Growth of Carbon Nanocoils by Porous α-Fe2O3/SnO2 Catalyst and Its Buckypaper for High Efficient Adsorption
Corresponding Author: Lujun Pan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 23
Abstract
High-purity (99%) carbon nanocoils (CNCs) have been synthesized by using porous α-Fe2O3/SnO2 catalyst. The yield of CNCs reaches 9,098% after a 6 h growth. This value is much higher than the previously reported data, indicating that this method is promising to synthesize high-purity CNCs on a large scale. It is considered that an appropriate proportion of Fe and Sn, proper particle size distribution, and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs. Benefiting from the high-purity preparation, a CNC Buckypaper was successfully prepared and the electrical, mechanical, and electrochemical properties were investigated comprehensively. Furthermore, as one of the practical applications, the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%. This study provides a facile and economical route for preparing high-purity CNCs, which is suitable for large-quantity production. Furthermore, the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.
Highlights:
1 High-purity (~ 99%) carbon nanocoils (CNCs) without the amorphous carbon layer were synthesized by using porous α-Fe2O3/SnO2 catalyst.
2 The highest yield of the CNCs can reach ~ 9098% after a 6 h growth, which is much higher than those mentioned in previous reports.
3 A CNC Buckypaper was successfully prepared and utilized as an efficient adsorbent for the removal of methylene blue dye with the adsorption efficiency of 90.9%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, Y. Nakayama, Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003). https://doi.org/10.1021/nl034367o
- A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J.B. Nagy, C. Van Haesendonck, Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 4(9), 1775–1779 (2004). https://doi.org/10.1021/nl0491576
- C. Li, L. Pan, C. Deng, P. Wang, Y. Huang, H. Nasir, A flexible, ultra-sensitive strain sensor based on carbon nanocoil network fabricated by an electrophoretic method. Nanoscale 9(28), 9872–9878 (2017). https://doi.org/10.1039/c7nr01945a
- C. Deng, L. Pan, D. Zhang, C. Li, H. Nasir, A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale 9(42), 16404–16411 (2017). https://doi.org/10.1039/c7nr05486f
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- D.-L. Zhao, Z.-M. Shen, Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21–22), 3704–3706 (2008). https://doi.org/10.1016/j.matlet.2008.04.032
- S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
- L. Liu, P. He, K. Zhou, T. Chen, Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J. Mater. Sci. 49(12), 4379–4386 (2014). https://doi.org/10.1007/s10853-014-8137-z
- R. Cui, L. Pan, D. Zhang, H. Nasir, Electromagnetic microwave absorption properties of carbon nanocoils/tissue. Diam. Relat. Mater. 77, 53–56 (2017). https://doi.org/10.1016/j.diamond.2017.05.014
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- G.-H. Kang, S.-H. Kim, S. Park, Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials. Appl. Surf. Sci. 477, 264–270 (2019). https://doi.org/10.1016/j.apsusc.2017.10.007
- L. Pan, T. Hayashida, M. Zhang, Y. Nakayama, Field emission properties of carbon tubule nanocoils. Jpn. J. Appl. Phys. 40(3B), L235 (2001). https://doi.org/10.1143/JJAP.40.L235
- W.Y. Sung, J.G. Ok, W.J. Kim, S.M. Lee, S.C. Yeon, H.Y. Lee, Y.H. Kim, Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips. Nanotechnology 18(24), 245603 (2007). https://doi.org/10.1088/0957-4484/18/24/245603
