Multifunctional Carbon Foam with Nanoscale Chiral Magnetic Heterostructures for Broadband Microwave Absorption in Low Frequency
Corresponding Author: Lujun Pan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 133
Abstract
The construction of carbon nanocoil (CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption. However, it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms. Herein, the chiral CNCs are first synthesized on a three-dimensional (3D) carbon foam and then combined with the FeNi/NiFe2O4 nanoparticles to form a novel chiral-dielectric-magnetic trinity foam. The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss. The formation of the FeNi-carbon interfaces induces interfacial polarization loss, which is confirmed by the density functional theory calculations. Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects, which enhance the magnetic anisotropy and magnetic loss capability. Owing to the synergistic effect between dielectricity, chirality, and magnetism, the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth (EAB) of 14 GHz and a minimum reflection of loss less than − 50 dB. More importantly, the C-band EAB of the foam is extended to 4 GHz, achieving the full C-band coverage. This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.
Highlights:
1 A novel multifunctional carbon foam with nanoscale chiral magnetic heterostructures is constructed, in which the interconnection network provides strong conduction loss.
2 The interfacial polarization loss induced by the FeNi-carbon interfaces is confirmed by the density functional theory calculations, and the magnetic pinning and coupling effects are revealed by the micromagnetic simulation.
3 The composite foam exhibits an ultrabroad effective absorption bandwidth (EAB) of 14 GHz and a C-band EAB of 4 GHz, achieving the full C-band coverage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Chen, R. Zhang, M. Yuan, S. Xue, Y. Liu et al., Visualizing nanoscale interlayer magnetic interactions and unconventional low-frequency behaviors in ferromagnetic multishelled structures. Adv. Mater. 36, e2313411 (2024). https://doi.org/10.1002/adma.202313411
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2316691 (2024). https://doi.org/10.1002/adfm.202316691
- Z. He, H. Xu, L. Shi, X. Ren, J. Kong et al., Hierarchical Co2 P/CoS2 @C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20, e2306253 (2024). https://doi.org/10.1002/smll.202306253
- M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of bi-metal MOFs-derived ZnFe2O4–ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34, 2308898 (2024). https://doi.org/10.1002/adfm.202308898
- W. Huang, M. Song, S. Wang, B. Wang, J. Ma et al., Dual-step redox engineering of 2D CoNi-alloy embedded B, N-doped carbon layers toward tunable electromagnetic wave absorption and light-weight infrared stealth heat insulation devices. Adv. Mater. 36, 2403322 (2024). https://doi.org/10.1002/adma.202403322
- X. Li, S. Yin, L. Cai, Z. Wang, C. Zeng et al., Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chem. Eng. J. 454, 140127 (2023). https://doi.org/10.1016/j.cej.2022.140127
- P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
- X. Liu, Y. Duan, Y. Guo, Z. Li, J. Ma et al., In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption. Chem. Eng. J. 462, 142200 (2023). https://doi.org/10.1016/j.cej.2023.142200
- P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic ps for microwave applications. Adv. Mater. 10, 1032–1035 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1032::AID-ADMA1032%3e3.0.CO;2-M
- L. Yu, G. Lian, G. Zhu, S. Ren, Y. Du et al., Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption. Nano Res. 17, 2079–2087 (2024). https://doi.org/10.1007/s12274-024-6468-x
- C. Xu, K. Luo, Y. Du, H. Zhang, X. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33, 2307529 (2023). https://doi.org/10.1002/adfm.202307529
- B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15, 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
