Correction: Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
Corresponding Author: Hongjing Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 89
Abstract
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
Highlights:
1 A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy.
2“Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations.
3 Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, S. Zhang, D. Qu et al., Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption. Nano-Micro Lett. 17, 24 (2025). https://doi.org/10.1007/s40820-024-01515-010.1126/science.aba7977
- X. Yin, C.S. Tang, Y. Zheng, J. Gao, J. Wu et al., Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 50, 10087–10115 (2021). https://doi.org/10.1039/D1CS00236H
- X. Zhang, R. Bi, J. Wang, M. Zheng, J. Wang et al., Delicate co-control of shell structure and sulfur vacancies in interlayer-expanded tungsten disulfide hollow sphere for fast and stable sodium storage. Adv. Mater. 35, e2209354 (2023). https://doi.org/10.1002/adma.202209354
- B. Li, F. Wang, K. Wang, J. Qiao, D. Xu et al., Metal sulfides based composites as promising efficient microwave absorption materials: a review. J. Mater. Sci. Technol. 104, 244–268 (2022). https://doi.org/10.1016/j.jmst.2021.06.065
- X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10(11), eadl6498 (2024). https://doi.org/10.1126/sciadv.adl6498
- F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
- B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34, 2314653 (2024). https://doi.org/10.1002/adfm.202314653
- Z. Jia, J. Liu, Z. Gao, C. Zhang, G. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M=Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405523
- J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31, 2105018 (2021). https://doi.org/10.1002/adfm.202105018
- Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He et al., Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019). https://doi.org/10.1021/jacs.9b04492
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- B. Zhao, Z. Yan, D. Li, X. Zhou, Y. Du et al., Hierarchical flower-like sulfides with increased entropy for electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15, 59618–59629 (2023). https://doi.org/10.1021/acsami.3c15017
- J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4, 2200379 (2023). https://doi.org/10.1002/sstr.202200379
- J. Wang, M. Han, Y. Liu, Y. Xiang, C. Liang et al., Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms Co-doped carbon aerogel. J. Colloid Interface Sci. 646, 970–979 (2023). https://doi.org/10.1016/j.jcis.2023.05.094
- G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
- W. Zhao, S. Yuan, S. Lei, Z. Zeng, J. Dong et al., Tailoring rational crystal orientation and tunable sulfur vacancy on metal-sulfides toward advanced ultrafast ion-storage capability. Adv. Funct. Mater. 33, 2211542 (2023). https://doi.org/10.1002/adfm.202211542
- J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang et al., Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122, 5519–5603 (2022). https://doi.org/10.1021/acs.chemrev.1c00644
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31, 2011229 (2021). https://doi.org/10.1002/adfm.202011229
- S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- X. Liu, C. Hao, H. Jiang, M. Zeng, R. Yu, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5, 3770–3778 (2017). https://doi.org/10.1039/C6TC05167G
- X. Lin, J. Liu, X. Qiu, B. Liu, X. Wang et al., Ru−FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting. Angew. Chem. Int. Ed. 62, e202306333 (2023). https://doi.org/10.1002/anie.202306333
- Y. Zou, Y. Gu, B. Hui, X. Yang, H. Liu et al., Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 10, 1904147 (2020). https://doi.org/10.1002/aenm.201904147
- Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
- D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo et al., Double-Helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
- D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
- R. Guo, D. Li, C. Lv, Y. Wang, H. Zhang et al., Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode. Electrochim. Acta 299, 72–79 (2019). https://doi.org/10.1016/j.electacta.2019.01.011