- P. Wang, L. Pan, C. Li, J. Zheng, Optically actuated carbon nanocoils. NANO 13(10), 1850112 (2018). https://doi.org/10.1142/s1793292018501126
- H. Ma, X. Zhang, R. Cui, F. Liu, M. Wang et al., Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale 10(23), 11158–11164 (2018). https://doi.org/10.1039/c8nr03622e
- R.B. Rakhi, W. Chen, H.N. Alshareef, Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J. Mater. Chem. 22(11), 5177–5183 (2012). https://doi.org/10.1039/c2jm15740c
- V. Barranco, V. Celorrio, M.J. Lazaro, J.M. Rojo, Carbon nanocoils as unusual electrode materials for supercapacitors. J. Electrochem. Soc. 159(4), A464–A469 (2012). https://doi.org/10.1149/2.083204jes
- D. Su, L. Pan, X. Fu, H. Ma, Facile synthesis of CNC–MnO2 hybrid as a supercapacitor electrode. Appl. Surf. Sci. 324, 349–354 (2015). https://doi.org/10.1016/j.apsusc.2014.10.141
- A. Childress, K. Ferri, A.M. Rao, Enhanced supercapacitor performance with binder-free helically coiled carbon nanotube electrodes. Carbon 140, 377–384 (2018). https://doi.org/10.1016/j.carbon.2018.08.064
- S. Shi, G. Wan, L. Wu, Z. He, K. Wang, Y. Tang, X. Xu, G. Wang, Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes. J. Colloid. Interface Sci. 537, 142–150 (2019). https://doi.org/10.1016/j.jcis.2018.11.006
- L. Wang, Z. Liu, Q. Guo, G. Wang, J. Yang, P. Li, X. Wang, L. Liu, Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries. Electrochim. Acta 199, 204–209 (2016). https://doi.org/10.1016/j.electacta.2016.03.160
- X.-W. Guo, C.-H. Hao, C.-Y. Wang, S. Sarina, X.-N. Guo, X.-Y. Guo, Visible light-driven photocatalytic heck reaction over carbon nanocoil supported pd nanoparticles. Catal. Sci. Tech. 6(21), 7738–7743 (2016). https://doi.org/10.1039/c6cy01322h
- F. Meng, Y. Wang, Q. Wang, X. Xu, M. Jiang, X. Zhou, P. He, Z. Zhou, High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: large-scale synthesis and growth mechanism. Nano Res. 11(6), 3327–3339 (2018). https://doi.org/10.1007/s12274-017-1897-4
- X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450°C and their magnetic properties. Carbon 48(2), 365–376 (2010). https://doi.org/10.1016/j.carbon.2009.09.038
- X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx et al., The texture of catalytically grown coil-shaped carbon nanotubules. Europhys. Lett. 27(2), 141 (1994). https://doi.org/10.1209/0295-5075/27/2/011
- E.-X. Ding, H.-Z. Geng, W.-Y. Wang, L. Mao, Y. Wang et al., Growth of morphology-controllable carbon nanocoils from ni nanoparticle prepared by spray-coating method. Carbon 82, 604–607 (2015). https://doi.org/10.1016/j.carbon.2014.10.094
- R. Baker, M. Barber, P. Harris, F. Feates, R. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972). https://doi.org/10.1016/0021-9517(72)90032-2
- G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100% pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). https://doi.org/10.1021/nn501709h
- D. Li, L. Pan, J. Qian, D. Liu, Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol–gel method. Carbon 48(1), 170–175 (2010). https://doi.org/10.1016/j.carbon.2009.08.045
- D.W. Li, L.J. Pan, J.J. Qian, H. Ma, High efficient synthesis of carbon nanocoils by catalysts produced by a fe and sn containing solution. Adv. Mater. Res. 60–61, 251–255 (2009). https://doi.org/10.4028/www.scientific.net/AMR.60-61.251
- W. Wang, K. Yang, J. Gaillard, P.R. Bandaru, A.M. Rao, Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv. Mater. 20(1), 179–182 (2008). https://doi.org/10.1002/adma.200701143
- M. Zhang, Y. Nakayama, L. Pan, Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn. J. Appl. Phys. 39(12A), L1242 (2000). https://doi.org/10.1143/JJAP.39.L1242
