MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance
Corresponding Author: Bin Xu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 202
Abstract
ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2Tx MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2Tx MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge–discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g−1 at 30 mA g−1, superior cyclic stability (462.8 mAh g−1 after 1000 cycles at 0.5 A g−1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.
Highlights:
1 The unique 0D-2D ZnS nanodots/Ti3C2Tx MXene hybrids with strong interfacial interaction enable to achieve stable cyclability and excellent rate performance for lithium storage.
2 The lithium storage mechanism of ZnS is clarified and new insights into phase transition mechanism are proposed.
3 The strong interfacial interaction between ZnS nanodots and MXene nanosheets at the ZnS-MXene heterointerface exhibits high lithium adsorption capability, enhanced interfacial electron transfer, and low lithium diffusion energy barrier.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Niu, Z. Wang, M. Yu, M. Yu, L. Xiu et al., MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage. ACS Nano 12, 3928–3937 (2018). https://doi.org/10.1021/acsnano.8b01459
- Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
- X. Li, Z. Chen, A. Li, Y. Yu, X. Chen et al., Three-dimensional hierarchical porous structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-Ion batteries. ACS Appl. Mater. Interfaces 12, 48718–48728 (2020). https://doi.org/10.1021/acsami.0c15527
- D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 24, 312–318 (2020). https://doi.org/10.1016/j.ensm.2019.07.045
- Z. Li, H. Du, J. Lu, L. Wu, L. He et al., Self-assembly of antimony sulfide nanowires on three-dimensional reduced GO with superior electrochemical lithium storage performances. Chem. Phys. Lett. 771, 138529 (2021). https://doi.org/10.1016/j.cplett.2021.138529
- X. Wang, S. Zhang, Y. Shan, L. Chen, G. Gao et al., In situ heterogeneous interface construction boosting fast ion/electron transfer for high-performances lithium/potassium storage. Energy Storage Mater. 37, 55–66 (2021). https://doi.org/10.1016/j.ensm.2021.01.027
- H. Lu, Y. Zhu, Y. Yuan, L. He, B. Zheng et al., LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. J. Mater. Sci. Mater. Electron. 32, 5898–5906 (2021). https://doi.org/10.1007/s10854-021-05310-0
- S. Liang, S. Zhang, Z. Liu, J. Feng, Z. Jiang et al., Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater. 11, 2002600 (2021). https://doi.org/10.1002/aenm.202002600
- S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 11, 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
- T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen et al., Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- J. Ding, C. Tang, G. Zhu, W. Sun, A. Du et al., Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance. ACS Appl. Energy Mater. 4, 846–854 (2021). https://doi.org/10.1021/acsaem.0c02730
- L. Yao, Q. Gu, X. Yu, Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced Alkali-Ion batteries. ACS Nano 15, 3228–3240 (2021). https://doi.org/10.1021/acsnano.0c09898
- R. Zhang, J. Xu, M. Jia, E. Pan, C. Zhou et al., Ultrafine ZnS quantum dots decorated reduced graphene oxide composites derived from ZIF-8/graphene oxide hybrids as anode for sodium-ion batteries. J. Alloy. Compd. 781, 450–459 (2019). https://doi.org/10.1016/j.jallcom.2018.11.122
- X. Du, H. Zhao, Z. Zhang, Y. Lu, C. Gao et al., Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim. Acta 225, 129–136 (2017). https://doi.org/10.1016/j.electacta.2016.12.118
- G. Tian, Z. Zhao, A. Sarapulova, C. Das, L. Zhu et al., Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 7, 15640–15653 (2019). https://doi.org/10.1039/C9TA01382B
- Y. Zhang, P. Wang, Y. Yin, X. Zhang, L. Fan et al., Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 356, 1042–1051 (2019). https://doi.org/10.1016/j.cej.2018.09.131
- Z. Zhang, Y. Huang, X. Liu, C. Chen, Z. Xu et al., Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157, 244–254 (2020). https://doi.org/10.1016/j.carbon.2019.10.052
- L. Huang, Y. Zhang, C. Shang, X. Wang, G. Zhou et al., ZnS nanotubes/carbon cloth as a reversible and high-capacity anode material for Lithium-Ion Batteries. ChemElectroChem 6, 461–466 (2019). https://doi.org/10.1002/celc.201801289
- Y. Feng, Y. Zhang, Y. Wei, X. Song, Y. Fu et al., A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries. Phys. Chem. Chem. Phys. 18, 30630–30642 (2016). https://doi.org/10.1039/C6CP06609G
