Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 96
Abstract
Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg−1 mm−1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Highlights:
1 A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm.
2 The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors.
3 The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.H. Fan, R.W. Peng, X.R. Huang, J. Li, Y. Liu et al., Transparent metals for ultrabroadband electromagnetic waves. Adv. Mater. 24(15), 1980–1986 (2012). https://doi.org/10.1002/adma.201104483
- H.L. Wang, H.F. Ma, M. Chen, S. Sun, T.J. Cui, A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves. Adv. Funct. Mater. 31(25), 2100275 (2021). https://doi.org/10.1002/adfm.202100275
- W.L. Song, Y.J. Zhang, K.L. Zhang, K. Wang, L. Zhang et al., Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 7(2), 1902162 (2020). https://doi.org/10.1002/advs.201902162
- L. Huang, Y. Duan, J. Liu, Y. Zeng, G. Ma et al., Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality. Adv. Opt. Mater. 8(12), 2000012 (2020). https://doi.org/10.1002/adom.202000012
- S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77(6), 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
- Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28(1), 1703801 (2018). https://doi.org/10.1002/adfm.201703801
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous mwcnt/wpu composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano–microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
- Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
- Y. Wan, X. Wang, X. Li, S. Liao, Z. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7), 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
- S.K. Ghosh, T.K. Das, S. Ghosh, S. Remanan, K. Nath et al., Selective distribution of conductive carbonaceous inclusion in thermoplastic elastomer: a wet chemical approach of promoting dual percolation and inhibiting radiation pollution in X-band. Compos. Sci. Technol. 210, 108800 (2021). https://doi.org/10.1016/j.compscitech.2021.108800
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
- Y. Liu, X. Sun, Z. Song, X. Liu, R. Yu, Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material. Adv. Electron. Mater. 7(3), 2000970 (2021). https://doi.org/10.1002/aelm.202000970
- X. Gao, X. Wu, J. Qiu, High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers–carbon nanotubes and Fe3O4 nanops. Adv. Electron. Mater. 4(5), 1700565 (2018). https://doi.org/10.1002/aelm.201700565
- Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, Metal-organic framework-based Pb@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7(7), 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016). https://doi.org/10.1021/acsami.6b12178
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- Y. Kang, G. Tan, Q. Man, M. Ning, S. Chen et al., A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites. Mater. Chem. Phys. 266, 124532 (2021). https://doi.org/10.1016/j.matchemphys.2021.124532
- W. Liu, P. Duan, H. Xiong, H. Su, X. Zhang et al., Multicomponent Fe-based composites derived from the oxidation and reduction of prussian blue towards efficient electromagnetic wave absorption. J. Mater. Chem. C 9(16), 5505–5514 (2021). https://doi.org/10.1039/d1tc00455g
- Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
- C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). https://doi.org/10.1002/smll.202001686
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou et al., A flexible electromagnetic wave-electricity harvester. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11(39), 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
- Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2019). https://doi.org/10.1016/j.cej.2019.123096
- S. Bao, W. Tang, Z. Song, Q. Jiang, Z. Jiang et al., Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 12(36), 18790–18799 (2020). https://doi.org/10.1039/d0nr04615a
- X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanops embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13, 161 (2021). https://doi.org/10.1007/s40820-021-00678-4
- I. Huynen, Investigation of microwave absorption mechanisms in microcellular foamed conductive composites. Micro 1(1), 86–101 (2021). https://doi.org/10.3390/micro1010007
References
R.H. Fan, R.W. Peng, X.R. Huang, J. Li, Y. Liu et al., Transparent metals for ultrabroadband electromagnetic waves. Adv. Mater. 24(15), 1980–1986 (2012). https://doi.org/10.1002/adma.201104483
H.L. Wang, H.F. Ma, M. Chen, S. Sun, T.J. Cui, A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves. Adv. Funct. Mater. 31(25), 2100275 (2021). https://doi.org/10.1002/adfm.202100275
W.L. Song, Y.J. Zhang, K.L. Zhang, K. Wang, L. Zhang et al., Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 7(2), 1902162 (2020). https://doi.org/10.1002/advs.201902162
L. Huang, Y. Duan, J. Liu, Y. Zeng, G. Ma et al., Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality. Adv. Opt. Mater. 8(12), 2000012 (2020). https://doi.org/10.1002/adom.202000012
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77(6), 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28(1), 1703801 (2018). https://doi.org/10.1002/adfm.201703801
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous mwcnt/wpu composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
X. Wang, W. Cao, M. Cao, J. Yuan, Assembling nano–microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
Y. Wan, X. Wang, X. Li, S. Liao, Z. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7), 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
S.K. Ghosh, T.K. Das, S. Ghosh, S. Remanan, K. Nath et al., Selective distribution of conductive carbonaceous inclusion in thermoplastic elastomer: a wet chemical approach of promoting dual percolation and inhibiting radiation pollution in X-band. Compos. Sci. Technol. 210, 108800 (2021). https://doi.org/10.1016/j.compscitech.2021.108800
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
Y. Liu, X. Sun, Z. Song, X. Liu, R. Yu, Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material. Adv. Electron. Mater. 7(3), 2000970 (2021). https://doi.org/10.1002/aelm.202000970
X. Gao, X. Wu, J. Qiu, High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers–carbon nanotubes and Fe3O4 nanops. Adv. Electron. Mater. 4(5), 1700565 (2018). https://doi.org/10.1002/aelm.201700565
Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, Metal-organic framework-based Pb@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7(7), 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016). https://doi.org/10.1021/acsami.6b12178
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
Y. Kang, G. Tan, Q. Man, M. Ning, S. Chen et al., A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites. Mater. Chem. Phys. 266, 124532 (2021). https://doi.org/10.1016/j.matchemphys.2021.124532
W. Liu, P. Duan, H. Xiong, H. Su, X. Zhang et al., Multicomponent Fe-based composites derived from the oxidation and reduction of prussian blue towards efficient electromagnetic wave absorption. J. Mater. Chem. C 9(16), 5505–5514 (2021). https://doi.org/10.1039/d1tc00455g
Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). https://doi.org/10.1002/smll.202001686
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou et al., A flexible electromagnetic wave-electricity harvester. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11(39), 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2019). https://doi.org/10.1016/j.cej.2019.123096
S. Bao, W. Tang, Z. Song, Q. Jiang, Z. Jiang et al., Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 12(36), 18790–18799 (2020). https://doi.org/10.1039/d0nr04615a
X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanops embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13, 161 (2021). https://doi.org/10.1007/s40820-021-00678-4
I. Huynen, Investigation of microwave absorption mechanisms in microcellular foamed conductive composites. Micro 1(1), 86–101 (2021). https://doi.org/10.3390/micro1010007