- K. Nishimura, L. Pan, Y. Nakayama, In situ study of Fe/ITO catalysts for carbon nanocoil growth by x-ray diffraction analysis. Jpn. J. Appl. Phys. 43(8A), 5665–5666 (2004). https://doi.org/10.1143/jjap.43.5665
- T.Y. Tsou, C.Y. Lee, H.T. Chiu, K and au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties. ACS Appl. Mater. Interfaces 4(12), 6505–6511 (2012). https://doi.org/10.1021/am3015372
- W.-C. Liu, H.-K. Lin, Y.-L. Chen, C.-Y. Lee, H.-T. Chiu, Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene. ACS Nano 4(7), 4149–4157 (2010). https://doi.org/10.1021/nn901926r
- J. Sun, A.A. Koós, F. Dillon, K. Jurkschat, M.R. Castell, N. Grobert, Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst. Carbon 60, 5–15 (2013). https://doi.org/10.1016/j.carbon.2013.03.027
- X. Qi, W. Zhong, X. Yao, H. Zhang, Q. Ding et al., Controllable and large-scale synthesis of metal-free carbon nanofibers and carbon nanocoils over water-soluble naxky catalysts. Carbon 50(2), 646–658 (2012). https://doi.org/10.1016/j.carbon.2011.08.076
- D. Ding, J. Wang, A. Dozier, Symmetry-related growth of carbon nanocoils from ni–p based alloy particles. J. Appl. Phys. 95(9), 5006–5009 (2004). https://doi.org/10.1063/1.1689734
- S. Yang, X. Chen, N. Kikuchi, S. Motojima, Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (cncs). Mater. Lett. 62(10–11), 1462–1465 (2008). https://doi.org/10.1016/j.matlet.2007.08.086
- X. Fu, L. Pan, Q. Wang, C. Liu, Y. Sun, M. Asif, J. Qin, Y. Huang, Controlled synthesis of carbon nanocoils on monolayered silica spheres. Carbon 99, 43–48 (2016). https://doi.org/10.1016/j.carbon.2015.11.028
- K. Hirahara, Y. Nakayama, The effect of a tin oxide buffer layer for the high yield synthesis of carbon nanocoils. Carbon 56, 264–270 (2013). https://doi.org/10.1016/j.carbon.2013.01.007
- T. Gohara, K. Takei, T. Arie, S. Akita, Reduction of carbon byproducts for high-purity carbon nanocoil growth by suppressing catalyst collision. Carbon 89, 225–231 (2015). https://doi.org/10.1016/j.carbon.2015.03.044
- M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nanotechnology: ‘Buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005). https://doi.org/10.1038/nature433476a
- D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016
- B. Brown, B. Swain, J. Hiltwine, D.B. Brooks, Z. Zhou, Carbon nanosheet buckypaper: a graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. J. Power Sour. 272, 979–986 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.015
- M.O. Memon, S. Haillot, K. Lafdi, Carbon nanofiber based buckypaper used as a thermal interface material. Carbon 49, 3820–3828 (2011). https://doi.org/10.1016/j.carbon.2011.05.015
- Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin, H. Zou, Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
- X. Fu, L. Pan, D. Li, N. Zhou, Y. Sun, Controlled synthesis of carbon nanocoils with selective coil diameters and structures by optimizing the thickness of catalyst film. Carbon 93, 361–369 (2015). https://doi.org/10.1016/j.carbon.2015.05.059
- D. Li, L. Pan, Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method. J. Mater. Res. 26(16), 2024–2032 (2011). https://doi.org/10.1557/jmr.2011.227
- H. Shan, C. Liu, L. Liu, J. Zhang, H. Li et al., Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces. 5(13), 6376–6380 (2013). https://doi.org/10.1021/am4015082
- N. Jayababu, M. Poloju, M.V. Ramana Reddy, Facile synthesis of SnO2-Fe2O3 core-shell nanostructures and their 2-methoxyethanol gas sensing characteristics. J. Alloy. Compd. 780, 523–533 (2019). https://doi.org/10.1016/j.jallcom.2018.11.413
- L. Liu, S. Li, L. Wang, C. Guo, Q. Dong, W. Li, Enhancement ethanol sensing properties of Nio-SnO2 nanofibers. J. Am. Ceram. Soc. 94(3), 771–775 (2011). https://doi.org/10.1111/j.1551-2916.2010.04137.x