- J. He, Y. Chen, A. Manthiram, Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv. Energy Mater. 9, 1900584 (2019). https://doi.org/10.1002/aenm.201900584
- E. Yang, X. Qi, R. Xie, Z. Bai, Y. Jiang et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018). https://doi.org/10.1016/j.apsusc.2018.02.175
- P. Zheng, T. Li, K. Chi, C. Xiao, J. Fan et al., DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl. Catal. B Environ. 257, 117937 (2019). https://doi.org/10.1016/j.apcatb.2019.117937
- S. Yin, X. Zhao, E. Jiang, Y. Yan, P. Zhou et al., Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction. Energy Environ. Sci. 15, 1556–1562 (2022). https://doi.org/10.1039/d1ee03764a
- X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17, 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
- Y. Li, J. Qian, M. Zhang, S. Wang, Z. Wang et al., Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 32, e2005802 (2020). https://doi.org/10.1002/adma.202005802
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
- G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu et al., Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber. Adv. Mater. 35, e2305586 (2023). https://doi.org/10.1002/adma.202305586
- Z. Zhao, K. Kou, L. Zhang, H. Wu, Optimal p distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 186, 323–332 (2022). https://doi.org/10.1016/j.carbon.2021.10.052
- D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65, 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- Q. Ma, Z. Xu, X. Li, X. Cheng, Core-shell CuCo2S4 based microspheres composited with carbon black nanops for effective microwave absorption. J. Alloys Compd. 938, 168577 (2023). https://doi.org/10.1016/j.jallcom.2022.168577
- X.-J. Zhang, S.-W. Wang, G.-S. Wang, Z. Li, A.-P. Guo et al., Facile synthesis of NiS2@MoS2 core–shell nanospheres for effective enhancement in microwave absorption. RSC Adv. 7, 22454–22460 (2017). https://doi.org/10.1039/C7RA03260A
- W. Li, J. Chen, P. Gao, MOFs-derived hollow Copper-based sulfides for optimized electromagnetic behaviors. J. Colloid Interface Sci. 606, 719–727 (2022). https://doi.org/10.1016/j.jcis.2021.08.019
- G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
- L. Gai, G. Song, Y. Li, W. Niu, L. Qin et al., Versatile bimetal sulfides nanops-embedded N-doped hierarchical carbonaceous aerogels (N-NixSy/CoxSy@C) for excellent supercapacitors and microwave absorption. Carbon 179, 111–124 (2021). https://doi.org/10.1016/j.carbon.2021.04.029
- T. Zhu, W. Shen, X. Wang, Y.-F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 378, 122159 (2019). https://doi.org/10.1016/j.cej.2019.122159
- G. Cui, L. Wang, L. Li, W. Xie, G. Gu, Synthesis of CuS nanops decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog. Nat. Sci. Mater. Int. 30, 343–351 (2020). https://doi.org/10.1016/j.pnsc.2020.06.001
- L. Wu, S. Shi, J. Liu, X. Liu, P. Mou et al., Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy 118, 108938 (2023). https://doi.org/10.1016/j.nanoen.2023.108938
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- Z. Su, S. Yi, W. Zhang, X. Xu, Y. Zhang et al., Ultrafine vacancy-rich Nb2O5 semiconductors confined in carbon nanosheets boost dielectric polarization for high-attenuation microwave absorption. Nano-Micro Lett. 15, 183 (2023). https://doi.org/10.1007/s40820-023-01151-0
- L. Jin, X. Liu, Y. Zheng, Y. Zhang, Z. Li et al., Interfacial and defect polarization enhanced microwave noninvasive therapy for Staphylococcus aureus-infected chronic osteomyelitis. ACS Nano 17, 18200–18216 (2023). https://doi.org/10.1021/acsnano.3c05130
- J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9, 011402 (2022). https://doi.org/10.1063/5.0067791
- Y. Guo, J. Sun, Y. Tang, X. Jia, Y. Nie et al., Efficient interfacial electron transfer induced by hollow-structured ZnIn2S4 for extending hot electron lifetimes. Energy Environ. Sci. 16, 3462–3473 (2023). https://doi.org/10.1039/D3EE01522J
