One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 170
Abstract
Rational designing of one-dimensional (1D) magnetic alloy to facilitate electromagnetic (EM) wave attenuation capability in low-frequency (2–6 GHz) microwave absorption field is highly desired but remains a significant challenge. In this study, a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method. The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique, indicating the excellent magnetic loss ability under an external EM field. Then, the in-depth analysis shows that many factors, including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy, primarily contribute to the enhanced EM wave absorption performance. Therefore, the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm. Thus, this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
Highlights:
1 A novel FeCoNi carbon fiber (FeCoNi/CF) is obtained through an improved electrospinning technology, which greatly endows the fiber with strong magnetic property.
2 The FeCoNi/CF exhibits an enhanced electromagnetic loss capability due to the construction of one-dimensional magnetic FeCoNi alloy.
3 The designed one-dimensional FeCoNi/CF exhibits excellent performance, with a broad effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm, which provides a great potential for practical application in the future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou et al., A flexible electromagentic wave-electricity harverster. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
- H. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable-frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, An electical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
- X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano–microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- J. Luo, Y. Wang, Z. Qu, W. Wang, D. Yu, Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 442, 136388 (2022). https://doi.org/10.1016/j.cej.2022.136388
- Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
- X. Guo, N. Li, C. Wu, X. Dai, R. Qi et al., Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. (2022). https://doi.org/10.1002/adma.202201120
- Z. Lou, Q. Wang, U. Kara, R. Mamtami, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagentic wave absorbers. Nano-Micro Lett. 14, 11 (2022). https://doi.org/10.1007/s40820-021-00750-z
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67(14), 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
- J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- Z. Wu, Z. Yang, K. Pei, X. Qian, C. Jin et al., Dandelion-like carbon nanotube assembly embedded with closely separated Co nanops for high-performance microwave absorption materials. Nanoscale 12(18), 10149–10157 (2020). https://doi.org/10.1039/D0NR01447H
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- H.L. Lv, Z. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- H. Tian, J. Qiao, Y. Yang, D. Xu, X. Meng et al., ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem. Eng. J. 450, 138011 (2022). https://doi.org/10.1016/j.cej.2022.138011
- T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
- X.D. Zhou, H. Han, Y.C. Wang, C. Zhang, H.L. Lv et al., Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 121, 199 (2022). https://doi.org/10.1016/j.jmst.2022.03.002
- M. Ležaić, P. Mavropoulos, S. Blügel, First-principles prediction of high curie temperature for ferromagnetic bcc-Co and bcc-FeCo alloys and its relevance to tunneling magnetoresistance. Appl. Phys. Lett. 90, 082504 (2007). https://doi.org/10.1063/1.2710181
- M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203161
- J.F. Fang, H. Lv, B. Zhao, Z.W. Liu, X.H. Liu et al., Selective assembly of magnetic nano-antenna for electromagnetic dissipation. J. Mater. Chem. A 10(20), 10909–10915 (2022). https://doi.org/10.1039/D2TA02186B
- F. Sun, Q. Liu, Y. Xu, X. Xin, Z. Wang et al., Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem. Eng. J. 415, 128976 (2021). https://doi.org/10.1016/j.cej.2021.128976
- L. Jin, P. Yi, L. Wan, J. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
- G. Dai, R. Deng, X. You, T. Zhang, Y. Yu et al., Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases. J. Mater. Sci. Technol. 116, 11–21 (2022). https://doi.org/10.1016/j.jmst.2021.11.032
- Y. Duan, Y. Cui, B. Zhang, G. Ma, W. Tongmin, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 773, 194–201 (2019). https://doi.org/10.1016/j.jallcom.2018.09.096
- Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
- W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13, 161 (2021). https://doi.org/10.1007/s40820-021-00678-4
- X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
- Z. Zhao, D. Lan, L. Zhang, H. Wu, A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 32(15), 2111045 (2022). https://doi.org/10.1002/adfm.202111045
