Spintronics in Two-Dimensional Materials
Corresponding Author: Zongwen Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 93
Abstract
Spintronics, exploiting the spin degree of electrons as the information vector, is an attractive field for implementing the beyond Complemetary metal-oxide-semiconductor (CMOS) devices. Recently, two-dimensional (2D) materials have been drawing tremendous attention in spintronics owing to their distinctive spin-dependent properties, such as the ultra-long spin relaxation time of graphene and the spin–valley locking of transition metal dichalcogenides. Moreover, the related heterostructures provide an unprecedented probability of combining the different characteristics via proximity effect, which could remedy the limitation of individual 2D materials. Hence, the proximity engineering has been growing extremely fast and has made significant achievements in the spin injection and manipulation. Nevertheless, there are still challenges toward practical application; for example, the mechanism of spin relaxation in 2D materials is unclear, and the high-efficiency spin gating is not yet achieved. In this review, we focus on 2D materials and related heterostructures to systematically summarize the progress of the spin injection, transport, manipulation, and application for information storage and processing. We also highlight the current challenges and future perspectives on the studies of spintronic devices based on 2D materials.
Highlights:
1 The recent progress of spin injection, spin transport, spin manipulation, and application in 2D materials was summarized.
2 The current challenges and outlook of future studies in spintronics based on 2D materials and related heterostructures were discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/Nnano.2012.193
- G.G. Guzman-Verri, L.C.L.Y. Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007). https://doi.org/10.1103/PhysRevB.76.075131
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2d materials and van der waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
- J.H. Garcia, M. Vila, A.W. Cummings, S. Roche, Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47(9), 3359–3379 (2018). https://doi.org/10.1039/c7cs00864c
- Z. Wang, D.K. Ki, H. Chen, H. Berger, A.H. MacDonald, A.F. Morpurgo, Strong interface-induced spin–orbit interaction in graphene on WS2. Nat Commun. 6, 8339 (2015). https://doi.org/10.1038/ncomms9339
- J.H. Garcia, A.W. Cummings, S. Roche, Spin hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano Lett. 17(8), 5078–5083 (2017). https://doi.org/10.1021/acs.nanolett.7b02364
- W. Han, Perspectives for spintronics in 2d materials. Appl. Mater. 4(3), 032401 (2016). https://doi.org/10.1063/1.4941712
- Y.P. Feng, L. Shen, M. Yang, A.Z. Wang, M.G. Zeng, Q.Y. Wu, S. Chintalapati, C.R. Chang, Prospects of spintronics based on 2d materials. Wires Comput. Mol. Sci. 7(5), e1313 (2017). https://doi.org/10.1002/wcms.1313
- M.Z. Iqbal, N.A. Qureshi, G. Hussain, Recent advancements in 2d-materials interface based magnetic junctions for spintronics. J. Magn. Magn. Mater. 457, 110–125 (2018). https://doi.org/10.1016/j.jmmm.2018.02.084
- C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- C. Gong, X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363(6428), eaav4450 (2019). https://doi.org/10.1126/science.aav4450
- W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014). https://doi.org/10.1038/nnano.2014.214
- O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 75(12), 125408 (2007). https://doi.org/10.1103/PhysRevB.75.125408
- K.M. McCreary, A.G. Swartz, W. Han, J. Fabian, R.K. Kawakami, Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys. Rev. Lett. 109(18), 186604 (2012). https://doi.org/10.1103/PhysRevLett.109.186604
- A.J.M. Giesbers, K. Uhlirova, M. Konecny, E.C. Peters, M. Burghard, J. Aarts, C.F.J. Flipse, Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene. Phys. Rev. Lett. 111(16), 166101 (2013). https://doi.org/10.1103/PhysRevLett.111.166101
- D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77(3), 035427 (2008). https://doi.org/10.1103/PhysRevB.77.035427
- R.R. Nair, M. Sepioni, I.L. Tsai, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, T. Thomson, A.K. Geim, I.V. Grigorieva, Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 8(3), 199–202 (2012). https://doi.org/10.1038/Nphys2183
- J. Cervenka, M.I. Katsnelson, C.F.J. Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 5(11), 840–844 (2009). https://doi.org/10.1038/Nphys1399
- O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100(4), 047209 (2008). https://doi.org/10.1103/PhysRevLett.100.047209
- J. Jung, T. Pereg-Barnea, A.H. MacDonald, Theory of interedge superexchange in zigzag edge magnetism. Phys. Rev. Lett. 102(22), 227205 (2009). https://doi.org/10.1103/PhysRevLett.102.227205
- Y.W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006). https://doi.org/10.1038/nature05180
- D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake et al., Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323(5914), 610–613 (2009). https://doi.org/10.1126/science.1167130
- M. Pumera, C.H.A. Wong, Graphane and hydrogenated graphene. Chem. Soc. Rev. 42(14), 5987–5995 (2013). https://doi.org/10.1039/C3CS60132C
- P. Lazar, F. Karlicky, Jurečka P, Kocman MS, Otyepková E, Šafářová KR, Otyepka M, Adsorption of small organic molecules on grapheme. J. Am. Chem. Soc. 135(16), 6372–6377 (2013). https://doi.org/10.1021/ja403162r
- P. Rubio-Pereda, N. Takeuchi, Van der waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J. Mol. Model. 22(8), 175 (2016). https://doi.org/10.1007/s00894-016-3048-3
- W.F. Li, M.W. Zhao, T. He, C. Song, X.H. Lin, X.D. Liu, Y.Y. Xia, L.M. Mei, Concentration dependent magnetism induced by hydrogen adsorption on graphene and single walled carbon nanotubes. J. Magn. Magn. Mater. 322(7), 838–843 (2010). https://doi.org/10.1016/j.jmmm.2009.11.014
- W.F. Li, M.W. Zhao, Y.Y. Xia, R.Q. Zhang, Y.G. Mu, Covalent-adsorption induced magnetism in graphene. J. Mater. Chem. 19(48), 9274–9282 (2009). https://doi.org/10.1039/b908949g
- T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Adsorbates on graphene: Impurity states and electron scattering. Chem. Phys. Lett. 476(4–6), 125–134 (2009). https://doi.org/10.1016/j.cplett.2009.06.005