- H. Liu, H. Du, W. Zhao, X. Qiang, B. Zheng et al., Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Mater. 40, 490–498 (2021). https://doi.org/10.1016/j.ensm.2021.05.037
- B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4, 6472–6478 (2016). https://doi.org/10.1039/C6TA00950F
- W. Zhang, Z. Huang, H. Zhou, S. Li, C. Wang et al., Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. J. Alloy. Compd. 816, 152633 (2020). https://doi.org/10.1016/j.jallcom.2019.152633
- Q. Zhu, J. Li, P. Simon, B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 35, 630–660 (2021). https://doi.org/10.1016/j.ensm.2020.11.035
- X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
- P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun et al., A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for Lithium-Ion batteries. Chemsuschem 13, 1621–1628 (2020). https://doi.org/10.1002/cssc.201901497
- N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu et al., MXene-bonded flexible hard carbon film as anode for stable Na/K-Ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282
- S. Zhang, H. Liu, B. Cao, Q. Zhu, P. Zhang et al., An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. J. Mater. Chem. A 7, 21766–21773 (2019). https://doi.org/10.1039/C9TA07357D
- Y. Li, G. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- A. Shayesteh Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021). https://doi.org/10.1039/d0nr06671k
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D Mxenes. Adv. Mater. 2103148 (2021). https://doi.org/10.1002/adma.202103148
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum Dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu et al., Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- M. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling et al., 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- H. Gao, T. Zhou, Y. Zheng, Y. Liu, J. Chen et al., Integrated carbon/red phosphorus/graphene aerogel 3d architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 6, 1601037 (2016). https://doi.org/10.1002/aenm.201601037
- Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang et al., MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821
- X. Hui, R. Zhao, P. Zhang, C. Li, C. Wang et al., Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 9, 1901065 (2019). https://doi.org/10.1002/aenm.201901065
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29, 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- M. Boota, B. Anasori, C. Voigt, M. Zhao, M.W. Barsoum et al., Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- J. Yoon, I.T. Kim, J. Bae, J. Hur, High-performance ZnS@graphite composites prepared through scalable high-energy ball milling as novel anodes in lithium-ion batteries. J. Ind. Eng. Chem. 76, 258–267 (2019). https://doi.org/10.1016/j.jiec.2019.03.050
- T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17, 9997–10003 (2015). https://doi.org/10.1039/C4CP05666C
- Y. Xie, Y. Dall Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum et al., Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014). https://doi.org/10.1021/nn503921j
- K.K. Senapati, C. Borgohain, P. Phukan, CoFe2O4–ZnS nanocomposite: a magnetically recyclable photocatalyst. Catal. Sci. Technol. 2, 2361 (2012). https://doi.org/10.1039/c2cy20400b
- Z. Guan, W. Luo, Z. Zou, Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode. CrystEngComm 16, 2929 (2014). https://doi.org/10.1039/c3ce42373e
- B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng et al., Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 31, 2102126 (2021). https://doi.org/10.1002/adfm.202102126
- Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 15, 1904293 (2019). https://doi.org/10.1002/smll.201904293
- H. Zhao, Y. Chen, X. Quan, X. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation. Chin. Sci. Bull. 52, 1456–1461 (2007). https://doi.org/10.1007/s11434-007-0170-8
- J. Chu, W.A. Wang, J. Feng, C. Lao, K. Xi et al., Deeply nesting Zinc sulfide dendrites in tertiary hierarchical structure for potassium ion batteries: enhanced conductivity from interior to exterior. ACS Nano 13, 6906–6916 (2019). https://doi.org/10.1021/acsnano.9b01773
- D. Fang, S. Chen, X. Wang, Y. Bando, D. Golberg et al., ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. J. Mater. Chem. A 6, 8358–8365 (2018). https://doi.org/10.1039/C8TA01667D
- H. Wang, K. Xie, Y. You, Q. Hou, K. Zhang et al., Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li–CO2 batteries. Adv. Energy Mater. 9, 1901806 (2019). https://doi.org/10.1002/aenm.201901806
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2021). https://doi.org/10.1007/s40820-020-00541-y
- Y. Hwa, J.H. Sung, B. Wang, C. Park, H. Sohn, Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries. J. Mater. Chem. 22, 12767–12773 (2012). https://doi.org/10.1039/c2jm31776a
