Organic Optoelectronic Synapses for Sound Perception
Corresponding Author: Hui Huang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 133
Abstract
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots. However, the sound perception based on volume, tone and timbre remains unknown. Herein, organic optoelectronic synapses (OOSs) are constructed for unprecedented sound recognition. The volume, tone and timbre of sound can be regulated appropriately by the input signal of voltages, frequencies and light intensities of OOSs, according to the amplitude, frequency, and waveform of the sound. The quantitative relation between recognition factor (ζ) and postsynaptic current (I = Ilight − Idark) is established to achieve sound perception. Interestingly, the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%. The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances. This contribution presents unprecedented artificial synapses for sound perception at hardware levels.
Highlights:
1 The organic optoelectronic synapse achieves unprecedented sound perception on volume, tone and timbre simultaneously.
2 The quantitative relationship between the interfacial layers and synaptic performances is clarified.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Kim, A. Chortos, W. Xu, Y. Liu, Y. Oh Jin et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
- Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
- Y.H. Jung, B. Park, J.U. Kim, T.-I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
- M. Latinus, P. Belin, Human voice perception. Curr. Biol. 21(4), R143–R145 (2011). https://doi.org/10.1016/j.cub.2010.12.033
- A.W. Young, S. Frühholz, S.R. Schweinberger, Face and voice perception: understanding commonalities and differences. Trends. Cogn. Sci. 24(5), 398–410 (2020). https://doi.org/10.1016/j.tics.2020.02.001
- S. Frühholz, S.R. Schweinberger, Nonverbal auditory communication –evidence for integrated neural systems for voice signal production and perception. Prog. Neurobiol. 199, 101948 (2021). https://doi.org/10.1016/j.pneurobio.2020.101948
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
- S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- N. Jongkamonwiwat, M.A. Ramirez, S. Edassery, A.C.Y. Wong, J. Yu et al., Noise exposures causing hearing loss generate proteotoxic stress and activate the proteostasis network. Cell Rep. 33(8), 108431 (2020). https://doi.org/10.1016/j.celrep.2020.108431
- H. Bian, Y.Y. Goh, Y. Liu, H. Ling, L. Xie et al., Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater. 33, 2006469 (2021). https://doi.org/10.1002/adma.202006469
- X. Liao, W. Song, X. Zhang, C. Yan, T. Li et al., A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 11(1), 268 (2020). https://doi.org/10.1038/s41467-019-14214-x
- Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4(7), 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
- K. Kwon, J. Baek, K. Hong, S.Y. Kim, H. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13, 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- C. Hao, G. Wang, C. Chen, J. Xu, C. Xu et al., Circularly polarized light-enabled chiral nanomaterials: from fabrication to application. Nano-Micro Lett. 15, 39 (2023). https://doi.org/10.1007/s40820-022-01005-1
- S. Seo, B.-S. Kang, J.-J. Lee, H.-J. Ryu, S. Kim et al., Artificial van der waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11(1), 3936 (2020). https://doi.org/10.1038/s41467-020-17849-3
- D.-G. Seo, Y. Lee, G.-T. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
- Y. Liu, E. Li, X. Wang, Q. Chen, Y. Zhou et al., Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 78, 105403 (2020). https://doi.org/10.1016/j.nanoen.2020.105403
- B. Yang, Y. Lu, D. Jiang, Z. Li, Y. Zeng et al., Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv. Mater. 32(28), 2001227 (2020). https://doi.org/10.1002/adma.202001227
- S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- Y. Wei, J. Yu, L. Qin, H. Chen, X. Wu et al., A universal method for constructing high efficiency organic solar cells with stacked structures. Energ. Environ. Sci. 14(4), 2314–2321 (2021). https://doi.org/10.1039/D0EE03490H