- S. Casolo, O.M. Lovvik, R. Martinazzo, G.F. Tantardini, Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys. 130(5), 3072333 (2009). https://doi.org/10.1063/1.3072333
- Y.P. Zheng, X.G. Wan, N.J. Tang, Q. Feng, F.C. Liu, Y.W. Du, Magnetic properties of double-side partially fluorinated graphene from first principles calculations. Carbon 89, 300–307 (2015). https://doi.org/10.1016/j.carbon.2015.03.059
- O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101(3), 037203 (2008). https://doi.org/10.1103/PhysRevLett.101.037203
- P. Dev, T.L. Reinecke, Substrate effects: disappearance of adsorbate-induced magnetism in graphene. Phys. Rev. B 89(3), 035404 (2014). https://doi.org/10.1103/PhysRevB.89.035404
- M. Sepioni, R.R. Nair, I.L. Tsai, A.K. Geim, I.V. Grigorieva, Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. EPL-Europhys. Lett. 97(4), 9857006 (2012). https://doi.org/10.1209/0295-5075/97/47001
- M. Sepioni, R.R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A.K. Geim, I.V. Grigorieva, Limits on intrinsic magnetism in graphene. Phys. Rev. Lett. 105(20), 207205 (2010). https://doi.org/10.1103/PhysRevLett.105.207205
- T. Stauber, N.M.R. Peres, F. Guinea, A.H. Castro, Fermi liquid theory of a fermi ring. Phys. Rev. B 75(11), 115425 (2007). https://doi.org/10.1103/PhysRevB.75.115425
- E.V. Castro, N.M.R. Peres, T. Stauber, N.A.P. Silva, Low-density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 100(18), 186803 (2008). https://doi.org/10.1103/PhysRevLett.100.186803
- T. Cao, Z.L. Li, S.G. Louie, Tunable magnetism and half-metallicity in hole-doped monolayer gase. Phys. Rev. Lett. 114(23), 236602 (2015). https://doi.org/10.1103/PhysRevLett.114.236602
- Z.Y. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys. Rev. Lett. 114(1), 016603 (2015). https://doi.org/10.1103/PhysRevLett.114.016603
- P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia et al., Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15(7), 711 (2016). https://doi.org/10.1038/Nmat4603
- L. Xu, M. Yang, L. Shen, J. Zhou, T. Zhu, Y.P. Feng, Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys. Rev. B 97(4), 041405 (2018). https://doi.org/10.1103/PhysRevB.97.041405
- J. Maassen, W. Ji, H. Guo, Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett. 11(1), 151–155 (2011). https://doi.org/10.1021/nl1031919
- W. Han, K. Pi, K.M. McCreary, Y. Li, J.J.I. Wong, A.G. Swartz, R.K. Kawakami, Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105(16), 167202 (2010). https://doi.org/10.1103/PhysRevLett.105.167202
- W. Han, K.M. McCreary, K. Pi, W.H. Wang, Y. Li, H. Wen, J.R. Chen, R.K. Kawakami, Spin transport and relaxation in graphene. J. Magn. Magn. Mater. 324(4), 369–381 (2012). https://doi.org/10.1016/j.jmmm.2011.08.001
- G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B.J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62(8), R4790 (2000). https://doi.org/10.1103/PhysRevB.62.R4790
- E.I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62(24), R16267 (2000). https://doi.org/10.1103/PhysRevB.62.R16267
- A. Fert, H. Jaffres, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64(18), 184420 (2001). https://doi.org/10.1103/PhysRevB.64.184420
- M.B. Martin, B. Dlubak, R.S. Weatherup, H. Yang, C. Deranlot et al., Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 8(8), 7890–7895 (2014). https://doi.org/10.1021/nn5017549
- W. Han, K. Pi, W. Bao, K. McCreary, Y. Li, W. Wang, C. Lau, R. Kawakami, Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett. 94(22), 222109 (2009). https://doi.org/10.1063/1.3147203
- N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448(7153), 571–574 (2007). https://doi.org/10.1038/nature06037
- M. Drögeler, F. Volmer, M. Wolter, B. Terrés, K. Watanabe et al., Nanosecond spin lifetimes in single- and few-layer graphene–hBN heterostructures at room temperature. Nano Lett. 14(11), 6050–6055 (2014). https://doi.org/10.1021/nl501278c
- F. Volmer, M. Drogeler, E. Maynicke, N. von den Driesch, M.L. Boschen, G. Guntherodt, B. Beschoten, Role of MgO barriers for spin and charge transport in Co/MgO/graphene nonlocal spin-valve devices. Phys. Rev. B 88(16), 161405 (2013). https://doi.org/10.1103/PhysRevB.88.161405
- M. Popinciuc, C. Jozsa, P.J. Zomer, N. Tombros, A. Veligura, H.T. Jonkman, B.J. van Wees, Electronic spin transport in graphene field-effect transistors. Phys. Rev. B 80(21), 214427 (2009). https://doi.org/10.1103/PhysRevB.80.214427
- C. Jozsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Electronic spin drift in graphene field-effect transistors. Phys. Rev. Lett. 100(23), 236603 (2008). https://doi.org/10.1103/PhysRevLett.100.236603
- B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot et al., Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97(9), 3476339 (2010). https://doi.org/10.1063/1.3476339
- T. Yamaguchi, S. Masubuchi, K. Iguchi, R. Moriya, T. Machida, Tunnel spin injection into graphene using Al2O3 barrier grown by atomic layer deposition on functionalized graphene surface. J. Magn. Magn. Mater. 324(5), 849–852 (2012). https://doi.org/10.1016/j.jmmm.2011.09.031
- C. Jozsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Controlling the efficiency of spin injection into graphene by carrier drift. Phys. Rev. B 79(8), 081402 (2009). https://doi.org/10.1103/PhysRevB.79.081402
- C. Jozsa, T. Maassen, M. Popinciuc, P.J. Zomer, A. Veligura, H.T. Jonkman, B.J. van Wees, Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80(24), 241403 (2009). https://doi.org/10.1103/PhysRevB.80.241403
- W.H. Wang, K. Pi, Y. Li, Y.F. Chiang, P. Wei, J. Shi, R.K. Kawakami, Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77(2), 020402 (2008). https://doi.org/10.1103/PhysRevB.77.020402
- F. Volmer, M. Drogeler, G. Guntherodt, C. Stampfer, B. Beschoten, Spin and charge transport in graphene-based spin transport devices with Co/MgO spin injection and spin detection electrodes. Synth. Metals 210, 42–55 (2015). https://doi.org/10.1016/j.synthmet.2015.07.007
- F. Volmer, M. Drogeler, T. Pohlmann, G. Guntherodt, C. Stampfer, B. Beschoten, Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices. 2D Mater. 2(2), 024001 (2015). https://doi.org/10.1088/2053-1583/2/2/024001
- M. Cubukcu, M.-B. Martin, P. Laczkowski, C. Vergnaud, A. Marty et al., Ferromagnetic tunnel contacts to graphene: contact resistance and spin signal. J. Appl. Phys. 117(8), 083909 (2015). https://doi.org/10.1063/1.4913710
