Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials
Corresponding Author: Zongwen Liu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 13
Abstract
With a large number of researches being conducted on two-dimensional (2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that provides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high-quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of different types of 2D heterostructures, followed by the discussions on present challenges and perspectives of further investigations.
Highlights:
1 The controllable fabrication methods, the unique properties, and relative applications of 2D heterostructures were summarized.
2 The generation and detection of interlayer excitons in 2D heterostructures with type II band alignment indicate a longer lifetime and larger binding energy than intralayer excitons.
3 The advances in magnetic tunneling junctions based on 2D heterostructures can be applied in spintronic devices to realize spin filtering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012). https://doi.org/10.1002/adma.201103241
- L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz et al., Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76(20), 201401 (2007). https://doi.org/10.1103/PhysRevB.76.201401
- V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- L. Xie, M.Z. Liao, S.P. Wang, H. Yu, L.J. Du et al., Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29(37), 1702522 (2017). https://doi.org/10.1002/adma.201702522
- Y.P. Liu, W.S. Lew, S. Goolaup, Z.X. Shen, L. Sun, T.J. Zhou, S.K. Wong, Observation of the semiconductor-metal transition behavior in monolayer graphene. Carbon 50(6), 2273–2279 (2012). https://doi.org/10.1016/j.carbon.2012.01.046
- A. Allain, J.H. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14(12), 1195–1205 (2015). https://doi.org/10.1038/nmat4452
- P.R.Y. Gangavarapu, P.C. Lokesh, K.N. Bhat, A.K. Naik, Towards barrier free contacts to n-type CNTFETS using graphene electrodes, in 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC 2016). https://doi.org/10.1109/nmdc.2016.7777064
- J. Du, C.X. Xia, W.Q. Xiong, X. Zhao, T.X. Wang, Y. Jia, Tuning the electronic structures and magnetism of two-dimensional porous C2N via transition metal embedding. Phys. Chem. Chem. Phys. 18(32), 22678–22686 (2016). https://doi.org/10.1039/C6CP03210A
- Y.P. Liu, S. Goolaup, W.S. Lew, I. Purnama, M.C. Sekhar, T.J. Zhou, S.K. Wong, Excitonic bandgap dependence on stacking configuration in four layer graphene. Appl. Phys. Lett. 103(16), 163108 (2013). https://doi.org/10.1063/1.4825263
- C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
- W.J. Jie, Z.B. Yang, G.X. Bai, J.H. Hao, Luminescence in 2D materials and van der waals heterostructures. Adv. Opt. Mater. 6(10), 1701296 (2018). https://doi.org/10.1002/adom.201701296
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
- O.L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, A. Kis, Valley polarization by spin injection in a light-emitting van der waals heterojunction. Nano Lett. 16(9), 5792–5797 (2016). https://doi.org/10.1021/acs.nanolett.6b02527
- C.L. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137(38), 12162–12174 (2015). https://doi.org/10.1021/jacs.5b03590
- H.Y. Yu, Y. Wang, Q.J. Tong, X.D. Xu, W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115(18), 187002 (2015). https://doi.org/10.1103/PhysRevLett.115.187002
- F. Haque, T. Daeneke, K. Kalantar-zadeh, J. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett. 10, 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
- X. Zhou, X.Z. Hu, J. Yu, S.Y. Liu, Z.W. Shu et al., 2D layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 28(14), 1706587 (2018). https://doi.org/10.1002/adfm.201706587
- J.A. Leon, N.C. Mamani, A. Rahim, L.E. Gomez, M.A.P. Silva, G.M. Gusev, Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices. Graphene 25–35, 48096 (2014). https://doi.org/10.4236/graphene.2014.33005
- A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. van der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1(1), 011002 (2014)
- P. Pedrinazzi, J.M. Caridad, D.M.A. Mackenzie, F. Pizzocchero, L. Gammelgaard et al., High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Appl. Phys. Lett. 112(3), 033101 (2018). https://doi.org/10.1063/1.5009168
- P.J. Zomer, S.P. Dash, N. Tombros, B.J. van Wees, A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99(23), 232104 (2011). https://doi.org/10.1063/1.3665405
- J.I.J. Wang, Y.F. Yang, Y.A. Chen, K. Watanabe, T. Taniguchi, H.O.H. Churchill, P. Jarillo-Herrero, Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. 15(3), 1898–1903 (2015). https://doi.org/10.1021/nl504750f
- R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
- M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
- Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/Nmat4091
- X.F. Li, M.W. Lin, J.H. Lin, B. Huang, A.A. Puretzky et al., Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2(4), 1501882 (2016). https://doi.org/10.1126/sciadv.1501882
- L. Fu, Y.Y. Sun, N. Wu, R.G. Mendes, L.F. Chen et al., Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10(2), 2063–2070 (2016). https://doi.org/10.1021/acsnano.5b06254
- B.Y. Zheng, C. Ma, D. Li, J.Y. Lan, Z. Zhang et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140(36), 11193–11197 (2018). https://doi.org/10.1021/jacs.8b07401