- Y. Ding, B. Liu, J. Zou, H. Liu, T. Xin, L. Xia, Y. Wang, A-Fe2O3-SnO2 heterostructure composites: a high stability anode for lithium-ion battery. Mater. Res. Bull. 106, 7–13 (2018). https://doi.org/10.1016/j.materresbull.2018.05.014
- D. Li, L. Pan, Necessity of base fixation for helical growth of carbon nanocoils. J. Mater. Res. 27(2), 431–439 (2012). https://doi.org/10.1557/jmr.2011.401
- T.H. da Cunha, S. de Oliveira, I.L. Martins, V. Geraldo, D. Miquita et al., High-yield synthesis of bundles of double-and triple-walled carbon nanotubes on aluminum flakes. Carbon 133, 53–61 (2018). https://doi.org/10.1016/j.carbon.2018.03.014
- Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes. Bioresource techn. 101(9), 3040–3046 (2010). https://doi.org/10.1016/j.biortech.2009.12.042
References
X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, Y. Nakayama, Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003). https://doi.org/10.1021/nl034367o
A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J.B. Nagy, C. Van Haesendonck, Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 4(9), 1775–1779 (2004). https://doi.org/10.1021/nl0491576
C. Li, L. Pan, C. Deng, P. Wang, Y. Huang, H. Nasir, A flexible, ultra-sensitive strain sensor based on carbon nanocoil network fabricated by an electrophoretic method. Nanoscale 9(28), 9872–9878 (2017). https://doi.org/10.1039/c7nr01945a
C. Deng, L. Pan, D. Zhang, C. Li, H. Nasir, A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale 9(42), 16404–16411 (2017). https://doi.org/10.1039/c7nr05486f
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
D.-L. Zhao, Z.-M. Shen, Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21–22), 3704–3706 (2008). https://doi.org/10.1016/j.matlet.2008.04.032
S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
L. Liu, P. He, K. Zhou, T. Chen, Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J. Mater. Sci. 49(12), 4379–4386 (2014). https://doi.org/10.1007/s10853-014-8137-z
R. Cui, L. Pan, D. Zhang, H. Nasir, Electromagnetic microwave absorption properties of carbon nanocoils/tissue. Diam. Relat. Mater. 77, 53–56 (2017). https://doi.org/10.1016/j.diamond.2017.05.014
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
G.-H. Kang, S.-H. Kim, S. Park, Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials. Appl. Surf. Sci. 477, 264–270 (2019). https://doi.org/10.1016/j.apsusc.2017.10.007
L. Pan, T. Hayashida, M. Zhang, Y. Nakayama, Field emission properties of carbon tubule nanocoils. Jpn. J. Appl. Phys. 40(3B), L235 (2001). https://doi.org/10.1143/JJAP.40.L235
W.Y. Sung, J.G. Ok, W.J. Kim, S.M. Lee, S.C. Yeon, H.Y. Lee, Y.H. Kim, Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips. Nanotechnology 18(24), 245603 (2007). https://doi.org/10.1088/0957-4484/18/24/245603
P. Wang, L. Pan, C. Li, J. Zheng, Optically actuated carbon nanocoils. NANO 13(10), 1850112 (2018). https://doi.org/10.1142/s1793292018501126
H. Ma, X. Zhang, R. Cui, F. Liu, M. Wang et al., Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale 10(23), 11158–11164 (2018). https://doi.org/10.1039/c8nr03622e
R.B. Rakhi, W. Chen, H.N. Alshareef, Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J. Mater. Chem. 22(11), 5177–5183 (2012). https://doi.org/10.1039/c2jm15740c
V. Barranco, V. Celorrio, M.J. Lazaro, J.M. Rojo, Carbon nanocoils as unusual electrode materials for supercapacitors. J. Electrochem. Soc. 159(4), A464–A469 (2012). https://doi.org/10.1149/2.083204jes
D. Su, L. Pan, X. Fu, H. Ma, Facile synthesis of CNC–MnO2 hybrid as a supercapacitor electrode. Appl. Surf. Sci. 324, 349–354 (2015). https://doi.org/10.1016/j.apsusc.2014.10.141