- H. Ding, H.C. Huang, X.K. Zhang, L. Xie, J.Q. Fan et al., Zinc sulfide decorated on nitrogen-doped carbon derived from metal-organic framework composites for highly reversible Lithium-Ion battery anode. ChemElectroChem 6, 5617–5626 (2019). https://doi.org/10.1002/celc.201901568
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- C. Wang, N. Kurra, M. Alhabeb, J. Chang, H.N. Alshareef et al., Titanium carbide (MXene) as a current collector for lithium-ion batteries. ACS Omega 3, 12489–12494 (2018). https://doi.org/10.1021/acsomega.8b02032
References
S. Niu, Z. Wang, M. Yu, M. Yu, L. Xiu et al., MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage. ACS Nano 12, 3928–3937 (2018). https://doi.org/10.1021/acsnano.8b01459
Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
X. Li, Z. Chen, A. Li, Y. Yu, X. Chen et al., Three-dimensional hierarchical porous structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-Ion batteries. ACS Appl. Mater. Interfaces 12, 48718–48728 (2020). https://doi.org/10.1021/acsami.0c15527
D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 24, 312–318 (2020). https://doi.org/10.1016/j.ensm.2019.07.045
Z. Li, H. Du, J. Lu, L. Wu, L. He et al., Self-assembly of antimony sulfide nanowires on three-dimensional reduced GO with superior electrochemical lithium storage performances. Chem. Phys. Lett. 771, 138529 (2021). https://doi.org/10.1016/j.cplett.2021.138529
X. Wang, S. Zhang, Y. Shan, L. Chen, G. Gao et al., In situ heterogeneous interface construction boosting fast ion/electron transfer for high-performances lithium/potassium storage. Energy Storage Mater. 37, 55–66 (2021). https://doi.org/10.1016/j.ensm.2021.01.027
H. Lu, Y. Zhu, Y. Yuan, L. He, B. Zheng et al., LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. J. Mater. Sci. Mater. Electron. 32, 5898–5906 (2021). https://doi.org/10.1007/s10854-021-05310-0
S. Liang, S. Zhang, Z. Liu, J. Feng, Z. Jiang et al., Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater. 11, 2002600 (2021). https://doi.org/10.1002/aenm.202002600
S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 11, 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen et al., Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014). https://doi.org/10.1021/nn503582c
J. Ding, C. Tang, G. Zhu, W. Sun, A. Du et al., Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance. ACS Appl. Energy Mater. 4, 846–854 (2021). https://doi.org/10.1021/acsaem.0c02730
L. Yao, Q. Gu, X. Yu, Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced Alkali-Ion batteries. ACS Nano 15, 3228–3240 (2021). https://doi.org/10.1021/acsnano.0c09898
R. Zhang, J. Xu, M. Jia, E. Pan, C. Zhou et al., Ultrafine ZnS quantum dots decorated reduced graphene oxide composites derived from ZIF-8/graphene oxide hybrids as anode for sodium-ion batteries. J. Alloy. Compd. 781, 450–459 (2019). https://doi.org/10.1016/j.jallcom.2018.11.122
X. Du, H. Zhao, Z. Zhang, Y. Lu, C. Gao et al., Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim. Acta 225, 129–136 (2017). https://doi.org/10.1016/j.electacta.2016.12.118
G. Tian, Z. Zhao, A. Sarapulova, C. Das, L. Zhu et al., Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 7, 15640–15653 (2019). https://doi.org/10.1039/C9TA01382B
Y. Zhang, P. Wang, Y. Yin, X. Zhang, L. Fan et al., Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 356, 1042–1051 (2019). https://doi.org/10.1016/j.cej.2018.09.131
Z. Zhang, Y. Huang, X. Liu, C. Chen, Z. Xu et al., Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157, 244–254 (2020). https://doi.org/10.1016/j.carbon.2019.10.052
L. Huang, Y. Zhang, C. Shang, X. Wang, G. Zhou et al., ZnS nanotubes/carbon cloth as a reversible and high-capacity anode material for Lithium-Ion Batteries. ChemElectroChem 6, 461–466 (2019). https://doi.org/10.1002/celc.201801289
Y. Feng, Y. Zhang, Y. Wei, X. Song, Y. Fu et al., A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries. Phys. Chem. Chem. Phys. 18, 30630–30642 (2016). https://doi.org/10.1039/C6CP06609G
H. Liu, H. Du, W. Zhao, X. Qiang, B. Zheng et al., Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Mater. 40, 490–498 (2021). https://doi.org/10.1016/j.ensm.2021.05.037
B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4, 6472–6478 (2016). https://doi.org/10.1039/C6TA00950F
W. Zhang, Z. Huang, H. Zhou, S. Li, C. Wang et al., Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. J. Alloy. Compd. 816, 152633 (2020). https://doi.org/10.1016/j.jallcom.2019.152633
Q. Zhu, J. Li, P. Simon, B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 35, 630–660 (2021). https://doi.org/10.1016/j.ensm.2020.11.035