- X. Gu, Y. Wei, X. Liu, N. Yu, L. Li et al., Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Sci. China Chem. 65(5), 926–933 (2022). https://doi.org/10.1007/s11426-022-1222-y
- X. Zhang, C. Li, L. Qin, H. Chen, J. Yu et al., Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors. Angew. Chem. Int. Ed. 60(32), 17720–17725 (2021). https://doi.org/10.1002/anie.202106753
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). https://doi.org/10.1021/nn202983n
- Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu et al., Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous ingazno memristor. Adv. Funct. Mater. 22(13), 2759–2765 (2012). https://doi.org/10.1002/adfm.201103148
References
Y. Kim, A. Chortos, W. Xu, Y. Liu, Y. Oh Jin et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
Y.H. Jung, B. Park, J.U. Kim, T.-I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
M. Latinus, P. Belin, Human voice perception. Curr. Biol. 21(4), R143–R145 (2011). https://doi.org/10.1016/j.cub.2010.12.033
A.W. Young, S. Frühholz, S.R. Schweinberger, Face and voice perception: understanding commonalities and differences. Trends. Cogn. Sci. 24(5), 398–410 (2020). https://doi.org/10.1016/j.tics.2020.02.001
S. Frühholz, S.R. Schweinberger, Nonverbal auditory communication –evidence for integrated neural systems for voice signal production and perception. Prog. Neurobiol. 199, 101948 (2021). https://doi.org/10.1016/j.pneurobio.2020.101948
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
N. Jongkamonwiwat, M.A. Ramirez, S. Edassery, A.C.Y. Wong, J. Yu et al., Noise exposures causing hearing loss generate proteotoxic stress and activate the proteostasis network. Cell Rep. 33(8), 108431 (2020). https://doi.org/10.1016/j.celrep.2020.108431
H. Bian, Y.Y. Goh, Y. Liu, H. Ling, L. Xie et al., Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater. 33, 2006469 (2021). https://doi.org/10.1002/adma.202006469
X. Liao, W. Song, X. Zhang, C. Yan, T. Li et al., A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 11(1), 268 (2020). https://doi.org/10.1038/s41467-019-14214-x
Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4(7), 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
K. Kwon, J. Baek, K. Hong, S.Y. Kim, H. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13, 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
C. Hao, G. Wang, C. Chen, J. Xu, C. Xu et al., Circularly polarized light-enabled chiral nanomaterials: from fabrication to application. Nano-Micro Lett. 15, 39 (2023). https://doi.org/10.1007/s40820-022-01005-1
S. Seo, B.-S. Kang, J.-J. Lee, H.-J. Ryu, S. Kim et al., Artificial van der waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11(1), 3936 (2020). https://doi.org/10.1038/s41467-020-17849-3
D.-G. Seo, Y. Lee, G.-T. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
Y. Liu, E. Li, X. Wang, Q. Chen, Y. Zhou et al., Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 78, 105403 (2020). https://doi.org/10.1016/j.nanoen.2020.105403
B. Yang, Y. Lu, D. Jiang, Z. Li, Y. Zeng et al., Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv. Mater. 32(28), 2001227 (2020). https://doi.org/10.1002/adma.202001227
S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
Y. Wei, J. Yu, L. Qin, H. Chen, X. Wu et al., A universal method for constructing high efficiency organic solar cells with stacked structures. Energ. Environ. Sci. 14(4), 2314–2321 (2021). https://doi.org/10.1039/D0EE03490H
X. Gu, Y. Wei, X. Liu, N. Yu, L. Li et al., Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Sci. China Chem. 65(5), 926–933 (2022). https://doi.org/10.1007/s11426-022-1222-y
X. Zhang, C. Li, L. Qin, H. Chen, J. Yu et al., Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors. Angew. Chem. Int. Ed. 60(32), 17720–17725 (2021). https://doi.org/10.1002/anie.202106753
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). https://doi.org/10.1021/nn202983n
Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu et al., Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous ingazno memristor. Adv. Funct. Mater. 22(13), 2759–2765 (2012). https://doi.org/10.1002/adfm.201103148