- P.K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H.R. Gutierrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553(7686), 63–67 (2018). https://doi.org/10.1038/nature25155
- Z.W. Zhang, P. Chen, X.D. Duan, K.T. Zang, J. Luo, X.F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
- C. Gong, H.J. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 107(13), 053513 (2015). https://doi.org/10.1063/1.4932088
- F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015). https://doi.org/10.1038/nmat4205
- W.G. Xu, W.W. Liu, J.F. Schmidt, W.J. Zhao, X. Lu et al., Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541(7635), 62–67 (2017). https://doi.org/10.1038/nature20601
- Y. Hattori, T. Taniguchi, K. Watanabe, K. Nagashio, Determination of carrier polarity in Fowler–Nordheim tunneling and evidence of fermi level pinning at the hexagonal boron nitride/metal interface. ACS Appl. Mater. Interfaces 10(14), 11732–11738 (2018). https://doi.org/10.1021/acsami.7b18454
- P. Bampoulis, R. van Bremen, Q.R. Yao, B. Poelsema, H.J.W. Zandvliet, K. Sotthewes, Defect dominated charge transport and fermi level pinning in MoS2/metal contacts. ACS Appl. Mater. Interfaces 9(22), 19278–19286 (2017). https://doi.org/10.1021/acsami.7b02739
- T. Le Quang, V. Cherkez, K. Nogajewski, M. Potemski, M.T. Dau, M. Jamet, P. Mallet, J.Y. Veuillen, Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning. 2D Mater. 4(3), 035019 (2017). https://doi.org/10.1088/2053-1583/aa7b03
- C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10(6), 451–456 (2014). https://doi.org/10.1038/Nphys2954
- B. Li, L. Huang, M.Z. Zhong, Y. Li, Y. Wang, J.B. Li, Z.M. Wei, Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2(11), 1600298 (2016). https://doi.org/10.1002/aelm.201600298
- K.H. Liu, L.M. Zhang, T. Cao, C.H. Jin, D.A. Qiu et al., Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). https://doi.org/10.1038/ncomms5966
- H.J. Tan, W.S. Xu, Y.W. Sheng, C.S. Lau, Y. Fan et al., Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater. 29(46), 1702917 (2017). https://doi.org/10.1002/adma.201702917
- F. Gong, W.J. Luo, J.L. Wang, P. Wang, H.H. Fang et al., High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 26(33), 6084–6090 (2016). https://doi.org/10.1002/adfm.201601346
- A. Dankert, S.P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017). https://doi.org/10.1038/ncomms16093
- J.L. Wang, H.H. Fang, X.D. Wang, X.S. Chen, W. Lu, W.D. Hu, Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13(35), 1700894 (2017). https://doi.org/10.1002/smll.201700894
- M.Z. Bellus, F. Ceballos, H.Y. Chiu, H. Zhao, Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9(6), 6459–6464 (2015). https://doi.org/10.1021/acsnano.5b02144
- L.B. Drissi, F.Z. Ramadan, N.B.J. Kanga, Optoelectronic properties in 2D GeC and SiC hybrids: DFT and many body effect calculations. Mater. Res. Express 5(1), 015061 (2018). https://doi.org/10.1088/2053-1591/aaa862
- X.P. Hong, J. Kim, S.F. Shi, Y. Zhang, C.H. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). https://doi.org/10.1038/Nnano.2014.167
- H.H. Hung, J.S. Wu, K. Sun, C.K. Chiu, Engineering of many-body Majorana states in a topological insulator/s-wave superconductor heterostructure. Sci. Rep. 7, 3499 (2017). https://doi.org/10.1038/s41598-017-02493-7
- P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S.F. Wu et al., Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). https://doi.org/10.1038/ncomms7242
- M. Li, D. Esseni, G. Snider, D. Jena, H.G. Xing, Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115(7), 074508 (2014). https://doi.org/10.1063/1.4866076
- X. Yan, C.S. Liu, C. Li, W.Z. Bao, S.J. Ding, D.W. Zhang, P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13(34), 1701478 (2017). https://doi.org/10.1002/smll.201701478
- T. Yamaoka, H.E. Lim, S. Koirala, X.F. Wang, K. Shinokita et al., Efficient photocarrier transfer and effective photoluminescence enhancement in type i monolayer MoTe2/WSe2 heterostructure. Adv. Funct. Mater. 28(35), 1801021 (2018). https://doi.org/10.1002/adfm.201801021
- Z. Cai, M. Cao, Z.P. Jin, K.Y. Yi, X.S. Chen, D.C. Wei, Large photoelectric-gating effect of two-dimensional van-der-Waals organic/tungsten diselenide heterointerface. NPJ 2D Mater. Appl. 2, 21 (2018). https://doi.org/10.1088/2053-1591/aaa862
- S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). https://doi.org/10.1021/nn3059136
- M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S.H. Lee, P. Kim, J. Hone, W.J. Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
- Y. Zhang, Y.B. Yuan, J.S. Huang, Detecting 100 fW cm−2 light with trapped electron gated organic phototransistors. Adv. Mater. 29(5), 1603969 (2017). https://doi.org/10.1002/adma.201603969
- J.L. Wang, X.M. Zou, X.H. Xiao, L. Xu, C.L. Wang et al., Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 11(2), 208–213 (2015). https://doi.org/10.1002/smll.201401872
- Y.P. Liu, W.S. Lew, Z.W. Liu, Observation of anomalous resistance behavior in bilayer graphene. Nanoscale Res. Lett. 12, 48 (2017). https://doi.org/10.1186/s11671-016-1792-z
- Y.P. Liu, Z.W. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8, 335 (2013). https://doi.org/10.1186/1556-276X-8-335
- Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
- H.L. Chen, X.W. Wen, J. Zhang, T.M. Wu, Y.J. Gong et al., Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016). https://doi.org/10.1038/ncomms12512
- X.W. Wen, H.L. Chen, T.M. Wu, Z.H. Yu et al., Ultrafast probes of electron-hole transitions between two atomic layers. Nat. Commun. 9, 1859 (2018). https://doi.org/10.1038/s41467-018-04291-9