X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun et al., A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for Lithium-Ion batteries. Chemsuschem 13, 1621–1628 (2020). https://doi.org/10.1002/cssc.201901497
N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu et al., MXene-bonded flexible hard carbon film as anode for stable Na/K-Ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282
S. Zhang, H. Liu, B. Cao, Q. Zhu, P. Zhang et al., An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. J. Mater. Chem. A 7, 21766–21773 (2019). https://doi.org/10.1039/C9TA07357D
Y. Li, G. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
A. Shayesteh Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021). https://doi.org/10.1039/d0nr06671k
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D Mxenes. Adv. Mater. 2103148 (2021). https://doi.org/10.1002/adma.202103148
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum Dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu et al., Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
M. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling et al., 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
H. Gao, T. Zhou, Y. Zheng, Y. Liu, J. Chen et al., Integrated carbon/red phosphorus/graphene aerogel 3d architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 6, 1601037 (2016). https://doi.org/10.1002/aenm.201601037
Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang et al., MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821
X. Hui, R. Zhao, P. Zhang, C. Li, C. Wang et al., Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 9, 1901065 (2019). https://doi.org/10.1002/aenm.201901065
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29, 1808107 (2019). https://doi.org/10.1002/adfm.201808107
M. Boota, B. Anasori, C. Voigt, M. Zhao, M.W. Barsoum et al., Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
J. Yoon, I.T. Kim, J. Bae, J. Hur, High-performance ZnS@graphite composites prepared through scalable high-energy ball milling as novel anodes in lithium-ion batteries. J. Ind. Eng. Chem. 76, 258–267 (2019). https://doi.org/10.1016/j.jiec.2019.03.050
T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17, 9997–10003 (2015). https://doi.org/10.1039/C4CP05666C
Y. Xie, Y. Dall Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum et al., Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014). https://doi.org/10.1021/nn503921j
K.K. Senapati, C. Borgohain, P. Phukan, CoFe2O4–ZnS nanocomposite: a magnetically recyclable photocatalyst. Catal. Sci. Technol. 2, 2361 (2012). https://doi.org/10.1039/c2cy20400b
Z. Guan, W. Luo, Z. Zou, Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode. CrystEngComm 16, 2929 (2014). https://doi.org/10.1039/c3ce42373e
B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng et al., Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 31, 2102126 (2021). https://doi.org/10.1002/adfm.202102126
Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 15, 1904293 (2019). https://doi.org/10.1002/smll.201904293
H. Zhao, Y. Chen, X. Quan, X. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation. Chin. Sci. Bull. 52, 1456–1461 (2007). https://doi.org/10.1007/s11434-007-0170-8
J. Chu, W.A. Wang, J. Feng, C. Lao, K. Xi et al., Deeply nesting Zinc sulfide dendrites in tertiary hierarchical structure for potassium ion batteries: enhanced conductivity from interior to exterior. ACS Nano 13, 6906–6916 (2019). https://doi.org/10.1021/acsnano.9b01773
D. Fang, S. Chen, X. Wang, Y. Bando, D. Golberg et al., ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. J. Mater. Chem. A 6, 8358–8365 (2018). https://doi.org/10.1039/C8TA01667D
H. Wang, K. Xie, Y. You, Q. Hou, K. Zhang et al., Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li–CO2 batteries. Adv. Energy Mater. 9, 1901806 (2019). https://doi.org/10.1002/aenm.201901806
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2021). https://doi.org/10.1007/s40820-020-00541-y
Y. Hwa, J.H. Sung, B. Wang, C. Park, H. Sohn, Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries. J. Mater. Chem. 22, 12767–12773 (2012). https://doi.org/10.1039/c2jm31776a
H. Ding, H.C. Huang, X.K. Zhang, L. Xie, J.Q. Fan et al., Zinc sulfide decorated on nitrogen-doped carbon derived from metal-organic framework composites for highly reversible Lithium-Ion battery anode. ChemElectroChem 6, 5617–5626 (2019). https://doi.org/10.1002/celc.201901568
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
C. Wang, N. Kurra, M. Alhabeb, J. Chang, H.N. Alshareef et al., Titanium carbide (MXene) as a current collector for lithium-ion batteries. ACS Omega 3, 12489–12494 (2018). https://doi.org/10.1021/acsomega.8b02032