- A. Dankert, M.V. Kamalakar, J. Bergsten, S.P. Dash, Spin transport and precession in graphene measured by nonlocal and three-terminal methods. Appl. Phys. Lett. 104(19), 192403 (2014). https://doi.org/10.1063/1.4876060
- Y.P. Liu, H. Idzuchi, Y. Fukuma, O. Rousseau, Y. Otani, W.S. Lew, Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 102(7), 033105 (2013). https://doi.org/10.1063/1.4792318
- B. Dlubak, M.B. Martin, C. Deranlot, K. Bouzehouane, S. Fusil et al., Homogeneous pinhole free 1 nm Al2O3 tunnel barriers on graphene. Appl. Phys. Lett. 101(20), 203104 (2012). https://doi.org/10.1063/1.4765348
- Q.Y. Wu, L. Shen, Z.Q. Bai, M.G. Zeng, M. Yang, Z.G. Huang, Y.P. Feng, Efficient spin injection into graphene through a tunnel barrier: overcoming the spin-conductance mismatch. Phys. Rev. Appl. 2(4), 044008 (2014). https://doi.org/10.1103/PhysRevApplied.2.044008
- J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande et al., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282 (2011). https://doi.org/10.1038/nmat2968
- G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007). https://doi.org/10.1103/PhysRevB.76.073103
- C. Neumann, S. Reichardt, P. Venezuela, M. Drogeler, L. Banszerus et al., Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 6, 9429 (2015). https://doi.org/10.1038/ncomms9429
- S. Singh, J. Katoch, J.S. Xu, C. Tan, T.C. Zhu, W. Amamou, J. Hone, R. Kawakami, Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 109(12), 122411 (2016). https://doi.org/10.1063/1.4962635
- T. Yamaguchi, Y. Inoue, S. Masubuchi, S. Morikawa, M. Onuki et al., Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Express 6(7), 073001 (2013). https://doi.org/10.7567/Apex.6.073001
- M.V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, S.P. Dash, Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 4, 06146 (2014). https://doi.org/10.1038/srep06146
- M. Gurram, S. Omar, S. Zihlmann, P. Makk, Q.C. Li, Y.F. Zhang, C. Schonenberger, B.J. van Wees, Spin transport in two-layer-CVD-hbn/graphene/hbn heterostructures. Phys. Rev. B 97(4), 045411 (2018). https://doi.org/10.1103/PhysRevB.97.045411
- W. Fu, P. Makk, R. Maurand, M. Bräuninger, C. Schönenberger, Large-scale fabrication of BN tunnel barriers for graphene spintronics. J. Appl. Phys. 116(7), 074306 (2014). https://doi.org/10.1063/1.4893578
- M.V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, S.P. Dash, Spintronics with graphene-hexagonal boron nitride van der waals heterostructures. Appl. Phys. Lett. 105(21), 212405 (2014). https://doi.org/10.1063/1.4902814
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12(3), 1707–1710 (2012). https://doi.org/10.1021/nl3002205
- J.C. Leutenantsmeyer, J. Ingla-Aynes, M. Gurram, B.J. van Wees, Efficient spin injection into graphene through trilayer hbn tunnel barriers. J. Appl. Phys. 124(19), 194301 (2018). https://doi.org/10.1063/1.5050874
- P. Zomer, M. Guimarães, J. Brant, N. Tombros, B. Van Wees, Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105(1), 013101 (2014). https://doi.org/10.1063/1.4886096
- Y.P. Liu, S.Y. Zhang, J. He, Z.M.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2d materials. Nano Micro Lett. 11(1), 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
- M.V. Kamalakar, A. Dankert, P.J. Kelly, S.P. Dash, Inversion of spin signal and spin filtering in ferromagnet vertical bar hexagonal boron nitride-graphene van der waals heterostructures. Sci. Rep. 6, 21168 (2016). https://doi.org/10.1038/srep21168
- M. Gurram, S. Omar, B.J. van Wees, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat. Commun. 8, 248 (2017). https://doi.org/10.1038/s41467-017-00317-w
- A.L. Friedman, O.M.J. van't Erve, C.H. Li, J.T. Robinson, B.T. Jonker, Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 5, 3161 (2014). https://doi.org/10.1038/ncomms4161
- K. Vaklinova, A. Hoyer, M. Burghard, K. Kern, Current-induced spin polarization in topological insulator-graphene heterostructures. Nano Lett. 16(4), 2595–2602 (2016). https://doi.org/10.1021/acs.nanolett.6b00167
- T.C. Song, X.H. Cai, M.W.Y. Tu, X.O. Zhang, B.V. Huang et al., Giant tunneling magnetoresistance in spin-filter van der waals heterostructures. Science 360(6394), 1214 (2018). https://doi.org/10.1126/science.aar4851
- D.R. Klein, D. MacNeill, J.L. Lado, D. Soriano, E. Navarro-Moratalla et al., Probing magnetism in 2d van der waals crystalline insulators via electron tunneling. Science 360(6394), 1218 (2018). https://doi.org/10.1126/science.aar3617
- Z. Wang, I. Gutierrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini et al., Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun. 9, 2516 (2018). https://doi.org/10.1038/s41467-018-04953-8
- H.H. Kim, B.W. Yang, T. Patel, F. Sfigakis, C.H. Li, S.J. Tian, H.C. Lei, A.W. Tsen, One million percent tunnel magnetoresistance in a magnetic van der waals heterostructure. Nano Lett. 18(8), 4885–4890 (2018). https://doi.org/10.1021/acs.nanolett.8b01552
- D. Ghazaryan, M.T. Greenaway, Z. Wang, V.H. Guarochico-Moreira, I.J. Vera-Marun et al., Magnon-assisted tunnelling in van der waals heterostructures based on CrBr3. Nat. Electron. 1(6), 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z
- T. Yamaguchi, R. Moriya, S. Oki, S. Yamada, S. Masubuchi, K. Hamaya, T. Machida, Spin injection into multilayer graphene from highly spin-polarized Co2FeSi heusler alloy. Appl. Phys. Express 9(6), 063006 (2016). https://doi.org/10.7567/Apex.9.063006
- P.P. Aseev, S.N. Artemenko, Spin injection from topological insulator into metal leads. Physica B 460, 222–226 (2015). https://doi.org/10.1016/j.physb.2014.11.076
- Q.L. Sun, N. Kioussis, Prediction of manganese trihalides as two-dimensional dirac half-metals. Phys. Rev. B 97(9), 094408 (2018). https://doi.org/10.1103/PhysRevB.97.094408
- M. Ashton, D. Gluhovic, S.B. Sinnott, J. Guo, D.A. Stewart, R.G. Hennig, Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 17(9), 5251–5257 (2017). https://doi.org/10.1021/acs.nanolett.7b01367
- J.J. He, S. Li, Two-dimensional janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity. Comput. Mater. Sci. 152, 151–157 (2018). https://doi.org/10.1016/j.commatsci.2018.05.049
- S.J. Gong, C. Gong, Y.Y. Sun, W.Y. Tong, C.G. Duan, J.H. Chu, X. Zhang, Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl. Acad. Sci. USA 115(34), 8511–8516 (2018). https://doi.org/10.1073/pnas.1715465115