- A.T. Hanbicki, H.J. Chuang, M.R. Rosenberger, C.S. Hellberg, S.V. Sivaram, K.M. McCreary, I.I. Mazin, B.T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der waals heterostructure. ACS Nano 12(5), 4719–4726 (2018). https://doi.org/10.1021/acsnano.8b01369
- S. Latini, K.T. Winther, T. Olsen, K.S. Thygesen, Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der waals heterostructures. Nano Lett. 17(2), 938–945 (2017). https://doi.org/10.1021/acs.nanolett.6b04275
- J.S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H.Y. Yu et al., Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17(2), 638–643 (2017). https://doi.org/10.1021/acs.nanolett.6b03398
- P. Rivera, K.L. Seyler, H.Y. Yu, J.R. Schaibley, J.Q. Yan et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351(6274), 688–691 (2016). https://doi.org/10.1126/science.aac7820
- T. Deilmann, K.S. Thygesen, Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 18(2), 1460–1465 (2018). https://doi.org/10.1021/acs.nanolett.7b05224
- Y.P. Liu, W.S. Lew, L. Sun, Enhanced weak localization effect in few-layer graphene. Phys. Chem. Chem. Phys. 13(45), 20208–20214 (2011). https://doi.org/10.1039/c1cp22250c
- L.Y. Ping, G. Sarjoosing, M. Chandrasekhar, L.W. Siang, W.S.J.A.N. Kai, Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 4(12), 7087–7092 (2010). https://doi.org/10.1021/nn101296x
- J.S. Qi, X. Li, Q. Niu, J. Feng, Giant and tunable valley degeneracy splitting in MoTe2. Phys. Rev. B 92(12), 121403 (2015). https://doi.org/10.1103/PhysRevB.92.121403
- B.Z. Zhou, S.W. Ji, Z. Tian, W.J. Cheng, X.C. Wang, W.B. Mi, Proximity effect induced spin filtering and gap opening in graphene by half-metallic monolayer Cr2C ferromagnet. Carbon 132, 25–31 (2018). https://doi.org/10.1016/j.carbon.2018.02.044
- P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia et al., Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15(7), 711–716 (2016). https://doi.org/10.1038/Nmat4603
- H.X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, M. Chshiev, Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110(4), 046603 (2013). https://doi.org/10.1103/PhysRevLett.110.046603
- K.L. Seyler, D. Zhong, B. Huang, X.Y. Linpeng, N.P. Wilson et al., Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 18(6), 3823–3828 (2018). https://doi.org/10.1021/acs.nanolett.8b01105
- B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017). https://doi.org/10.1038/nature22391
- J.U. Lee, S. Lee, J.H. Ryoo, S. Kang, T.Y. Kim et al., Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16(12), 7433–7438 (2016). https://doi.org/10.1021/acs.nanolett.6b03052
- J. Du, C.X. Xia, W.Q. Xiong, T.X. Wang, Y. Jia, J.B. Li, Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale 9(44), 17585–17592 (2017). https://doi.org/10.1039/c7nr06473j
- Y.P. Liu, I. Yudhistira, M. Yang, E. Laksono, Y.Z. Luo et al., Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures. Nano Lett. 18(6), 3377–3383 (2018). https://doi.org/10.1021/acs.nanolett.8b00155
- M. Bonilla, S. Kolekar, Y.J. Ma, H.C. Diaz, V. Kalappattil et al., Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13(4), 289–293 (2018). https://doi.org/10.1038/s41565-018-0063-9
- Z.Y. Fei, B. Huang, P. Malinowski, W.B. Wang, T.C. Song et al., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17(9), 778–782 (2018). https://doi.org/10.1038/s41563-018-0149-7
- Y. Deng, Y. Yu, Y. Song, J. Zhang, N.Z. Wang et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018). https://doi.org/10.1038/s41586-018-0626-9
- C. Si, J. Zhou, Z.M. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
- M. Kan, J. Zhou, Q. Sun, Y. Kawazoe, P. Jena, The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 4(20), 3382–3386 (2013). https://doi.org/10.1021/jz4017848
- Y. Zhang, J.M. Pang, M.G. Zhang, X. Gu, L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism. Sci. Rep. 7, 7 (2017). https://doi.org/10.1038/s41598-017-00035-9
- M. Ormaza, L. Fernandez, M. Ilyn, A. Magana, B. Xu et al., High temperature ferromagnetism in a GdAg2 monolayer. Nano Lett. 16(7), 4230–4235 (2016). https://doi.org/10.1021/acs.nanolett.6b01197
- M. Kan, S. Adhikari, Q. Sun, Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16(10), 4990–4994 (2014). https://doi.org/10.1039/c3cp55146f
- Y.P. Liu, W.S. Lew, S. Goolaup, H.F. Liew, S.K. Wong, T.J. Zhou, Observation of oscillatory resistance behavior in coupled Bernal and rhombohedral stacking graphene. ACS Nano 5(7), 5490–5498 (2011). https://doi.org/10.1021/nn200771e
- S. Roche, J. Åkerman, B. Beschoten, J.C. Charlier, M. Chshiev et al., Graphene spintronics: the European Flagship perspective. 2D Mater. 2(3), 030202 (2015). https://doi.org/10.1088/2053-1583/2/3/030202
- M.W. Si, P.Y. Liao, G. Qiu, Y.Q. Duan, P.D.D. Ye, Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12(7), 6700–6705 (2018). https://doi.org/10.1021/acsnano.8b01810
- Y.P. Liu, K. Tom, X.W. Zhang, S. Lou, Y. Liu, J. Yao, Alloying effect on bright–dark exciton states in ternary monolayer MoxW1−xSe2. New J. Phys. 19, 073018 (2017). https://doi.org/10.1088/1367-2630/aa6d39
- Y.P. Liu, Q.L. Xia, J. He, Z.W. Liu, Direct observation of high photoresponsivity in pure graphene photodetectors. Nanoscale Res. Lett. 12, 93 (2017). https://doi.org/10.1186/s11671-017-1827-0
- Y.P. Liu, K. Tom, X. Wang, C.M. Huang, H.T. Yuan et al., Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett. 16(1), 488–496 (2016). https://doi.org/10.1021/acs.nanolett.5b04140