- S. Yang, C. Li, T. Cong, Y. Zhao, S. Xu et al., Sensitivity-tunable strain sensors based on carbon Nanotube@Carbon nanocoil hybrid networks. ACS Appl. Mater. Interfaces 11, 38160–38168 (2019). https://doi.org/10.1021/acsami.9b12600
- X. Zuo, Y. Zhang, J. Tian, C. Sun, N. Wen et al., Fabrication of micro-mesopores on spiral carbon nanocoils and simultaneous doping with oxygen to expand microwave absorption bandwidth. Adv. Funct. Mater. 34, 2410224 (2024). https://doi.org/10.1002/adfm.202410224
- C. Sun, H. Zhang, X. Zuo, Y. Jiang, Y. Zhang et al., Integration of carbon microsheets and helical carbon nanocoils for efficient microwave absorption. Chem. Eng. J. 498, 155630 (2024). https://doi.org/10.1016/j.cej.2024.155630
- H. Chen, C. Wang, Z. Fan, L. Hao, L. Pan, Facile fabrication of binder-free carbon nanotube–carbon nanocoil hybrid films for anodes of lithium-ion batteries. J. Solid State Electrochem. 28, 3325–3335 (2024). https://doi.org/10.1007/s10008-024-05906-6
- H. Huang, Y. Zhao, T. Cong, C. Li, N. Wen et al., Flexible and alternately layered high-loading film electrode based on 3D carbon nanocoils and PEDOT:PSS for high-energy-density supercapacitor. Adv. Funct. Mater. 32, 2110777 (2022). https://doi.org/10.1002/adfm.202110777
- S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
- Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@C nanops–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
- T. Yuan, R. Yin, C. Li, C. Wang, Z. Fan et al., Fully inkjet-printed dual-mode sensor for simultaneous pressure and temperature sensing with high decoupling. Chem. Eng. J. 473, 145475 (2023). https://doi.org/10.1016/j.cej.2023.145475
- X. Zuo, H. Zhang, C. Zhou, Y. Zhao, H. Huang et al., Hierarchical and porous structures of carbon nanotubes-anchored MOF derivatives bridged by carbon nanocoils as lightweight and broadband microwave absorbers. Small 19, e2301992 (2023). https://doi.org/10.1002/smll.202301992
- A. Farid, Z. Chen, A.S. Khan, M. Javid, I. Ahmad Khan et al., Ni3V2O8 nanosheets grafted on 3D helical-shaped carbon nanocoils as A binder-free hierarchical composite for efficient non-enzymatic glucose sensing. Adv. Funct. Mater. 33, 2301727 (2023). https://doi.org/10.1002/adfm.202301727
- Y. Guo, Y. Duan, X. Liu, H. Zhang, T. Yuan et al., Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower-frequency microwave absorption. Small 20, 2308809 (2024). https://doi.org/10.1002/smll.202308809
- A. Farid, A.S. Khan, M. Javid, M. Usman, I.A. Khan et al., Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanops anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. J. Colloid Interface Sci. 624, 320–337 (2022). https://doi.org/10.1016/j.jcis.2022.05.137
- S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang et al., Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 12, 19874–19881 (2020). https://doi.org/10.1021/acsami.9b22534
- X. Zuo, Y. Zhao, H. Zhang, H. Huang, C. Zhou et al., Surface modification of helical carbon nanocoil (CNC) with N-doped and co-anchored carbon layer for efficient microwave absorption. J. Colloid Interface Sci. 608, 1894–1906 (2022). https://doi.org/10.1016/j.jcis.2021.10.065
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- H. Zhang, Y. Zhao, M. Yuan, C. Sun, H. Huang et al., Construction of chiral magnetic structure with enhancement in magnetic coupling for efficient low-frequency microwave absorption. Chem. Eng. J. 493, 152692 (2024). https://doi.org/10.1016/j.cej.2024.152692
- H. Zhang, Y. Zhao, X. Zuo, H. Huang, C. Sun et al., Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness. Chem. Eng. J. 467, 143414 (2023). https://doi.org/10.1016/j.cej.2023.143414
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16, 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
- S. Shao, S. Xing, K. Bi, T. Zhao, H. Wang et al., Fabrication of graphene/polyimide/Co-N-C aerogel with reinforced electromagnetic losses and broadband absorption for highly efficient microwave absorption and thermal insulation. Chem. Eng. J. 494, 152976 (2024). https://doi.org/10.1016/j.cej.2024.152976