- M. Bonilla, S. Kolekar, Y.J. Ma, H.C. Diaz, V. Kalappattil et al., Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotechnol. 13(4), 289 (2018). https://doi.org/10.1038/s41565-018-0063-9
- D.J. O'Hara, T.C. Zhu, A.H. Trout, A.S. Ahmed, Y.K. Luo et al., Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18(5), 3125–3131 (2018). https://doi.org/10.1021/acs.nanolett.8b00683
- Y.J. Deng, Y.J. Yu, Y.C. Song, J.Z. Zhang, N.Z. Wang et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563(7729), 94 (2018). https://doi.org/10.1038/s41586-018-0626-9
- M. Inglot, V.K. Dugaev, E.Y. Sherman, J. Barnas, Optical spin injection in graphene with rashba spin–orbit interaction. Phys. Rev. B 89(15), 155411 (2014). https://doi.org/10.1103/PhysRevB.89.155411
- J. Rioux, G. Burkard, Photoinduced pure spin-current injection in graphene with rashba spin–orbit interaction. Phys. Rev. B 90(3), 035210 (2014). https://doi.org/10.1103/PhysRevB.90.035210
- Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, Z. Liu, Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 1–17 (2019). https://doi.org/10.1007/s12274-019-2497-2
- Y.K. Luo, J.S. Xu, T.C. Zhu, G.Z. Wu, E.J. McCormick et al., Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17(6), 3877–3883 (2017). https://doi.org/10.1021/acs.nanolett.7b01393
- A. Avsar, D. Unuchek, J.W. Liu, O.L. Sanchez, K. Watanabe, T. Taniguch, B. Ozyilmaz, A. Kis, Optospintronics in graphene via proximity coupling. ACS Nano 11(11), 11678–11686 (2017). https://doi.org/10.1021/acsnano.7b06800
- L. Cheng, X.B. Wang, W.F. Yang, J.W. Chai, M. Yang et al., Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15(4), 347 (2019). https://doi.org/10.1038/s41567-018-0406-3
- K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C.H.W. Barnes, S. Maekawa, E. Saitoh, Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 10(9), 655–659 (2011). https://doi.org/10.1038/Nmat3052
- S.P. Dash, S. Sharma, R.S. Patel, M.P. de Jong, R. Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature 462(7272), 491–494 (2009). https://doi.org/10.1038/nature08570
- B.T. Jonker, G. Kioseoglou, A.T. Hanbicki, C.H. Li, P.E. Thompson, Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3(8), 542–546 (2007). https://doi.org/10.1038/nphys673
- M. Battiato, K. Held, Ultrafast and gigantic spin injection in semiconductors. Phys. Rev. Lett. 116(19), 196601 (2016). https://doi.org/10.1103/PhysRevLett.116.196601
- A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539(7630), 509–517 (2016). https://doi.org/10.1038/nature19820
- V.M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73(3), 233–235 (1990). https://doi.org/10.1016/0038-1098(90)90963-C
- A. Hoffmann, Spin hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013). https://doi.org/10.1109/Tmag.2013.2262947
- J.C. Rojas-Sanchez, S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud et al., Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: alpha-Sn films. Phys. Rev. Lett. 116(9), 096602 (2016). https://doi.org/10.1103/PhysRevLett.116.096602
- Y. Xu, B.H. Yan, H.J. Zhang, J. Wang, G. Xu, P.Z. Tang, W.H. Duan, S.C. Zhang, Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 111(13), 136804 (2013). https://doi.org/10.1103/PhysRevLett.111.136804
- F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020 (2015). https://doi.org/10.1038/Nmat4384
- P.Z. Tang, P.C. Chen, W.D. Cao, H.Q. Huang, S. Cahangirov et al., Stable two-dimensional dumbbell stanene: a quantum spin hall insulator. Phys. Rev. B 90(12), 121408 (2014). https://doi.org/10.1103/PhysRevB.90.121408
- C.C. Liu, W.X. Feng, Y.G. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107(7), 076802 (2011). https://doi.org/10.1103/PhysRevLett.107.076802
- Z.G. Song, C.C. Liu, J.B. Yang, J.Z. Han, M. Ye et al., Quantum spin hall insulators and quantum valley hall insulators of Bix/Sbx (x = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 6, e147 (2014). https://doi.org/10.1038/am.2014.113
- C.K. Safeer, J. Ingla-Aynes, F. Herling, J.H. Garcia, M. Vila et al., Room-temperature spin hall effect in graphene/MoS2 van der waals heterostructures. Nano Lett. 19(2), 1074–1082 (2019). https://doi.org/10.1021/acs.nanolett.8b04368
- W.J. Yan, E. Sagasta, M. Ribeiro, Y. Niimi, L.E. Hueso, F. Casanova, Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure. Nat. Commun. 8, 661 (2017). https://doi.org/10.1038/s41467-017-00563-y
- S. Roche, S.O. Valenzuela, Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys.-D Appl. Phys. 47(9), 094011 (2014). https://doi.org/10.1088/0022-3727/47/9/094011
- H. Dery, H. Wu, B. Ciftcioglu, M. Huang, Y. Song et al., Nanospintronics based on magnetologic gates. IEEE Trans. Electron. Dev. 59(1), 259–262 (2012). https://doi.org/10.1109/Ted.2011.2173498
- Y.P. Liu, S. Goolaup, C. Murapaka, W.S. Lew, S.K. Wong, Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 4(12), 7087–7092 (2010). https://doi.org/10.1021/nn101296x
- Y.P. Liu, X. Liu, Y.J. Zhang, Q.L. Xia, J. He, Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology 28(23), 235303 (2017). https://doi.org/10.1088/1361-6528/aa703e
- M. Gurram, S. Omar, B.J. van Wees, Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der waals heterostructures: progress and perspectives. 2D Mater. 5(3), 032004 (2018). https://doi.org/10.1088/2053-1583/aac34d
- J. Sabio, C. Seoanez, S. Fratini, F. Guinea, A.H. Castro, F. Sols, Electrostatic interactions between graphene layers and their environment. Phys. Rev. B 77(19), 195409 (2008). https://doi.org/10.1103/PhysRevB.77.195409
- J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008). https://doi.org/10.1038/nphys935
- D.V. Tuan, F. Ortmann, A.W. Cummings, D. Soriano, S. Roche, Spin dynamics and relaxation in graphene dictated by electron-hole puddles. Sci. Rep. 6, 21046 (2016). https://doi.org/10.1038/srep21046
- J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. Von Klitzing, A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4(2), 144–148 (2008). https://doi.org/10.1038/nphys781
- T. Maassen, J.J. van den Berg, N. IJbema, F. Fromm, T. Seyller, R. Yakimova, B.J. van Wees, Long spin relaxation times in wafer scale epitaxial graphene on sic(0001). Nano Lett. 12(3), 1498–1502 (2012). https://doi.org/10.1021/nl2042497