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- J. Liu, M. Cao, Q. Luo, H. Shi, W. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8(34), 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
- M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
- B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), 2003502 (2020). https://doi.org/10.1002/smll.202003502
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- L. Han, Z. Rao, I.R.S. Filho, F. Maccari, Y. Wei et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 33(37), 2102139 (2021). https://doi.org/10.1002/adma.202102139
- H. Zhao, C. Jin, P. Lu, Z. Xiao, Y. Cheng, Anchoring well-dispersed magnetic nanops on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos. Part A Appl. Sci. Manuf. 154, 106773 (2022). https://doi.org/10.1016/j.compositesa.2021.106773
References
H. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou et al., A flexible electromagentic wave-electricity harverster. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
H. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable-frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, An electical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano–microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
J. Luo, Y. Wang, Z. Qu, W. Wang, D. Yu, Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 442, 136388 (2022). https://doi.org/10.1016/j.cej.2022.136388
Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
X. Guo, N. Li, C. Wu, X. Dai, R. Qi et al., Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. (2022). https://doi.org/10.1002/adma.202201120
Z. Lou, Q. Wang, U. Kara, R. Mamtami, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagentic wave absorbers. Nano-Micro Lett. 14, 11 (2022). https://doi.org/10.1007/s40820-021-00750-z
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67(14), 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
Z. Wu, Z. Yang, K. Pei, X. Qian, C. Jin et al., Dandelion-like carbon nanotube assembly embedded with closely separated Co nanops for high-performance microwave absorption materials. Nanoscale 12(18), 10149–10157 (2020). https://doi.org/10.1039/D0NR01447H
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
H.L. Lv, Z. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
H. Tian, J. Qiao, Y. Yang, D. Xu, X. Meng et al., ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem. Eng. J. 450, 138011 (2022). https://doi.org/10.1016/j.cej.2022.138011
T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
X.D. Zhou, H. Han, Y.C. Wang, C. Zhang, H.L. Lv et al., Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 121, 199 (2022). https://doi.org/10.1016/j.jmst.2022.03.002
M. Ležaić, P. Mavropoulos, S. Blügel, First-principles prediction of high curie temperature for ferromagnetic bcc-Co and bcc-FeCo alloys and its relevance to tunneling magnetoresistance. Appl. Phys. Lett. 90, 082504 (2007). https://doi.org/10.1063/1.2710181
M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203161
J.F. Fang, H. Lv, B. Zhao, Z.W. Liu, X.H. Liu et al., Selective assembly of magnetic nano-antenna for electromagnetic dissipation. J. Mater. Chem. A 10(20), 10909–10915 (2022). https://doi.org/10.1039/D2TA02186B
F. Sun, Q. Liu, Y. Xu, X. Xin, Z. Wang et al., Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem. Eng. J. 415, 128976 (2021). https://doi.org/10.1016/j.cej.2021.128976
L. Jin, P. Yi, L. Wan, J. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
G. Dai, R. Deng, X. You, T. Zhang, Y. Yu et al., Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases. J. Mater. Sci. Technol. 116, 11–21 (2022). https://doi.org/10.1016/j.jmst.2021.11.032
Y. Duan, Y. Cui, B. Zhang, G. Ma, W. Tongmin, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 773, 194–201 (2019). https://doi.org/10.1016/j.jallcom.2018.09.096
Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13, 161 (2021). https://doi.org/10.1007/s40820-021-00678-4
X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
Z. Zhao, D. Lan, L. Zhang, H. Wu, A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 32(15), 2111045 (2022). https://doi.org/10.1002/adfm.202111045
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
J. Liu, M. Cao, Q. Luo, H. Shi, W. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8(34), 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), 2003502 (2020). https://doi.org/10.1002/smll.202003502
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
L. Han, Z. Rao, I.R.S. Filho, F. Maccari, Y. Wei et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 33(37), 2102139 (2021). https://doi.org/10.1002/adma.202102139
H. Zhao, C. Jin, P. Lu, Z. Xiao, Y. Cheng, Anchoring well-dispersed magnetic nanops on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos. Part A Appl. Sci. Manuf. 154, 106773 (2022). https://doi.org/10.1016/j.compositesa.2021.106773