- X.C. Yu, Z.G. Dong, Y.P. Liu, T. Liu, J. Tao et al., A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8(1), 327–332 (2016). https://doi.org/10.1039/C5NR06869J
- W.G. Luo, Y.F. Cao, P.G. Hu, K.M. Cai, Q. Feng et al., Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 3(10), 1418–1423 (2015). https://doi.org/10.1002/adom.201500190
- Q. Lv, F. Yan, X. Wei, K. Wang, High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 6(2), 1700490 (2018). https://doi.org/10.1002/adom.201700490
- M. Massicotte, P. Schmidt, F. Vialla, K.G. Schadler, A. Reserbat-Plantey et al., Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11(1), 42–46 (2016)
- X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu et al., Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 9(2), 507–516 (2016). https://doi.org/10.1007/s12274-015-0932-6
- X. Wei, F.G. Yan, Q.S. Lv, C. Shen, K.Y. Wang, Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9(24), 8388–8392 (2017). https://doi.org/10.1039/C7NR03124F
- F.G. Yan, L.X. Zhao, A.L. Patane, P.A. Hu, X. Wei et al., Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 28, 27 (2017). https://doi.org/10.1088/1361-6528/aa749e
- K. Zhang, X. Fang, Y.L. Wang, Y. Wan, Q.J. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene–MoTe2–graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
- X. Wei, F.G. Yan, C. Shen, Q.S. Lv, K.Y. Wang, Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chin. Phys. B. 26(3), 038504 (2017). https://doi.org/10.1088/1674-1056/26/3/038504
- C.H. Lee, G.H. Lee, A.M. van der Zande, W.C. Chen, Y.L. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150
- W.H. Wu, Q. Zhang, X. Zhou, L. Li, J.W. Su, F.K. Wang, T.Y. Zhai, Self-powered photovoltaic photodetector established on lateral monolayer MoS2–WS2 heterostructures. Nano Energy 51, 45–53 (2018). https://doi.org/10.1016/j.nanoen.2018.06.049
- C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2–graphene curved image sensor array. Nat. Commun. 8, 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
- F. Wang, Z.X. Wang, K. Xu, F.M. Wang, Q.S. Wang, Y. Huang, L. Yin, J. He, Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15(11), 7558–7566 (2015). https://doi.org/10.1021/acs.nanolett.5b03291
- M.S. Long, E.F. Liu, P. Wang, A.Y. Gao, H. Xia et al., Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16(4), 2254–2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
- K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8(11), 826–830 (2013). https://doi.org/10.1038/Nnano.2013.206
- S.J. Zheng, E.X. Wu, Z.H. Feng, R. Zhang, Y. Xie et al., Acoustically enhanced photodetection by a black phosphorus-MoS2 van der Waals heterojunction p–n diode. Nanoscale 10(21), 10148–10153 (2018). https://doi.org/10.1039/c8nr02022a
- Q.M. Wang, Z.Y. Yang, Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity. Carbon 138, 90–97 (2018). https://doi.org/10.1016/j.carbon.2018.05.054
- Y.J. Liu, C. Liu, X.M. Wang, L. He, X.G. Wan et al., Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2. Sci. Rep. 8, 12840 (2018). https://doi.org/10.1038/s41598-018-29717-8
- D. Xiang, T. Liu, J.L. Xu, J.Y. Tan, Z.H. Hu et al., Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018). https://doi.org/10.1038/s41467-018-05397-w
- D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis, Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560(7718), 340–344 (2018). https://doi.org/10.1038/s41586-018-0357-y
- B. Dlubak, M.-B. Martin, R.S. Weatherup, H. Yang, C. Deranlot et al., Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6(12), 10930–10934 (2012). https://doi.org/10.1021/nn304424x
- M.Z. Iqbal, M.W. Iqbal, S. Siddique, M.F. Khan, S.M. Ramay, Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci. Rep. 6, 21038 (2016). https://doi.org/10.1038/srep21038
- Z. Wang, D. Sapkota, T. Taniguchi, K. Watanabe, D. Mandrus, A.F. Morpurgo, Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18(7), 4303–4308 (2018). https://doi.org/10.1021/acs.nanolett.8b01278
- H. Zhang, M. Ye, Y. Wang, R. Quhe, Y. Pan et al., Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions. Phys. Chem. Chem. Phys. 18(24), 16367–16376 (2016). https://doi.org/10.1039/C6CP01866A
- V.M. Karpan, G. Giovannetti, P.A. Khomyakov, M. Talanana, A.A. Starikov et al., Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99(17), 176602 (2007). https://doi.org/10.1103/PhysRevLett.99.176602
- M.Z. Iqbal, S. Siddique, G. Hussain, M.W. Iqbal, Room temperature spin valve effect in the NiFe/Gr–hBN/Co magnetic tunnel junction. J. Mater. Chem. C 4(37), 8711–8715 (2016). https://doi.org/10.1039/C6TC03425J
- D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108(19), 196802 (2012). https://doi.org/10.1103/PhysRevLett.108.196802
- J. Lee, K.F. Mak, J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11(5), 421–425 (2016). https://doi.org/10.1038/nnano.2015.337
- K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS2 transistors. Science 344(6191), 1489–1492 (2014). https://doi.org/10.1126/science.1250140
- A.V. Stier, K.M. McCreary, B.T. Jonker, J. Kono, S.A. Crooker, Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2016). https://doi.org/10.1038/ncomms10643
- L. Cai, J.F. He, Q.H. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 Nanosheets. J. Am. Chem. Soc. 137(7), 2622–2627 (2015). https://doi.org/10.1021/ja5120908
- C. Zhao, T. Norden, P.Y. Zhang, P.Q. Zhao, Y.C. Cheng et al., Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 12(8), 757–762 (2017). https://doi.org/10.1038/Nnano.2017.68