- Y. Zhao, J. Wang, H. Huang, T. Cong, S. Yang et al., Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption. Nano-Micro Lett. 12, 23 (2020). https://doi.org/10.1007/s40820-019-0365-y
- Y. Zhao, J. Wang, H. Huang, H. Zhang, T. Cong et al., Catalytic anisotropy induced by multi-ps for growth of carbon nanocoils. Carbon 166, 101–112 (2020). https://doi.org/10.1016/j.carbon.2020.05.007
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- A. Ahlawat, V.G. Sathe, Raman study of NiFe2O4 nanops, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011). https://doi.org/10.1002/jrs.2791
- A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanops prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
- F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15, 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
- N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 2402923 (2024). https://doi.org/10.1002/adfm.202402923
- C.-L. Wang, S. Bai, P.-Y. Zhao, T. Zhou, H.-Y. Wang et al., Metasurface-assisted low-frequency performance enhancement of ultra-broadband honeycomb absorber based on carbon nanotubes. Nano Res. 17, 8542–8551 (2024). https://doi.org/10.1007/s12274-024-6833-9
- R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. 34, 2307499 (2024). https://doi.org/10.1002/adfm.202307499
- Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16, 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
- X. Zhou, H. Zhang, M. Yuan, B. Li, J. Cui et al., Dispersing magnetic nanops into staggered, porous nano-frameworks: weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314541
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2316722 (2024). https://doi.org/10.1002/adfm.202316722
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10, eadl498 (2024). https://doi.org/10.1126/sciadv.adl6498
- X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
- X. Meng, J. Qiao, S. Zheng, H. Tian, B. Li et al., Ternary nickel/molybdenum dioxide/carbon composited nanofibers for broadband and strong electromagnetic wave absorption. Chem. Eng. J. 457, 141241 (2023). https://doi.org/10.1016/j.cej.2022.141241
- Y. Zou, X. Huang, B. Fan, J. Yue, Y. Liu, Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer. Appl. Surf. Sci. 600, 154046 (2022). https://doi.org/10.1016/j.apsusc.2022.154046
- C. Cui, L. Geng, S. Jiang, W. Bai, L. Dai et al., Construction of hierarchical carbon fiber aerogel@hollow Co9S8 polyhedron for high-performance electromagnetic wave absorption at low-frequency. Chem. Eng. J. 466, 143122 (2023). https://doi.org/10.1016/j.cej.2023.143122
- B.-Y. Lei, Y.-L. Hou, W.-J. Meng, Y.-Q. Wang, X.-X. Yang et al., Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanops with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon 196, 280–289 (2022). https://doi.org/10.1016/j.carbon.2022.04.042
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- G. Yu, G. Shao, Y. Chen, X. Huang, Nanolayered ceramic-confined graphene aerogel with conformal heterointerfaces for low-frequency microwave absorption. ACS Appl. Mater. Interfaces 15, 39559–39569 (2023). https://doi.org/10.1021/acsami.3c07988
- Q. Chang, H. Liang, B. Shi, H. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 25, 103925 (2022). https://doi.org/10.1016/j.isci.2022.103925
- J. Qiu, X. Liu, C. Peng, S. Wang, R. Wang et al., Porous metal microsphere M@C-rGO (metal = Mn, Fe Co, Ni, Cu) aerogels with high low-frequency microwave absorption, strong thermal insulation and superior anticorrosion performance. J. Mater. Chem. A 12, 21997–22012 (2024). https://doi.org/10.1039/D4TA04051A
- Y. Dong, X. Zhu, F. Pan, L. Cai, H. Jiang et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 190, 68–79 (2022). https://doi.org/10.1016/j.carbon.2022.01.008
- C. Liu, S. Liu, X. Feng, K. Zhu, G. Lin et al., Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption. Chem. Eng. J. 452, 139483 (2023). https://doi.org/10.1016/j.cej.2022.139483
- Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. 2402193 (2024). https://doi.org/10.1002/adfm.202402193
- X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