- B. Dlubak, M.B. Martin, C. Deranlot, B. Servet, S. Xavier et al., Highly efficient spin transport in epitaxial graphene on sic. Nat. Phys. 8(7), 557–561 (2012). https://doi.org/10.1038/Nphys2331
- J.C. Leutenantsmeyer, A.A. Kaverzin, M. Wojtaszek, B.J. van Wees, Proximity induced room temperature ferromagnetism in graphene probed with spin currents. J Mater. 4(1), 014001 (2017). https://doi.org/10.1088/2053-1583/4/1/014001
- S. Singh, J. Katoch, T.C. Zhu, K.Y. Meng, T.Y. Liu et al., Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118(18), 187201 (2017). https://doi.org/10.1103/PhysRevLett.118.187201
- S. Omar, B.J. van Wees, Graphene-ws2 heterostructures for tunable spin injection and spin transport. Phys. Rev. B 95(8), 081404 (2017). https://doi.org/10.1103/PhysRevB.95.081404
- A. Dankert, S.P. Dash, Electrical gate control of spin current in van der waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017). https://doi.org/10.1038/ncomms16093
- T. Maassen, J.J. van den Berg, E.H. Huisman, H. Dijkstra, F. Fromm, T. Seyller, B.J. van Wees, Localized states influence spin transport in epitaxial graphene. Phys. Rev. Lett. 110(6), 067209 (2013). https://doi.org/10.1103/PhysRevLett.110.067209
- P.J. Zomer, M.H.D. Guimaraes, N. Tombros, B.J. van Wees, Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys. Rev. B 86(16), 161416 (2012). https://doi.org/10.1103/PhysRevB.86.161416
- W. Han, J.R. Chen, D.Q. Wang, K.M. McCreary, H. Wen, A.G. Swartz, J. Shi, R.K. Kawakami, Spin relaxation in single-layer graphene with tunable mobility. Nano Lett. 12(7), 3443–3447 (2012). https://doi.org/10.1021/nl301567n
- A.H. Castro Neto, F. Guinea, Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103(2), 026804 (2009). https://doi.org/10.1103/PhysRevLett.103.026804
- M.H.D. Guimaraes, P.J. Zomer, J. Ingla-Aynes, J.C. Brant, N. Tombros, B.J. van Wees, Controlling spin relaxation in hexagonal bn-encapsulated graphene with a transverse electric field. Phys. Rev. Lett. 113(8), 086602 (2014). https://doi.org/10.1103/PhysRevLett.113.086602
- M. Gurram, S. Omar, S. Zihlmann, P. Makk, C. Schonenberger, B.J. van Wees, Spin transport in fully hexagonal boron nitride encapsulated graphene. Phys. Rev. B 93(11), 115441 (2016). https://doi.org/10.1103/PhysRevB.93.115441
- I.G. Serrano, J. Panda, F. Denoel, O. Vallin, D. Phuyal, O. Karis, M.V. Kamalakar, Two-dimensional flexible high diffusive spin circuits. Nano Lett. 19(2), 666–673 (2019). https://doi.org/10.1021/acs.nanolett.8b03520
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199
- M.H.D. Guimaraes, A. Veligura, P.J. Zomer, T. Maassen, I.J. Vera-Marun, N. Tombros, B.J. van Arees, Spin transport in high-quality suspended graphene devices. Nano Lett. 12(7), 3512–3517 (2012). https://doi.org/10.1021/nl301050a
- M. Drogeler, F. Volmer, M. Wolter, B. Terres, K. Watanabe et al., Nanosecond spin lifetimes in single- and few-layer graphene-hbn heterostructures at room temperature. Nano Lett. 14(11), 6050–6055 (2014). https://doi.org/10.1021/n1501278c
- M. Drogeler, C. Franzen, F. Volmer, T. Pohlmann, L. Banszerus et al., Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16(6), 3533–3539 (2016). https://doi.org/10.1021/acs.nanolett.6b00497
- M. Drogeler, L. Banszerus, F. Volmer, T. Taniguchi, K. Watanabe, B. Beschoten, C. Stampfer, Dry-transferred cvd graphene for inverted spin valve devices. Appl. Phys. Lett. 111(15), 5000545 (2017). https://doi.org/10.1063/1.5000545
- W. Yan, L. Phillips, M. Barbone, S. Hämäläinen, A. Lombardo et al., Long spin diffusion length in few-layer graphene flakes. Phys. Rev. Lett. 117(14), 147201 (2016). https://doi.org/10.1103/PhysRevLett.117.147201
- P. Stepanov, S. Che, D. Shcherbakov, J.W. Yang, R.Y. Chen et al., Long-distance spin transport through a graphene quantum hall antiferromagnet. Nat. Phys. 14(9), 967–967 (2018). https://doi.org/10.1038/s41567-018-0237-2
- G. Long, D. Maryenko, J.Y. Shen, S.G. Xu, J.Q. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16(12), 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
- Y. Xiang, Q.L. Xia, J.H. Luo, Y.P. Liu, Y.D. Peng, D.W. Wang, Y.Z. Nie, G.H. Guo, Observation of ferromagnetism in black phosphorus nanosheets with high magnetization by liquid exfoliation. Solid State Commun. 281, 1–5 (2018). https://doi.org/10.1016/j.ssc.2018.06.008
- Z.S. Popovic, J.M. Kurdestany, S. Satpathy, Electronic structure and anisotropic rashba spin–orbit coupling in monolayer black phosphorus. Phys. Rev. B 92(3), 035135 (2015). https://doi.org/10.1103/PhysRevB.92.035135
- A. Avsar, J.Y. Tan, M. Kurpas, M. Gmitra, K. Watanabe, T. Taniguchi, J. Fabian, B. Ozyilmaz, Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13(9), 888 (2017). https://doi.org/10.1038/Nphys4141
- N. Xu, Spin-polarized transport in multiterminal silicene nanodevices. Phys. Lett. A 382(4), 220–223 (2018). https://doi.org/10.1016/j.physleta.2017.11.017
- J.J. Zhao, H.S. Liu, Z.M. Yu, R.G. Quhe, S. Zhou et al., Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 83, 24–151 (2016). https://doi.org/10.1016/j.pmatsci.2016.04.001
- Z.G. Shao, X.S. Ye, L. Yang, C.L. Wang, First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114(9), 4820526 (2013). https://doi.org/10.1063/1.4820526
- N. Pournaghavi, M. Esmaeilzadeh, A. Abrishamifar, S. Ahmadi, Extrinsic Rashba spin–orbit coupling effect on silicene spin polarized field effect transistors. J. Phys.: Condens. Matter 29(14), 145501 (2017). https://doi.org/10.1088/1361-648X/aa5b06
- K. Shakouri, H. Simchi, M. Esmaeilzadeh, H. Mazidabadi, F.M. Peeters, Tunable spin and charge transport in silicene nanoribbons. Phys. Rev. B 92(3), 035413 (2015). https://doi.org/10.1103/PhysRevB.92.035413
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). https://doi.org/10.1038/Nnano.2014.325
- S.H. Liang, H.W. Yang, P. Renucci, B.S. Tao, P. Laczkowski et al., Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 8, 14947 (2017). https://doi.org/10.1038/ncomms14947
- S. Roche, J. Åkerman, B. Beschoten, J.-C. Charlier, M. Chshiev et al., Graphene spintronics: the European flagship perspective. 2D Mater. 2(3), 030202 (2015). https://doi.org/10.1088/2053-1583/2/3/030202
- S.W. Jiang, L.Z. Li, Z.F. Wang, K.F. Mak, J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13(7), 549 (2018). https://doi.org/10.1038/s41565-018-0135-x