A. Childress, K. Ferri, A.M. Rao, Enhanced supercapacitor performance with binder-free helically coiled carbon nanotube electrodes. Carbon 140, 377–384 (2018). https://doi.org/10.1016/j.carbon.2018.08.064
S. Shi, G. Wan, L. Wu, Z. He, K. Wang, Y. Tang, X. Xu, G. Wang, Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes. J. Colloid. Interface Sci. 537, 142–150 (2019). https://doi.org/10.1016/j.jcis.2018.11.006
L. Wang, Z. Liu, Q. Guo, G. Wang, J. Yang, P. Li, X. Wang, L. Liu, Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries. Electrochim. Acta 199, 204–209 (2016). https://doi.org/10.1016/j.electacta.2016.03.160
X.-W. Guo, C.-H. Hao, C.-Y. Wang, S. Sarina, X.-N. Guo, X.-Y. Guo, Visible light-driven photocatalytic heck reaction over carbon nanocoil supported pd nanoparticles. Catal. Sci. Tech. 6(21), 7738–7743 (2016). https://doi.org/10.1039/c6cy01322h
F. Meng, Y. Wang, Q. Wang, X. Xu, M. Jiang, X. Zhou, P. He, Z. Zhou, High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: large-scale synthesis and growth mechanism. Nano Res. 11(6), 3327–3339 (2018). https://doi.org/10.1007/s12274-017-1897-4
X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450°C and their magnetic properties. Carbon 48(2), 365–376 (2010). https://doi.org/10.1016/j.carbon.2009.09.038
X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx et al., The texture of catalytically grown coil-shaped carbon nanotubules. Europhys. Lett. 27(2), 141 (1994). https://doi.org/10.1209/0295-5075/27/2/011
E.-X. Ding, H.-Z. Geng, W.-Y. Wang, L. Mao, Y. Wang et al., Growth of morphology-controllable carbon nanocoils from ni nanoparticle prepared by spray-coating method. Carbon 82, 604–607 (2015). https://doi.org/10.1016/j.carbon.2014.10.094
R. Baker, M. Barber, P. Harris, F. Feates, R. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972). https://doi.org/10.1016/0021-9517(72)90032-2
G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100% pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). https://doi.org/10.1021/nn501709h
D. Li, L. Pan, J. Qian, D. Liu, Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol–gel method. Carbon 48(1), 170–175 (2010). https://doi.org/10.1016/j.carbon.2009.08.045
D.W. Li, L.J. Pan, J.J. Qian, H. Ma, High efficient synthesis of carbon nanocoils by catalysts produced by a fe and sn containing solution. Adv. Mater. Res. 60–61, 251–255 (2009). https://doi.org/10.4028/www.scientific.net/AMR.60-61.251
W. Wang, K. Yang, J. Gaillard, P.R. Bandaru, A.M. Rao, Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv. Mater. 20(1), 179–182 (2008). https://doi.org/10.1002/adma.200701143
M. Zhang, Y. Nakayama, L. Pan, Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn. J. Appl. Phys. 39(12A), L1242 (2000). https://doi.org/10.1143/JJAP.39.L1242
K. Nishimura, L. Pan, Y. Nakayama, In situ study of Fe/ITO catalysts for carbon nanocoil growth by x-ray diffraction analysis. Jpn. J. Appl. Phys. 43(8A), 5665–5666 (2004). https://doi.org/10.1143/jjap.43.5665
T.Y. Tsou, C.Y. Lee, H.T. Chiu, K and au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties. ACS Appl. Mater. Interfaces 4(12), 6505–6511 (2012). https://doi.org/10.1021/am3015372
W.-C. Liu, H.-K. Lin, Y.-L. Chen, C.-Y. Lee, H.-T. Chiu, Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene. ACS Nano 4(7), 4149–4157 (2010). https://doi.org/10.1021/nn901926r
J. Sun, A.A. Koós, F. Dillon, K. Jurkschat, M.R. Castell, N. Grobert, Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst. Carbon 60, 5–15 (2013). https://doi.org/10.1016/j.carbon.2013.03.027