- Y.-L. Wang, P.-Y. Zhao, B.-L. Liang, K. Chen, G.-S. Wang, Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 202, 66–75 (2023). https://doi.org/10.1016/j.carbon.2022.10.043
- Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17, 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
- S. Zhang, J. Wu, W. Liang, P.-Y. Zhao, H.-Y. Wang et al., Flexible and multifunctional polyimide-based composite films by self-reducing reaction for electromagnetic interference shielding in extreme environments. Carbon 212, 118103 (2023). https://doi.org/10.1016/j.carbon.2023.118103
- Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
- T. Zhao, D. Lan, Z. Jia, Z. Gao, G. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 17, 9845–9856 (2024). https://doi.org/10.1007/s12274-024-6938-1
- U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish et al., Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44, 2694–2700 (2006). https://doi.org/10.1016/j.carbon.2006.04.010
- H. Yu, X. Kou, X. Zuo, D. Xi, H. Guan et al., Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 176, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.07.065
- Y. Zhao, N. Wang, H. Wang, S. Yuan, M. Liu et al., Chiral structure induces spatial spiral arrangement of Fe3O4 nanops to optimize electromagnetic wave dissipation. Appl. Phys. Lett. 124, 161901 (2024). https://doi.org/10.1063/5.0200510
- C. Sun, D. Lan, Z. Jia, Z. Gao, G. Wu, Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF-LDH-MXene absorbers. Small 20, e2405874 (2024). https://doi.org/10.1002/smll.202405874
- Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
- Z. Lin, Y. Hao, H. Huang, Q. He, G. Su et al., Porous carbonaceous aerogels composed of multiscale carbon-based units for high-performance microwave absorption. ACS Appl. Mater. Interfaces 15, 54838–54850 (2023). https://doi.org/10.1021/acsami.3c13489
- Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu et al., Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 166, 34–46 (2023). https://doi.org/10.1016/j.jmst.2023.04.045
- Z. Jia, L. Sun, Z. Gao, D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. 17, 10099–10108 (2024). https://doi.org/10.1007/s12274-024-6939-0
- S.J. Collocott, Application of the Stoner-Wohlfarth model with interaction for the determination of the saturation magnetisation, anisotropy field, and mean field interaction in bulk amorphous ferromagnets. J. Magn. Magn. Mater. 323, 2023–2031 (2011). https://doi.org/10.1016/j.jmmm.2011.03.003
- H. Zhang, D. Zeng, Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 322, 2375–2380 (2010). https://doi.org/10.1016/j.jmmm.2010.02.040
- Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 185, 165–173 (2024). https://doi.org/10.1016/j.jmst.2023.11.010
- M. Han, D. Lan, Z. Zhang, Y. Zhao, J. Zou et al., Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 214, 302–312 (2025). https://doi.org/10.1016/j.jmst.2024.07.014
- P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
- J. Du, T. Li, Z. Xu, J. Tang, Q. Qi et al., Structure–activity relationship in microstructure design for electromagnetic wave absorption applications. Small Struct. 4, 2300152 (2023). https://doi.org/10.1002/sstr.202300152
References
G. Chen, R. Zhang, M. Yuan, S. Xue, Y. Liu et al., Visualizing nanoscale interlayer magnetic interactions and unconventional low-frequency behaviors in ferromagnetic multishelled structures. Adv. Mater. 36, e2313411 (2024). https://doi.org/10.1002/adma.202313411
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2316691 (2024). https://doi.org/10.1002/adfm.202316691
Z. He, H. Xu, L. Shi, X. Ren, J. Kong et al., Hierarchical Co2 P/CoS2 @C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20, e2306253 (2024). https://doi.org/10.1002/smll.202306253
M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of bi-metal MOFs-derived ZnFe2O4–ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34, 2308898 (2024). https://doi.org/10.1002/adfm.202308898
W. Huang, M. Song, S. Wang, B. Wang, J. Ma et al., Dual-step redox engineering of 2D CoNi-alloy embedded B, N-doped carbon layers toward tunable electromagnetic wave absorption and light-weight infrared stealth heat insulation devices. Adv. Mater. 36, 2403322 (2024). https://doi.org/10.1002/adma.202403322