- Y.K. Luo, J.S. Xu, T.C. Zhu, G.Z. Wu, E.J. McCormick et al., Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17(6), 3877–3883 (2017). https://doi.org/10.1021/acs.nanolett.7b01393
- Y.P. Liu, H. Idzuchi, Y. Fukuma, O. Rousseau, Y. Otani, W.S. Lew, Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 102(3), 033105 (2013). https://doi.org/10.1063/1.4776699
- M.V. Kamalakar, C. Groenveld, A. Dankert, S.P. Dash, Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015). https://doi.org/10.1038/ncomms7766
- F.G. Yan, Z.M. Wei, X. Wei, Q.S. Lv, W.K. Zhu, K.Y. Wang, Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods 2(5), 1700394 (2018). https://doi.org/10.1002/smtd.201700349
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012). https://doi.org/10.1002/adma.201103241
L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz et al., Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76(20), 201401 (2007). https://doi.org/10.1103/PhysRevB.76.201401
V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
L. Xie, M.Z. Liao, S.P. Wang, H. Yu, L.J. Du et al., Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29(37), 1702522 (2017). https://doi.org/10.1002/adma.201702522
Y.P. Liu, W.S. Lew, S. Goolaup, Z.X. Shen, L. Sun, T.J. Zhou, S.K. Wong, Observation of the semiconductor-metal transition behavior in monolayer graphene. Carbon 50(6), 2273–2279 (2012). https://doi.org/10.1016/j.carbon.2012.01.046
A. Allain, J.H. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14(12), 1195–1205 (2015). https://doi.org/10.1038/nmat4452
P.R.Y. Gangavarapu, P.C. Lokesh, K.N. Bhat, A.K. Naik, Towards barrier free contacts to n-type CNTFETS using graphene electrodes, in 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC 2016). https://doi.org/10.1109/nmdc.2016.7777064
J. Du, C.X. Xia, W.Q. Xiong, X. Zhao, T.X. Wang, Y. Jia, Tuning the electronic structures and magnetism of two-dimensional porous C2N via transition metal embedding. Phys. Chem. Chem. Phys. 18(32), 22678–22686 (2016). https://doi.org/10.1039/C6CP03210A
Y.P. Liu, S. Goolaup, W.S. Lew, I. Purnama, M.C. Sekhar, T.J. Zhou, S.K. Wong, Excitonic bandgap dependence on stacking configuration in four layer graphene. Appl. Phys. Lett. 103(16), 163108 (2013). https://doi.org/10.1063/1.4825263
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
W.J. Jie, Z.B. Yang, G.X. Bai, J.H. Hao, Luminescence in 2D materials and van der waals heterostructures. Adv. Opt. Mater. 6(10), 1701296 (2018). https://doi.org/10.1002/adom.201701296
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
O.L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, A. Kis, Valley polarization by spin injection in a light-emitting van der waals heterojunction. Nano Lett. 16(9), 5792–5797 (2016). https://doi.org/10.1021/acs.nanolett.6b02527
C.L. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137(38), 12162–12174 (2015). https://doi.org/10.1021/jacs.5b03590
H.Y. Yu, Y. Wang, Q.J. Tong, X.D. Xu, W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115(18), 187002 (2015). https://doi.org/10.1103/PhysRevLett.115.187002
F. Haque, T. Daeneke, K. Kalantar-zadeh, J. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett. 10, 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
X. Zhou, X.Z. Hu, J. Yu, S.Y. Liu, Z.W. Shu et al., 2D layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 28(14), 1706587 (2018). https://doi.org/10.1002/adfm.201706587
J.A. Leon, N.C. Mamani, A. Rahim, L.E. Gomez, M.A.P. Silva, G.M. Gusev, Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices. Graphene 25–35, 48096 (2014). https://doi.org/10.4236/graphene.2014.33005
A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. van der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1(1), 011002 (2014)
P. Pedrinazzi, J.M. Caridad, D.M.A. Mackenzie, F. Pizzocchero, L. Gammelgaard et al., High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Appl. Phys. Lett. 112(3), 033101 (2018). https://doi.org/10.1063/1.5009168
P.J. Zomer, S.P. Dash, N. Tombros, B.J. van Wees, A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99(23), 232104 (2011). https://doi.org/10.1063/1.3665405
J.I.J. Wang, Y.F. Yang, Y.A. Chen, K. Watanabe, T. Taniguchi, H.O.H. Churchill, P. Jarillo-Herrero, Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. 15(3), 1898–1903 (2015). https://doi.org/10.1021/nl504750f
R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/Nmat4091
X.F. Li, M.W. Lin, J.H. Lin, B. Huang, A.A. Puretzky et al., Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2(4), 1501882 (2016). https://doi.org/10.1126/sciadv.1501882
L. Fu, Y.Y. Sun, N. Wu, R.G. Mendes, L.F. Chen et al., Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10(2), 2063–2070 (2016). https://doi.org/10.1021/acsnano.5b06254
B.Y. Zheng, C. Ma, D. Li, J.Y. Lan, Z. Zhang et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140(36), 11193–11197 (2018). https://doi.org/10.1021/jacs.8b07401
P.K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H.R. Gutierrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553(7686), 63–67 (2018). https://doi.org/10.1038/nature25155
Z.W. Zhang, P. Chen, X.D. Duan, K.T. Zang, J. Luo, X.F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
C. Gong, H.J. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 107(13), 053513 (2015). https://doi.org/10.1063/1.4932088
F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015). https://doi.org/10.1038/nmat4205