- L.D. Casto, A.J. Clune, M.O. Yokosuk, J.L. Musfeldt, T.J. Williams et al., Strong spin-lattice coupling in CrSiTe3. APL Mater. 3(4), 041515 (2015). https://doi.org/10.1063/1.4914134
- Y. Tian, M.J. Gray, H.W. Ji, R.J. Cava, K.S. Burch, Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal. 2D Mater. 3(2), 025035 (2016). https://doi.org/10.1088/2053-1583/3/2/025035
- H.L.L. Zhuang, P.R.C. Kent, R.G. Hennig, Strong anisotropy and magnetostriction in the two-dimensional stoner ferromagnet Fe3GeTe2. Phys. Rev. B 93(13), 134407 (2016). https://doi.org/10.1103/PhysRevB.93.134407
- N. Sivadas, S. Okamoto, X.D. Xu, C.J. Fennie, D. Xiao, Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18(12), 7658–7664 (2018). https://doi.org/10.1021/acs.nanolett.8b03321
- J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.C. Neto, B. Özyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9(5), 284–287 (2013). https://doi.org/10.1038/nphys2576
- D. Khokhriakov, A.W. Cummings, K. Song, M. Vila, B. Karpiak, A. Dankert, S. Roche, S.P. Dash, Tailoring emergent spin phenomena in dirac material heterostructures. Sci. Adv. 4(9), 349 (2018). https://doi.org/10.1126/sciadv.aat9349
- K. Song, D. Soriano, A.W. Cummings, R. Robles, P. Ordejón, S. Roche, Spin proximity effects in graphene/topological insulator heterostructures. Nano Lett. 18(3), 2033–2039 (2018). https://doi.org/10.1021/acs.nanolett.7b05482
- W.J. Yan, O. Txoperena, R. Llopis, H. Dery, L.E. Hueso, F. Casanova, A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016). https://doi.org/10.1038/ncomms13372
- S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990). https://doi.org/10.1063/1.102730
- J.S. Xu, S. Singh, J. Katoch, G.Z. Wu, T.C. Zhu, I. Zutic, R.K. Kawakami, Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts. Nat. Commun. 9, 2869 (2018). https://doi.org/10.1038/s41467-018-05358-3
- K. Zollner, M. Gmitra, J. Fabian, Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. New J. Phys. 20(7), 073007 (2018). https://doi.org/10.1088/1367-2630/aace51
- X.Y. Lin, L. Su, Z.Z. Si, Y.G. Zhang, A. Bournel et al., Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8(3), 034006 (2017). https://doi.org/10.1103/PhysRevApplied.8.034006
- M. Piquemal-Banci, R. Galceran, S. Caneva, M.B. Martin, R.S. Weatherup et al., Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108(10), 102404 (2016). https://doi.org/10.1063/1.4943516
- M. Piquemal-Banci, R. Galceran, F. Godel, S. Caneva, M.B. Martin et al., Insulator-to-metallic spin-filtering in 2d-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12(5), 4712–4718 (2018). https://doi.org/10.1021/acsnano.8b01354
- W.Y. Wang, A. Narayan, L. Tang, K. Dolui, Y.W. Liu et al., Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett. 15(8), 5261–5267 (2015). https://doi.org/10.1021/acs.nanolett.5b01553
- K. Dolui, A. Narayan, I. Rungger, S. Sanvito, Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90(4), 041401 (2014). https://doi.org/10.1103/PhysRevB.90.041401
- J.R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). https://doi.org/10.1021/nl4010157
- M.Z. Iqbal, M.W. Iqbal, S. Siddique, M.F. Khan, S.M. Ramay, Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci. Rep. 6, 21038 (2016). https://doi.org/10.1038/srep21038
- A. Dankert, P. Pashaei, M.V. Kamalakar, A.P.S. Gaur, S. Sahoo et al., Spin-polarized tunneling through chemical vapor deposited multilayer molybdenum disulfide. ACS Nano 11(6), 6389–6395 (2017). https://doi.org/10.1021/acsnano.7b02819
- Z. Wang, D. Sapkota, T. Taniguchi, K. Watanabe, D. Mandrus, A.F. Morpurgo, Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der waals heterostructures. Nano Lett. 18(7), 4303–4308 (2018). https://doi.org/10.1021/acs.nanolett.8b01278
- V.M. Karpan, G. Giovannetti, P.A. Khomyakov, M. Talanana, A.A. Starikov et al., Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99(17), 176602 (2007). https://doi.org/10.1103/PhysRevLett.99.176602
- V.M. Karpan, P.A. Khomyakov, A.A. Starikov, G. Giovannetti, M. Zwierzycki et al., Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 78(19), 195419 (2008). https://doi.org/10.1103/PhysRevB.78.195419
- E.D. Cobas, O.M.J. van't Erve, S.F. Cheng, J.C. Culbertson, G.G. Jernigan, K. Bussman, B.T. Jonker, Room-temperature spin filtering in metallic ferromagnet-multilayer graphene-ferromagnet junctions. ACS Nano 10(11), 10357–10365 (2016). https://doi.org/10.1021/acsnano.6b06092
- Q. Xie, W. Lin, B. Yang, X. Shu, S. Chen et al., Giant enhancements of perpendicular magnetic anisotropy and spin–orbit torque by a MoS2 layer. Adv. Mater. 31(21), 1900776 (2019). https://doi.org/10.1002/adma.201900776
- R. Sbiaa, H. Meng, S.N. Piramanayagam, Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi R 5(12), 413–419 (2011). https://doi.org/10.1002/pssr.201105420
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/Nnano.2012.193
G.G. Guzman-Verri, L.C.L.Y. Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007). https://doi.org/10.1103/PhysRevB.76.075131
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2d materials and van der waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
J.H. Garcia, M. Vila, A.W. Cummings, S. Roche, Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47(9), 3359–3379 (2018). https://doi.org/10.1039/c7cs00864c
Z. Wang, D.K. Ki, H. Chen, H. Berger, A.H. MacDonald, A.F. Morpurgo, Strong interface-induced spin–orbit interaction in graphene on WS2. Nat Commun. 6, 8339 (2015). https://doi.org/10.1038/ncomms9339
J.H. Garcia, A.W. Cummings, S. Roche, Spin hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano Lett. 17(8), 5078–5083 (2017). https://doi.org/10.1021/acs.nanolett.7b02364
W. Han, Perspectives for spintronics in 2d materials. Appl. Mater. 4(3), 032401 (2016). https://doi.org/10.1063/1.4941712
Y.P. Feng, L. Shen, M. Yang, A.Z. Wang, M.G. Zeng, Q.Y. Wu, S. Chintalapati, C.R. Chang, Prospects of spintronics based on 2d materials. Wires Comput. Mol. Sci. 7(5), e1313 (2017). https://doi.org/10.1002/wcms.1313
M.Z. Iqbal, N.A. Qureshi, G. Hussain, Recent advancements in 2d-materials interface based magnetic junctions for spintronics. J. Magn. Magn. Mater. 457, 110–125 (2018). https://doi.org/10.1016/j.jmmm.2018.02.084
C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
C. Gong, X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363(6428), eaav4450 (2019). https://doi.org/10.1126/science.aav4450