X. Li, S. Yin, L. Cai, Z. Wang, C. Zeng et al., Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chem. Eng. J. 454, 140127 (2023). https://doi.org/10.1016/j.cej.2022.140127
P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
X. Liu, Y. Duan, Y. Guo, Z. Li, J. Ma et al., In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption. Chem. Eng. J. 462, 142200 (2023). https://doi.org/10.1016/j.cej.2023.142200
P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic ps for microwave applications. Adv. Mater. 10, 1032–1035 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1032::AID-ADMA1032%3e3.0.CO;2-M
L. Yu, G. Lian, G. Zhu, S. Ren, Y. Du et al., Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption. Nano Res. 17, 2079–2087 (2024). https://doi.org/10.1007/s12274-024-6468-x
C. Xu, K. Luo, Y. Du, H. Zhang, X. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33, 2307529 (2023). https://doi.org/10.1002/adfm.202307529
B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15, 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
S. Yang, C. Li, T. Cong, Y. Zhao, S. Xu et al., Sensitivity-tunable strain sensors based on carbon Nanotube@Carbon nanocoil hybrid networks. ACS Appl. Mater. Interfaces 11, 38160–38168 (2019). https://doi.org/10.1021/acsami.9b12600
X. Zuo, Y. Zhang, J. Tian, C. Sun, N. Wen et al., Fabrication of micro-mesopores on spiral carbon nanocoils and simultaneous doping with oxygen to expand microwave absorption bandwidth. Adv. Funct. Mater. 34, 2410224 (2024). https://doi.org/10.1002/adfm.202410224
C. Sun, H. Zhang, X. Zuo, Y. Jiang, Y. Zhang et al., Integration of carbon microsheets and helical carbon nanocoils for efficient microwave absorption. Chem. Eng. J. 498, 155630 (2024). https://doi.org/10.1016/j.cej.2024.155630
H. Chen, C. Wang, Z. Fan, L. Hao, L. Pan, Facile fabrication of binder-free carbon nanotube–carbon nanocoil hybrid films for anodes of lithium-ion batteries. J. Solid State Electrochem. 28, 3325–3335 (2024). https://doi.org/10.1007/s10008-024-05906-6
H. Huang, Y. Zhao, T. Cong, C. Li, N. Wen et al., Flexible and alternately layered high-loading film electrode based on 3D carbon nanocoils and PEDOT:PSS for high-energy-density supercapacitor. Adv. Funct. Mater. 32, 2110777 (2022). https://doi.org/10.1002/adfm.202110777
S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@C nanops–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
T. Yuan, R. Yin, C. Li, C. Wang, Z. Fan et al., Fully inkjet-printed dual-mode sensor for simultaneous pressure and temperature sensing with high decoupling. Chem. Eng. J. 473, 145475 (2023). https://doi.org/10.1016/j.cej.2023.145475
X. Zuo, H. Zhang, C. Zhou, Y. Zhao, H. Huang et al., Hierarchical and porous structures of carbon nanotubes-anchored MOF derivatives bridged by carbon nanocoils as lightweight and broadband microwave absorbers. Small 19, e2301992 (2023). https://doi.org/10.1002/smll.202301992
A. Farid, Z. Chen, A.S. Khan, M. Javid, I. Ahmad Khan et al., Ni3V2O8 nanosheets grafted on 3D helical-shaped carbon nanocoils as A binder-free hierarchical composite for efficient non-enzymatic glucose sensing. Adv. Funct. Mater. 33, 2301727 (2023). https://doi.org/10.1002/adfm.202301727
Y. Guo, Y. Duan, X. Liu, H. Zhang, T. Yuan et al., Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower-frequency microwave absorption. Small 20, 2308809 (2024). https://doi.org/10.1002/smll.202308809
A. Farid, A.S. Khan, M. Javid, M. Usman, I.A. Khan et al., Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanops anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. J. Colloid Interface Sci. 624, 320–337 (2022). https://doi.org/10.1016/j.jcis.2022.05.137
S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang et al., Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 12, 19874–19881 (2020). https://doi.org/10.1021/acsami.9b22534