W.G. Xu, W.W. Liu, J.F. Schmidt, W.J. Zhao, X. Lu et al., Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541(7635), 62–67 (2017). https://doi.org/10.1038/nature20601
Y. Hattori, T. Taniguchi, K. Watanabe, K. Nagashio, Determination of carrier polarity in Fowler–Nordheim tunneling and evidence of fermi level pinning at the hexagonal boron nitride/metal interface. ACS Appl. Mater. Interfaces 10(14), 11732–11738 (2018). https://doi.org/10.1021/acsami.7b18454
P. Bampoulis, R. van Bremen, Q.R. Yao, B. Poelsema, H.J.W. Zandvliet, K. Sotthewes, Defect dominated charge transport and fermi level pinning in MoS2/metal contacts. ACS Appl. Mater. Interfaces 9(22), 19278–19286 (2017). https://doi.org/10.1021/acsami.7b02739
T. Le Quang, V. Cherkez, K. Nogajewski, M. Potemski, M.T. Dau, M. Jamet, P. Mallet, J.Y. Veuillen, Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning. 2D Mater. 4(3), 035019 (2017). https://doi.org/10.1088/2053-1583/aa7b03
C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10(6), 451–456 (2014). https://doi.org/10.1038/Nphys2954
B. Li, L. Huang, M.Z. Zhong, Y. Li, Y. Wang, J.B. Li, Z.M. Wei, Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2(11), 1600298 (2016). https://doi.org/10.1002/aelm.201600298
K.H. Liu, L.M. Zhang, T. Cao, C.H. Jin, D.A. Qiu et al., Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). https://doi.org/10.1038/ncomms5966
H.J. Tan, W.S. Xu, Y.W. Sheng, C.S. Lau, Y. Fan et al., Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater. 29(46), 1702917 (2017). https://doi.org/10.1002/adma.201702917
F. Gong, W.J. Luo, J.L. Wang, P. Wang, H.H. Fang et al., High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 26(33), 6084–6090 (2016). https://doi.org/10.1002/adfm.201601346
A. Dankert, S.P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017). https://doi.org/10.1038/ncomms16093
J.L. Wang, H.H. Fang, X.D. Wang, X.S. Chen, W. Lu, W.D. Hu, Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13(35), 1700894 (2017). https://doi.org/10.1002/smll.201700894
M.Z. Bellus, F. Ceballos, H.Y. Chiu, H. Zhao, Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9(6), 6459–6464 (2015). https://doi.org/10.1021/acsnano.5b02144
L.B. Drissi, F.Z. Ramadan, N.B.J. Kanga, Optoelectronic properties in 2D GeC and SiC hybrids: DFT and many body effect calculations. Mater. Res. Express 5(1), 015061 (2018). https://doi.org/10.1088/2053-1591/aaa862
X.P. Hong, J. Kim, S.F. Shi, Y. Zhang, C.H. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). https://doi.org/10.1038/Nnano.2014.167
H.H. Hung, J.S. Wu, K. Sun, C.K. Chiu, Engineering of many-body Majorana states in a topological insulator/s-wave superconductor heterostructure. Sci. Rep. 7, 3499 (2017). https://doi.org/10.1038/s41598-017-02493-7
P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S.F. Wu et al., Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). https://doi.org/10.1038/ncomms7242
M. Li, D. Esseni, G. Snider, D. Jena, H.G. Xing, Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115(7), 074508 (2014). https://doi.org/10.1063/1.4866076
X. Yan, C.S. Liu, C. Li, W.Z. Bao, S.J. Ding, D.W. Zhang, P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13(34), 1701478 (2017). https://doi.org/10.1002/smll.201701478
T. Yamaoka, H.E. Lim, S. Koirala, X.F. Wang, K. Shinokita et al., Efficient photocarrier transfer and effective photoluminescence enhancement in type i monolayer MoTe2/WSe2 heterostructure. Adv. Funct. Mater. 28(35), 1801021 (2018). https://doi.org/10.1002/adfm.201801021
Z. Cai, M. Cao, Z.P. Jin, K.Y. Yi, X.S. Chen, D.C. Wei, Large photoelectric-gating effect of two-dimensional van-der-Waals organic/tungsten diselenide heterointerface. NPJ 2D Mater. Appl. 2, 21 (2018). https://doi.org/10.1088/2053-1591/aaa862
S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). https://doi.org/10.1021/nn3059136
M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S.H. Lee, P. Kim, J. Hone, W.J. Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
Y. Zhang, Y.B. Yuan, J.S. Huang, Detecting 100 fW cm−2 light with trapped electron gated organic phototransistors. Adv. Mater. 29(5), 1603969 (2017). https://doi.org/10.1002/adma.201603969
J.L. Wang, X.M. Zou, X.H. Xiao, L. Xu, C.L. Wang et al., Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 11(2), 208–213 (2015). https://doi.org/10.1002/smll.201401872
Y.P. Liu, W.S. Lew, Z.W. Liu, Observation of anomalous resistance behavior in bilayer graphene. Nanoscale Res. Lett. 12, 48 (2017). https://doi.org/10.1186/s11671-016-1792-z
Y.P. Liu, Z.W. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8, 335 (2013). https://doi.org/10.1186/1556-276X-8-335
Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
H.L. Chen, X.W. Wen, J. Zhang, T.M. Wu, Y.J. Gong et al., Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016). https://doi.org/10.1038/ncomms12512
X.W. Wen, H.L. Chen, T.M. Wu, Z.H. Yu et al., Ultrafast probes of electron-hole transitions between two atomic layers. Nat. Commun. 9, 1859 (2018). https://doi.org/10.1038/s41467-018-04291-9
A.T. Hanbicki, H.J. Chuang, M.R. Rosenberger, C.S. Hellberg, S.V. Sivaram, K.M. McCreary, I.I. Mazin, B.T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der waals heterostructure. ACS Nano 12(5), 4719–4726 (2018). https://doi.org/10.1021/acsnano.8b01369
S. Latini, K.T. Winther, T. Olsen, K.S. Thygesen, Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der waals heterostructures. Nano Lett. 17(2), 938–945 (2017). https://doi.org/10.1021/acs.nanolett.6b04275