W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014). https://doi.org/10.1038/nnano.2014.214
O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 75(12), 125408 (2007). https://doi.org/10.1103/PhysRevB.75.125408
K.M. McCreary, A.G. Swartz, W. Han, J. Fabian, R.K. Kawakami, Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys. Rev. Lett. 109(18), 186604 (2012). https://doi.org/10.1103/PhysRevLett.109.186604
A.J.M. Giesbers, K. Uhlirova, M. Konecny, E.C. Peters, M. Burghard, J. Aarts, C.F.J. Flipse, Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene. Phys. Rev. Lett. 111(16), 166101 (2013). https://doi.org/10.1103/PhysRevLett.111.166101
D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77(3), 035427 (2008). https://doi.org/10.1103/PhysRevB.77.035427
R.R. Nair, M. Sepioni, I.L. Tsai, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, T. Thomson, A.K. Geim, I.V. Grigorieva, Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 8(3), 199–202 (2012). https://doi.org/10.1038/Nphys2183
J. Cervenka, M.I. Katsnelson, C.F.J. Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 5(11), 840–844 (2009). https://doi.org/10.1038/Nphys1399
O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100(4), 047209 (2008). https://doi.org/10.1103/PhysRevLett.100.047209
J. Jung, T. Pereg-Barnea, A.H. MacDonald, Theory of interedge superexchange in zigzag edge magnetism. Phys. Rev. Lett. 102(22), 227205 (2009). https://doi.org/10.1103/PhysRevLett.102.227205
Y.W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006). https://doi.org/10.1038/nature05180
D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake et al., Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323(5914), 610–613 (2009). https://doi.org/10.1126/science.1167130
M. Pumera, C.H.A. Wong, Graphane and hydrogenated graphene. Chem. Soc. Rev. 42(14), 5987–5995 (2013). https://doi.org/10.1039/C3CS60132C
P. Lazar, F. Karlicky, Jurečka P, Kocman MS, Otyepková E, Šafářová KR, Otyepka M, Adsorption of small organic molecules on grapheme. J. Am. Chem. Soc. 135(16), 6372–6377 (2013). https://doi.org/10.1021/ja403162r
P. Rubio-Pereda, N. Takeuchi, Van der waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J. Mol. Model. 22(8), 175 (2016). https://doi.org/10.1007/s00894-016-3048-3
W.F. Li, M.W. Zhao, T. He, C. Song, X.H. Lin, X.D. Liu, Y.Y. Xia, L.M. Mei, Concentration dependent magnetism induced by hydrogen adsorption on graphene and single walled carbon nanotubes. J. Magn. Magn. Mater. 322(7), 838–843 (2010). https://doi.org/10.1016/j.jmmm.2009.11.014
W.F. Li, M.W. Zhao, Y.Y. Xia, R.Q. Zhang, Y.G. Mu, Covalent-adsorption induced magnetism in graphene. J. Mater. Chem. 19(48), 9274–9282 (2009). https://doi.org/10.1039/b908949g
T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Adsorbates on graphene: Impurity states and electron scattering. Chem. Phys. Lett. 476(4–6), 125–134 (2009). https://doi.org/10.1016/j.cplett.2009.06.005
S. Casolo, O.M. Lovvik, R. Martinazzo, G.F. Tantardini, Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys. 130(5), 3072333 (2009). https://doi.org/10.1063/1.3072333
Y.P. Zheng, X.G. Wan, N.J. Tang, Q. Feng, F.C. Liu, Y.W. Du, Magnetic properties of double-side partially fluorinated graphene from first principles calculations. Carbon 89, 300–307 (2015). https://doi.org/10.1016/j.carbon.2015.03.059
O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101(3), 037203 (2008). https://doi.org/10.1103/PhysRevLett.101.037203
P. Dev, T.L. Reinecke, Substrate effects: disappearance of adsorbate-induced magnetism in graphene. Phys. Rev. B 89(3), 035404 (2014). https://doi.org/10.1103/PhysRevB.89.035404
M. Sepioni, R.R. Nair, I.L. Tsai, A.K. Geim, I.V. Grigorieva, Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. EPL-Europhys. Lett. 97(4), 9857006 (2012). https://doi.org/10.1209/0295-5075/97/47001
M. Sepioni, R.R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A.K. Geim, I.V. Grigorieva, Limits on intrinsic magnetism in graphene. Phys. Rev. Lett. 105(20), 207205 (2010). https://doi.org/10.1103/PhysRevLett.105.207205
T. Stauber, N.M.R. Peres, F. Guinea, A.H. Castro, Fermi liquid theory of a fermi ring. Phys. Rev. B 75(11), 115425 (2007). https://doi.org/10.1103/PhysRevB.75.115425
E.V. Castro, N.M.R. Peres, T. Stauber, N.A.P. Silva, Low-density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 100(18), 186803 (2008). https://doi.org/10.1103/PhysRevLett.100.186803
T. Cao, Z.L. Li, S.G. Louie, Tunable magnetism and half-metallicity in hole-doped monolayer gase. Phys. Rev. Lett. 114(23), 236602 (2015). https://doi.org/10.1103/PhysRevLett.114.236602
Z.Y. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys. Rev. Lett. 114(1), 016603 (2015). https://doi.org/10.1103/PhysRevLett.114.016603
P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia et al., Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15(7), 711 (2016). https://doi.org/10.1038/Nmat4603
L. Xu, M. Yang, L. Shen, J. Zhou, T. Zhu, Y.P. Feng, Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys. Rev. B 97(4), 041405 (2018). https://doi.org/10.1103/PhysRevB.97.041405
J. Maassen, W. Ji, H. Guo, Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett. 11(1), 151–155 (2011). https://doi.org/10.1021/nl1031919
W. Han, K. Pi, K.M. McCreary, Y. Li, J.J.I. Wong, A.G. Swartz, R.K. Kawakami, Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105(16), 167202 (2010). https://doi.org/10.1103/PhysRevLett.105.167202
W. Han, K.M. McCreary, K. Pi, W.H. Wang, Y. Li, H. Wen, J.R. Chen, R.K. Kawakami, Spin transport and relaxation in graphene. J. Magn. Magn. Mater. 324(4), 369–381 (2012). https://doi.org/10.1016/j.jmmm.2011.08.001
G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B.J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62(8), R4790 (2000). https://doi.org/10.1103/PhysRevB.62.R4790
E.I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62(24), R16267 (2000). https://doi.org/10.1103/PhysRevB.62.R16267
A. Fert, H. Jaffres, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64(18), 184420 (2001). https://doi.org/10.1103/PhysRevB.64.184420
M.B. Martin, B. Dlubak, R.S. Weatherup, H. Yang, C. Deranlot et al., Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 8(8), 7890–7895 (2014). https://doi.org/10.1021/nn5017549