X. Zuo, Y. Zhao, H. Zhang, H. Huang, C. Zhou et al., Surface modification of helical carbon nanocoil (CNC) with N-doped and co-anchored carbon layer for efficient microwave absorption. J. Colloid Interface Sci. 608, 1894–1906 (2022). https://doi.org/10.1016/j.jcis.2021.10.065
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
H. Zhang, Y. Zhao, M. Yuan, C. Sun, H. Huang et al., Construction of chiral magnetic structure with enhancement in magnetic coupling for efficient low-frequency microwave absorption. Chem. Eng. J. 493, 152692 (2024). https://doi.org/10.1016/j.cej.2024.152692
H. Zhang, Y. Zhao, X. Zuo, H. Huang, C. Sun et al., Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness. Chem. Eng. J. 467, 143414 (2023). https://doi.org/10.1016/j.cej.2023.143414
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16, 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
S. Shao, S. Xing, K. Bi, T. Zhao, H. Wang et al., Fabrication of graphene/polyimide/Co-N-C aerogel with reinforced electromagnetic losses and broadband absorption for highly efficient microwave absorption and thermal insulation. Chem. Eng. J. 494, 152976 (2024). https://doi.org/10.1016/j.cej.2024.152976
Y. Zhao, J. Wang, H. Huang, T. Cong, S. Yang et al., Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption. Nano-Micro Lett. 12, 23 (2020). https://doi.org/10.1007/s40820-019-0365-y
Y. Zhao, J. Wang, H. Huang, H. Zhang, T. Cong et al., Catalytic anisotropy induced by multi-ps for growth of carbon nanocoils. Carbon 166, 101–112 (2020). https://doi.org/10.1016/j.carbon.2020.05.007
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
A. Ahlawat, V.G. Sathe, Raman study of NiFe2O4 nanops, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011). https://doi.org/10.1002/jrs.2791
A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanops prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15, 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 2402923 (2024). https://doi.org/10.1002/adfm.202402923
C.-L. Wang, S. Bai, P.-Y. Zhao, T. Zhou, H.-Y. Wang et al., Metasurface-assisted low-frequency performance enhancement of ultra-broadband honeycomb absorber based on carbon nanotubes. Nano Res. 17, 8542–8551 (2024). https://doi.org/10.1007/s12274-024-6833-9
R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. 34, 2307499 (2024). https://doi.org/10.1002/adfm.202307499
Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16, 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
X. Zhou, H. Zhang, M. Yuan, B. Li, J. Cui et al., Dispersing magnetic nanops into staggered, porous nano-frameworks: weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314541
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2316722 (2024). https://doi.org/10.1002/adfm.202316722
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10, eadl498 (2024). https://doi.org/10.1126/sciadv.adl6498
X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
X. Meng, J. Qiao, S. Zheng, H. Tian, B. Li et al., Ternary nickel/molybdenum dioxide/carbon composited nanofibers for broadband and strong electromagnetic wave absorption. Chem. Eng. J. 457, 141241 (2023). https://doi.org/10.1016/j.cej.2022.141241
Y. Zou, X. Huang, B. Fan, J. Yue, Y. Liu, Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer. Appl. Surf. Sci. 600, 154046 (2022). https://doi.org/10.1016/j.apsusc.2022.154046
C. Cui, L. Geng, S. Jiang, W. Bai, L. Dai et al., Construction of hierarchical carbon fiber aerogel@hollow Co9S8 polyhedron for high-performance electromagnetic wave absorption at low-frequency. Chem. Eng. J. 466, 143122 (2023). https://doi.org/10.1016/j.cej.2023.143122
B.-Y. Lei, Y.-L. Hou, W.-J. Meng, Y.-Q. Wang, X.-X. Yang et al., Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanops with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon 196, 280–289 (2022). https://doi.org/10.1016/j.carbon.2022.04.042
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
G. Yu, G. Shao, Y. Chen, X. Huang, Nanolayered ceramic-confined graphene aerogel with conformal heterointerfaces for low-frequency microwave absorption. ACS Appl. Mater. Interfaces 15, 39559–39569 (2023). https://doi.org/10.1021/acsami.3c07988