- J. Ding, R. Shi, C. Gong, C. Wang, Y. Guo et al., Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 33, 2305463 (2023). https://doi.org/10.1002/adfm.202305463
- W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian et al., Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew. Chem. Int. Ed. 61, e202200190 (2022). https://doi.org/10.1002/anie.202200190
References
J. Liu, S. Zhang, D. Qu et al., Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption. Nano-Micro Lett. 17, 24 (2025). https://doi.org/10.1007/s40820-024-01515-010.1126/science.aba7977
X. Yin, C.S. Tang, Y. Zheng, J. Gao, J. Wu et al., Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 50, 10087–10115 (2021). https://doi.org/10.1039/D1CS00236H
X. Zhang, R. Bi, J. Wang, M. Zheng, J. Wang et al., Delicate co-control of shell structure and sulfur vacancies in interlayer-expanded tungsten disulfide hollow sphere for fast and stable sodium storage. Adv. Mater. 35, e2209354 (2023). https://doi.org/10.1002/adma.202209354
B. Li, F. Wang, K. Wang, J. Qiao, D. Xu et al., Metal sulfides based composites as promising efficient microwave absorption materials: a review. J. Mater. Sci. Technol. 104, 244–268 (2022). https://doi.org/10.1016/j.jmst.2021.06.065
X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10(11), eadl6498 (2024). https://doi.org/10.1126/sciadv.adl6498
F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34, 2314653 (2024). https://doi.org/10.1002/adfm.202314653
Z. Jia, J. Liu, Z. Gao, C. Zhang, G. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M=Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405523
J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31, 2105018 (2021). https://doi.org/10.1002/adfm.202105018
Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He et al., Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019). https://doi.org/10.1021/jacs.9b04492
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
B. Zhao, Z. Yan, D. Li, X. Zhou, Y. Du et al., Hierarchical flower-like sulfides with increased entropy for electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15, 59618–59629 (2023). https://doi.org/10.1021/acsami.3c15017
J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4, 2200379 (2023). https://doi.org/10.1002/sstr.202200379
J. Wang, M. Han, Y. Liu, Y. Xiang, C. Liang et al., Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms Co-doped carbon aerogel. J. Colloid Interface Sci. 646, 970–979 (2023). https://doi.org/10.1016/j.jcis.2023.05.094
G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
W. Zhao, S. Yuan, S. Lei, Z. Zeng, J. Dong et al., Tailoring rational crystal orientation and tunable sulfur vacancy on metal-sulfides toward advanced ultrafast ion-storage capability. Adv. Funct. Mater. 33, 2211542 (2023). https://doi.org/10.1002/adfm.202211542
J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200544 (2022). https://doi.org/10.1002/adfm.202200544
B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang et al., Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122, 5519–5603 (2022). https://doi.org/10.1021/acs.chemrev.1c00644
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31, 2011229 (2021). https://doi.org/10.1002/adfm.202011229
S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
X. Liu, C. Hao, H. Jiang, M. Zeng, R. Yu, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5, 3770–3778 (2017). https://doi.org/10.1039/C6TC05167G
X. Lin, J. Liu, X. Qiu, B. Liu, X. Wang et al., Ru−FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting. Angew. Chem. Int. Ed. 62, e202306333 (2023). https://doi.org/10.1002/anie.202306333
Y. Zou, Y. Gu, B. Hui, X. Yang, H. Liu et al., Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 10, 1904147 (2020). https://doi.org/10.1002/aenm.201904147
Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo et al., Double-Helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
R. Guo, D. Li, C. Lv, Y. Wang, H. Zhang et al., Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode. Electrochim. Acta 299, 72–79 (2019). https://doi.org/10.1016/j.electacta.2019.01.011
J. He, Y. Chen, A. Manthiram, Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv. Energy Mater. 9, 1900584 (2019). https://doi.org/10.1002/aenm.201900584