J.S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H.Y. Yu et al., Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17(2), 638–643 (2017). https://doi.org/10.1021/acs.nanolett.6b03398
P. Rivera, K.L. Seyler, H.Y. Yu, J.R. Schaibley, J.Q. Yan et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351(6274), 688–691 (2016). https://doi.org/10.1126/science.aac7820
T. Deilmann, K.S. Thygesen, Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 18(2), 1460–1465 (2018). https://doi.org/10.1021/acs.nanolett.7b05224
Y.P. Liu, W.S. Lew, L. Sun, Enhanced weak localization effect in few-layer graphene. Phys. Chem. Chem. Phys. 13(45), 20208–20214 (2011). https://doi.org/10.1039/c1cp22250c
L.Y. Ping, G. Sarjoosing, M. Chandrasekhar, L.W. Siang, W.S.J.A.N. Kai, Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 4(12), 7087–7092 (2010). https://doi.org/10.1021/nn101296x
J.S. Qi, X. Li, Q. Niu, J. Feng, Giant and tunable valley degeneracy splitting in MoTe2. Phys. Rev. B 92(12), 121403 (2015). https://doi.org/10.1103/PhysRevB.92.121403
B.Z. Zhou, S.W. Ji, Z. Tian, W.J. Cheng, X.C. Wang, W.B. Mi, Proximity effect induced spin filtering and gap opening in graphene by half-metallic monolayer Cr2C ferromagnet. Carbon 132, 25–31 (2018). https://doi.org/10.1016/j.carbon.2018.02.044
P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia et al., Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15(7), 711–716 (2016). https://doi.org/10.1038/Nmat4603
H.X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, M. Chshiev, Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110(4), 046603 (2013). https://doi.org/10.1103/PhysRevLett.110.046603
K.L. Seyler, D. Zhong, B. Huang, X.Y. Linpeng, N.P. Wilson et al., Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 18(6), 3823–3828 (2018). https://doi.org/10.1021/acs.nanolett.8b01105
B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017). https://doi.org/10.1038/nature22391
J.U. Lee, S. Lee, J.H. Ryoo, S. Kang, T.Y. Kim et al., Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16(12), 7433–7438 (2016). https://doi.org/10.1021/acs.nanolett.6b03052
J. Du, C.X. Xia, W.Q. Xiong, T.X. Wang, Y. Jia, J.B. Li, Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale 9(44), 17585–17592 (2017). https://doi.org/10.1039/c7nr06473j
Y.P. Liu, I. Yudhistira, M. Yang, E. Laksono, Y.Z. Luo et al., Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures. Nano Lett. 18(6), 3377–3383 (2018). https://doi.org/10.1021/acs.nanolett.8b00155
M. Bonilla, S. Kolekar, Y.J. Ma, H.C. Diaz, V. Kalappattil et al., Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13(4), 289–293 (2018). https://doi.org/10.1038/s41565-018-0063-9
Z.Y. Fei, B. Huang, P. Malinowski, W.B. Wang, T.C. Song et al., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17(9), 778–782 (2018). https://doi.org/10.1038/s41563-018-0149-7
Y. Deng, Y. Yu, Y. Song, J. Zhang, N.Z. Wang et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018). https://doi.org/10.1038/s41586-018-0626-9
C. Si, J. Zhou, Z.M. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
M. Kan, J. Zhou, Q. Sun, Y. Kawazoe, P. Jena, The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 4(20), 3382–3386 (2013). https://doi.org/10.1021/jz4017848
Y. Zhang, J.M. Pang, M.G. Zhang, X. Gu, L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism. Sci. Rep. 7, 7 (2017). https://doi.org/10.1038/s41598-017-00035-9
M. Ormaza, L. Fernandez, M. Ilyn, A. Magana, B. Xu et al., High temperature ferromagnetism in a GdAg2 monolayer. Nano Lett. 16(7), 4230–4235 (2016). https://doi.org/10.1021/acs.nanolett.6b01197
M. Kan, S. Adhikari, Q. Sun, Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16(10), 4990–4994 (2014). https://doi.org/10.1039/c3cp55146f
Y.P. Liu, W.S. Lew, S. Goolaup, H.F. Liew, S.K. Wong, T.J. Zhou, Observation of oscillatory resistance behavior in coupled Bernal and rhombohedral stacking graphene. ACS Nano 5(7), 5490–5498 (2011). https://doi.org/10.1021/nn200771e
S. Roche, J. Åkerman, B. Beschoten, J.C. Charlier, M. Chshiev et al., Graphene spintronics: the European Flagship perspective. 2D Mater. 2(3), 030202 (2015). https://doi.org/10.1088/2053-1583/2/3/030202
M.W. Si, P.Y. Liao, G. Qiu, Y.Q. Duan, P.D.D. Ye, Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12(7), 6700–6705 (2018). https://doi.org/10.1021/acsnano.8b01810
Y.P. Liu, K. Tom, X.W. Zhang, S. Lou, Y. Liu, J. Yao, Alloying effect on bright–dark exciton states in ternary monolayer MoxW1−xSe2. New J. Phys. 19, 073018 (2017). https://doi.org/10.1088/1367-2630/aa6d39
Y.P. Liu, Q.L. Xia, J. He, Z.W. Liu, Direct observation of high photoresponsivity in pure graphene photodetectors. Nanoscale Res. Lett. 12, 93 (2017). https://doi.org/10.1186/s11671-017-1827-0
Y.P. Liu, K. Tom, X. Wang, C.M. Huang, H.T. Yuan et al., Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett. 16(1), 488–496 (2016). https://doi.org/10.1021/acs.nanolett.5b04140
X.C. Yu, Z.G. Dong, Y.P. Liu, T. Liu, J. Tao et al., A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8(1), 327–332 (2016). https://doi.org/10.1039/C5NR06869J
W.G. Luo, Y.F. Cao, P.G. Hu, K.M. Cai, Q. Feng et al., Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 3(10), 1418–1423 (2015). https://doi.org/10.1002/adom.201500190
Q. Lv, F. Yan, X. Wei, K. Wang, High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 6(2), 1700490 (2018). https://doi.org/10.1002/adom.201700490
M. Massicotte, P. Schmidt, F. Vialla, K.G. Schadler, A. Reserbat-Plantey et al., Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11(1), 42–46 (2016)
