim, D. Liu, Z. Feng et al., Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustain. Energy Fuels 1, 737–747 (2017). https://doi.org/10.1039/C6SE00104A
Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 12, 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
L. Zhou, L. Yao, S. Li, J. Zai, S. Li et al., The combination of intercalation and conversion reactions to improve the volumetric capacity of the cathode in Li-S batteries. J. Mater. Chem. A 7, 3618 (2019). https://doi.org/10.1039/c8ta11375k