Q. Chang, H. Liang, B. Shi, H. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 25, 103925 (2022). https://doi.org/10.1016/j.isci.2022.103925
J. Qiu, X. Liu, C. Peng, S. Wang, R. Wang et al., Porous metal microsphere M@C-rGO (metal = Mn, Fe Co, Ni, Cu) aerogels with high low-frequency microwave absorption, strong thermal insulation and superior anticorrosion performance. J. Mater. Chem. A 12, 21997–22012 (2024). https://doi.org/10.1039/D4TA04051A
Y. Dong, X. Zhu, F. Pan, L. Cai, H. Jiang et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 190, 68–79 (2022). https://doi.org/10.1016/j.carbon.2022.01.008
C. Liu, S. Liu, X. Feng, K. Zhu, G. Lin et al., Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption. Chem. Eng. J. 452, 139483 (2023). https://doi.org/10.1016/j.cej.2022.139483
Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. 2402193 (2024). https://doi.org/10.1002/adfm.202402193
X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
Y.-L. Wang, P.-Y. Zhao, B.-L. Liang, K. Chen, G.-S. Wang, Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 202, 66–75 (2023). https://doi.org/10.1016/j.carbon.2022.10.043
Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17, 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
S. Zhang, J. Wu, W. Liang, P.-Y. Zhao, H.-Y. Wang et al., Flexible and multifunctional polyimide-based composite films by self-reducing reaction for electromagnetic interference shielding in extreme environments. Carbon 212, 118103 (2023). https://doi.org/10.1016/j.carbon.2023.118103
Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
T. Zhao, D. Lan, Z. Jia, Z. Gao, G. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 17, 9845–9856 (2024). https://doi.org/10.1007/s12274-024-6938-1
U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish et al., Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44, 2694–2700 (2006). https://doi.org/10.1016/j.carbon.2006.04.010
H. Yu, X. Kou, X. Zuo, D. Xi, H. Guan et al., Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 176, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.07.065
Y. Zhao, N. Wang, H. Wang, S. Yuan, M. Liu et al., Chiral structure induces spatial spiral arrangement of Fe3O4 nanops to optimize electromagnetic wave dissipation. Appl. Phys. Lett. 124, 161901 (2024). https://doi.org/10.1063/5.0200510
C. Sun, D. Lan, Z. Jia, Z. Gao, G. Wu, Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF-LDH-MXene absorbers. Small 20, e2405874 (2024). https://doi.org/10.1002/smll.202405874
Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
Z. Lin, Y. Hao, H. Huang, Q. He, G. Su et al., Porous carbonaceous aerogels composed of multiscale carbon-based units for high-performance microwave absorption. ACS Appl. Mater. Interfaces 15, 54838–54850 (2023). https://doi.org/10.1021/acsami.3c13489
Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu et al., Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 166, 34–46 (2023). https://doi.org/10.1016/j.jmst.2023.04.045
Z. Jia, L. Sun, Z. Gao, D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. 17, 10099–10108 (2024). https://doi.org/10.1007/s12274-024-6939-0
S.J. Collocott, Application of the Stoner-Wohlfarth model with interaction for the determination of the saturation magnetisation, anisotropy field, and mean field interaction in bulk amorphous ferromagnets. J. Magn. Magn. Mater. 323, 2023–2031 (2011). https://doi.org/10.1016/j.jmmm.2011.03.003
H. Zhang, D. Zeng, Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 322, 2375–2380 (2010). https://doi.org/10.1016/j.jmmm.2010.02.040
Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 185, 165–173 (2024). https://doi.org/10.1016/j.jmst.2023.11.010
M. Han, D. Lan, Z. Zhang, Y. Zhao, J. Zou et al., Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 214, 302–312 (2025). https://doi.org/10.1016/j.jmst.2024.07.014
P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
J. Du, T. Li, Z. Xu, J. Tang, Q. Qi et al., Structure–activity relationship in microstructure design for electromagnetic wave absorption applications. Small Struct. 4, 2300152 (2023). https://doi.org/10.1002/sstr.202300152