E. Yang, X. Qi, R. Xie, Z. Bai, Y. Jiang et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018). https://doi.org/10.1016/j.apsusc.2018.02.175
P. Zheng, T. Li, K. Chi, C. Xiao, J. Fan et al., DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl. Catal. B Environ. 257, 117937 (2019). https://doi.org/10.1016/j.apcatb.2019.117937
S. Yin, X. Zhao, E. Jiang, Y. Yan, P. Zhou et al., Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction. Energy Environ. Sci. 15, 1556–1562 (2022). https://doi.org/10.1039/d1ee03764a
X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17, 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
Y. Li, J. Qian, M. Zhang, S. Wang, Z. Wang et al., Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 32, e2005802 (2020). https://doi.org/10.1002/adma.202005802
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu et al., Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber. Adv. Mater. 35, e2305586 (2023). https://doi.org/10.1002/adma.202305586
Z. Zhao, K. Kou, L. Zhang, H. Wu, Optimal p distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 186, 323–332 (2022). https://doi.org/10.1016/j.carbon.2021.10.052
D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanops. Sci. Bull. 65, 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
Q. Ma, Z. Xu, X. Li, X. Cheng, Core-shell CuCo2S4 based microspheres composited with carbon black nanops for effective microwave absorption. J. Alloys Compd. 938, 168577 (2023). https://doi.org/10.1016/j.jallcom.2022.168577
X.-J. Zhang, S.-W. Wang, G.-S. Wang, Z. Li, A.-P. Guo et al., Facile synthesis of NiS2@MoS2 core–shell nanospheres for effective enhancement in microwave absorption. RSC Adv. 7, 22454–22460 (2017). https://doi.org/10.1039/C7RA03260A
W. Li, J. Chen, P. Gao, MOFs-derived hollow Copper-based sulfides for optimized electromagnetic behaviors. J. Colloid Interface Sci. 606, 719–727 (2022). https://doi.org/10.1016/j.jcis.2021.08.019
G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
L. Gai, G. Song, Y. Li, W. Niu, L. Qin et al., Versatile bimetal sulfides nanops-embedded N-doped hierarchical carbonaceous aerogels (N-NixSy/CoxSy@C) for excellent supercapacitors and microwave absorption. Carbon 179, 111–124 (2021). https://doi.org/10.1016/j.carbon.2021.04.029
T. Zhu, W. Shen, X. Wang, Y.-F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 378, 122159 (2019). https://doi.org/10.1016/j.cej.2019.122159
G. Cui, L. Wang, L. Li, W. Xie, G. Gu, Synthesis of CuS nanops decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog. Nat. Sci. Mater. Int. 30, 343–351 (2020). https://doi.org/10.1016/j.pnsc.2020.06.001
L. Wu, S. Shi, J. Liu, X. Liu, P. Mou et al., Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy 118, 108938 (2023). https://doi.org/10.1016/j.nanoen.2023.108938
F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
Z. Su, S. Yi, W. Zhang, X. Xu, Y. Zhang et al., Ultrafine vacancy-rich Nb2O5 semiconductors confined in carbon nanosheets boost dielectric polarization for high-attenuation microwave absorption. Nano-Micro Lett. 15, 183 (2023). https://doi.org/10.1007/s40820-023-01151-0
L. Jin, X. Liu, Y. Zheng, Y. Zhang, Z. Li et al., Interfacial and defect polarization enhanced microwave noninvasive therapy for Staphylococcus aureus-infected chronic osteomyelitis. ACS Nano 17, 18200–18216 (2023). https://doi.org/10.1021/acsnano.3c05130
J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9, 011402 (2022). https://doi.org/10.1063/5.0067791
Y. Guo, J. Sun, Y. Tang, X. Jia, Y. Nie et al., Efficient interfacial electron transfer induced by hollow-structured ZnIn2S4 for extending hot electron lifetimes. Energy Environ. Sci. 16, 3462–3473 (2023). https://doi.org/10.1039/D3EE01522J
J. Ding, R. Shi, C. Gong, C. Wang, Y. Guo et al., Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 33, 2305463 (2023). https://doi.org/10.1002/adfm.202305463
W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian et al., Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew. Chem. Int. Ed. 61, e202200190 (2022). https://doi.org/10.1002/anie.202200190