X. Qi, W. Zhong, X. Yao, H. Zhang, Q. Ding et al., Controllable and large-scale synthesis of metal-free carbon nanofibers and carbon nanocoils over water-soluble naxky catalysts. Carbon 50(2), 646–658 (2012). https://doi.org/10.1016/j.carbon.2011.08.076
D. Ding, J. Wang, A. Dozier, Symmetry-related growth of carbon nanocoils from ni–p based alloy particles. J. Appl. Phys. 95(9), 5006–5009 (2004). https://doi.org/10.1063/1.1689734
S. Yang, X. Chen, N. Kikuchi, S. Motojima, Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (cncs). Mater. Lett. 62(10–11), 1462–1465 (2008). https://doi.org/10.1016/j.matlet.2007.08.086
X. Fu, L. Pan, Q. Wang, C. Liu, Y. Sun, M. Asif, J. Qin, Y. Huang, Controlled synthesis of carbon nanocoils on monolayered silica spheres. Carbon 99, 43–48 (2016). https://doi.org/10.1016/j.carbon.2015.11.028
K. Hirahara, Y. Nakayama, The effect of a tin oxide buffer layer for the high yield synthesis of carbon nanocoils. Carbon 56, 264–270 (2013). https://doi.org/10.1016/j.carbon.2013.01.007
T. Gohara, K. Takei, T. Arie, S. Akita, Reduction of carbon byproducts for high-purity carbon nanocoil growth by suppressing catalyst collision. Carbon 89, 225–231 (2015). https://doi.org/10.1016/j.carbon.2015.03.044
M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nanotechnology: ‘Buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005). https://doi.org/10.1038/nature433476a
D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016
B. Brown, B. Swain, J. Hiltwine, D.B. Brooks, Z. Zhou, Carbon nanosheet buckypaper: a graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. J. Power Sour. 272, 979–986 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.015
M.O. Memon, S. Haillot, K. Lafdi, Carbon nanofiber based buckypaper used as a thermal interface material. Carbon 49, 3820–3828 (2011). https://doi.org/10.1016/j.carbon.2011.05.015
Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin, H. Zou, Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
X. Fu, L. Pan, D. Li, N. Zhou, Y. Sun, Controlled synthesis of carbon nanocoils with selective coil diameters and structures by optimizing the thickness of catalyst film. Carbon 93, 361–369 (2015). https://doi.org/10.1016/j.carbon.2015.05.059
D. Li, L. Pan, Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method. J. Mater. Res. 26(16), 2024–2032 (2011). https://doi.org/10.1557/jmr.2011.227
H. Shan, C. Liu, L. Liu, J. Zhang, H. Li et al., Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces. 5(13), 6376–6380 (2013). https://doi.org/10.1021/am4015082
N. Jayababu, M. Poloju, M.V. Ramana Reddy, Facile synthesis of SnO2-Fe2O3 core-shell nanostructures and their 2-methoxyethanol gas sensing characteristics. J. Alloy. Compd. 780, 523–533 (2019). https://doi.org/10.1016/j.jallcom.2018.11.413
L. Liu, S. Li, L. Wang, C. Guo, Q. Dong, W. Li, Enhancement ethanol sensing properties of Nio-SnO2 nanofibers. J. Am. Ceram. Soc. 94(3), 771–775 (2011). https://doi.org/10.1111/j.1551-2916.2010.04137.x
Y. Ding, B. Liu, J. Zou, H. Liu, T. Xin, L. Xia, Y. Wang, A-Fe2O3-SnO2 heterostructure composites: a high stability anode for lithium-ion battery. Mater. Res. Bull. 106, 7–13 (2018). https://doi.org/10.1016/j.materresbull.2018.05.014
D. Li, L. Pan, Necessity of base fixation for helical growth of carbon nanocoils. J. Mater. Res. 27(2), 431–439 (2012). https://doi.org/10.1557/jmr.2011.401
T.H. da Cunha, S. de Oliveira, I.L. Martins, V. Geraldo, D. Miquita et al., High-yield synthesis of bundles of double-and triple-walled carbon nanotubes on aluminum flakes. Carbon 133, 53–61 (2018). https://doi.org/10.1016/j.carbon.2018.03.014
Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes. Bioresource techn. 101(9), 3040–3046 (2010). https://doi.org/10.1016/j.biortech.2009.12.042