X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu et al., Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 9(2), 507–516 (2016). https://doi.org/10.1007/s12274-015-0932-6
X. Wei, F.G. Yan, Q.S. Lv, C. Shen, K.Y. Wang, Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9(24), 8388–8392 (2017). https://doi.org/10.1039/C7NR03124F
F.G. Yan, L.X. Zhao, A.L. Patane, P.A. Hu, X. Wei et al., Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 28, 27 (2017). https://doi.org/10.1088/1361-6528/aa749e
K. Zhang, X. Fang, Y.L. Wang, Y. Wan, Q.J. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene–MoTe2–graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
X. Wei, F.G. Yan, C. Shen, Q.S. Lv, K.Y. Wang, Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chin. Phys. B. 26(3), 038504 (2017). https://doi.org/10.1088/1674-1056/26/3/038504
C.H. Lee, G.H. Lee, A.M. van der Zande, W.C. Chen, Y.L. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150
W.H. Wu, Q. Zhang, X. Zhou, L. Li, J.W. Su, F.K. Wang, T.Y. Zhai, Self-powered photovoltaic photodetector established on lateral monolayer MoS2–WS2 heterostructures. Nano Energy 51, 45–53 (2018). https://doi.org/10.1016/j.nanoen.2018.06.049
C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2–graphene curved image sensor array. Nat. Commun. 8, 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
F. Wang, Z.X. Wang, K. Xu, F.M. Wang, Q.S. Wang, Y. Huang, L. Yin, J. He, Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15(11), 7558–7566 (2015). https://doi.org/10.1021/acs.nanolett.5b03291
M.S. Long, E.F. Liu, P. Wang, A.Y. Gao, H. Xia et al., Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16(4), 2254–2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8(11), 826–830 (2013). https://doi.org/10.1038/Nnano.2013.206
S.J. Zheng, E.X. Wu, Z.H. Feng, R. Zhang, Y. Xie et al., Acoustically enhanced photodetection by a black phosphorus-MoS2 van der Waals heterojunction p–n diode. Nanoscale 10(21), 10148–10153 (2018). https://doi.org/10.1039/c8nr02022a
Q.M. Wang, Z.Y. Yang, Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity. Carbon 138, 90–97 (2018). https://doi.org/10.1016/j.carbon.2018.05.054
Y.J. Liu, C. Liu, X.M. Wang, L. He, X.G. Wan et al., Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2. Sci. Rep. 8, 12840 (2018). https://doi.org/10.1038/s41598-018-29717-8
D. Xiang, T. Liu, J.L. Xu, J.Y. Tan, Z.H. Hu et al., Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018). https://doi.org/10.1038/s41467-018-05397-w
D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis, Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560(7718), 340–344 (2018). https://doi.org/10.1038/s41586-018-0357-y
B. Dlubak, M.-B. Martin, R.S. Weatherup, H. Yang, C. Deranlot et al., Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6(12), 10930–10934 (2012). https://doi.org/10.1021/nn304424x
M.Z. Iqbal, M.W. Iqbal, S. Siddique, M.F. Khan, S.M. Ramay, Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci. Rep. 6, 21038 (2016). https://doi.org/10.1038/srep21038
Z. Wang, D. Sapkota, T. Taniguchi, K. Watanabe, D. Mandrus, A.F. Morpurgo, Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18(7), 4303–4308 (2018). https://doi.org/10.1021/acs.nanolett.8b01278
H. Zhang, M. Ye, Y. Wang, R. Quhe, Y. Pan et al., Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions. Phys. Chem. Chem. Phys. 18(24), 16367–16376 (2016). https://doi.org/10.1039/C6CP01866A
V.M. Karpan, G. Giovannetti, P.A. Khomyakov, M. Talanana, A.A. Starikov et al., Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99(17), 176602 (2007). https://doi.org/10.1103/PhysRevLett.99.176602
M.Z. Iqbal, S. Siddique, G. Hussain, M.W. Iqbal, Room temperature spin valve effect in the NiFe/Gr–hBN/Co magnetic tunnel junction. J. Mater. Chem. C 4(37), 8711–8715 (2016). https://doi.org/10.1039/C6TC03425J
D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108(19), 196802 (2012). https://doi.org/10.1103/PhysRevLett.108.196802
J. Lee, K.F. Mak, J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11(5), 421–425 (2016). https://doi.org/10.1038/nnano.2015.337
K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS2 transistors. Science 344(6191), 1489–1492 (2014). https://doi.org/10.1126/science.1250140
A.V. Stier, K.M. McCreary, B.T. Jonker, J. Kono, S.A. Crooker, Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2016). https://doi.org/10.1038/ncomms10643
L. Cai, J.F. He, Q.H. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 Nanosheets. J. Am. Chem. Soc. 137(7), 2622–2627 (2015). https://doi.org/10.1021/ja5120908
C. Zhao, T. Norden, P.Y. Zhang, P.Q. Zhao, Y.C. Cheng et al., Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 12(8), 757–762 (2017). https://doi.org/10.1038/Nnano.2017.68
Y.K. Luo, J.S. Xu, T.C. Zhu, G.Z. Wu, E.J. McCormick et al., Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17(6), 3877–3883 (2017). https://doi.org/10.1021/acs.nanolett.7b01393
Y.P. Liu, H. Idzuchi, Y. Fukuma, O. Rousseau, Y. Otani, W.S. Lew, Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 102(3), 033105 (2013). https://doi.org/10.1063/1.4776699
M.V. Kamalakar, C. Groenveld, A. Dankert, S.P. Dash, Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015). https://doi.org/10.1038/ncomms7766
F.G. Yan, Z.M. Wei, X. Wei, Q.S. Lv, W.K. Zhu, K.Y. Wang, Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods 2(5), 1700394 (2018). https://doi.org/10.1002/smtd.201700349