W. Han, K. Pi, W. Bao, K. McCreary, Y. Li, W. Wang, C. Lau, R. Kawakami, Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett. 94(22), 222109 (2009). https://doi.org/10.1063/1.3147203
N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448(7153), 571–574 (2007). https://doi.org/10.1038/nature06037
M. Drögeler, F. Volmer, M. Wolter, B. Terrés, K. Watanabe et al., Nanosecond spin lifetimes in single- and few-layer graphene–hBN heterostructures at room temperature. Nano Lett. 14(11), 6050–6055 (2014). https://doi.org/10.1021/nl501278c
F. Volmer, M. Drogeler, E. Maynicke, N. von den Driesch, M.L. Boschen, G. Guntherodt, B. Beschoten, Role of MgO barriers for spin and charge transport in Co/MgO/graphene nonlocal spin-valve devices. Phys. Rev. B 88(16), 161405 (2013). https://doi.org/10.1103/PhysRevB.88.161405
M. Popinciuc, C. Jozsa, P.J. Zomer, N. Tombros, A. Veligura, H.T. Jonkman, B.J. van Wees, Electronic spin transport in graphene field-effect transistors. Phys. Rev. B 80(21), 214427 (2009). https://doi.org/10.1103/PhysRevB.80.214427
C. Jozsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Electronic spin drift in graphene field-effect transistors. Phys. Rev. Lett. 100(23), 236603 (2008). https://doi.org/10.1103/PhysRevLett.100.236603
B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot et al., Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97(9), 3476339 (2010). https://doi.org/10.1063/1.3476339
T. Yamaguchi, S. Masubuchi, K. Iguchi, R. Moriya, T. Machida, Tunnel spin injection into graphene using Al2O3 barrier grown by atomic layer deposition on functionalized graphene surface. J. Magn. Magn. Mater. 324(5), 849–852 (2012). https://doi.org/10.1016/j.jmmm.2011.09.031
C. Jozsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Controlling the efficiency of spin injection into graphene by carrier drift. Phys. Rev. B 79(8), 081402 (2009). https://doi.org/10.1103/PhysRevB.79.081402
C. Jozsa, T. Maassen, M. Popinciuc, P.J. Zomer, A. Veligura, H.T. Jonkman, B.J. van Wees, Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80(24), 241403 (2009). https://doi.org/10.1103/PhysRevB.80.241403
W.H. Wang, K. Pi, Y. Li, Y.F. Chiang, P. Wei, J. Shi, R.K. Kawakami, Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77(2), 020402 (2008). https://doi.org/10.1103/PhysRevB.77.020402
F. Volmer, M. Drogeler, G. Guntherodt, C. Stampfer, B. Beschoten, Spin and charge transport in graphene-based spin transport devices with Co/MgO spin injection and spin detection electrodes. Synth. Metals 210, 42–55 (2015). https://doi.org/10.1016/j.synthmet.2015.07.007
F. Volmer, M. Drogeler, T. Pohlmann, G. Guntherodt, C. Stampfer, B. Beschoten, Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices. 2D Mater. 2(2), 024001 (2015). https://doi.org/10.1088/2053-1583/2/2/024001
M. Cubukcu, M.-B. Martin, P. Laczkowski, C. Vergnaud, A. Marty et al., Ferromagnetic tunnel contacts to graphene: contact resistance and spin signal. J. Appl. Phys. 117(8), 083909 (2015). https://doi.org/10.1063/1.4913710
A. Dankert, M.V. Kamalakar, J. Bergsten, S.P. Dash, Spin transport and precession in graphene measured by nonlocal and three-terminal methods. Appl. Phys. Lett. 104(19), 192403 (2014). https://doi.org/10.1063/1.4876060
Y.P. Liu, H. Idzuchi, Y. Fukuma, O. Rousseau, Y. Otani, W.S. Lew, Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 102(7), 033105 (2013). https://doi.org/10.1063/1.4792318
B. Dlubak, M.B. Martin, C. Deranlot, K. Bouzehouane, S. Fusil et al., Homogeneous pinhole free 1 nm Al2O3 tunnel barriers on graphene. Appl. Phys. Lett. 101(20), 203104 (2012). https://doi.org/10.1063/1.4765348
Q.Y. Wu, L. Shen, Z.Q. Bai, M.G. Zeng, M. Yang, Z.G. Huang, Y.P. Feng, Efficient spin injection into graphene through a tunnel barrier: overcoming the spin-conductance mismatch. Phys. Rev. Appl. 2(4), 044008 (2014). https://doi.org/10.1103/PhysRevApplied.2.044008
J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande et al., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282 (2011). https://doi.org/10.1038/nmat2968
G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007). https://doi.org/10.1103/PhysRevB.76.073103
C. Neumann, S. Reichardt, P. Venezuela, M. Drogeler, L. Banszerus et al., Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 6, 9429 (2015). https://doi.org/10.1038/ncomms9429
S. Singh, J. Katoch, J.S. Xu, C. Tan, T.C. Zhu, W. Amamou, J. Hone, R. Kawakami, Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 109(12), 122411 (2016). https://doi.org/10.1063/1.4962635
T. Yamaguchi, Y. Inoue, S. Masubuchi, S. Morikawa, M. Onuki et al., Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Express 6(7), 073001 (2013). https://doi.org/10.7567/Apex.6.073001
M.V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, S.P. Dash, Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 4, 06146 (2014). https://doi.org/10.1038/srep06146
M. Gurram, S. Omar, S. Zihlmann, P. Makk, Q.C. Li, Y.F. Zhang, C. Schonenberger, B.J. van Wees, Spin transport in two-layer-CVD-hbn/graphene/hbn heterostructures. Phys. Rev. B 97(4), 045411 (2018). https://doi.org/10.1103/PhysRevB.97.045411
W. Fu, P. Makk, R. Maurand, M. Bräuninger, C. Schönenberger, Large-scale fabrication of BN tunnel barriers for graphene spintronics. J. Appl. Phys. 116(7), 074306 (2014). https://doi.org/10.1063/1.4893578
M.V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, S.P. Dash, Spintronics with graphene-hexagonal boron nitride van der waals heterostructures. Appl. Phys. Lett. 105(21), 212405 (2014). https://doi.org/10.1063/1.4902814
L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12(3), 1707–1710 (2012). https://doi.org/10.1021/nl3002205
J.C. Leutenantsmeyer, J. Ingla-Aynes, M. Gurram, B.J. van Wees, Efficient spin injection into graphene through trilayer hbn tunnel barriers. J. Appl. Phys. 124(19), 194301 (2018). https://doi.org/10.1063/1.5050874
P. Zomer, M. Guimarães, J. Brant, N. Tombros, B. Van Wees, Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105(1), 013101 (2014). https://doi.org/10.1063/1.4886096
Y.P. Liu, S.Y. Zhang, J. He, Z.M.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2d materials. Nano Micro Lett. 11(1), 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
M.V. Kamalakar, A. Dankert, P.J. Kelly, S.P. Dash, Inversion of spin signal and spin filtering in ferromagnet vertical bar hexagonal boron nitride-graphene van der waals heterostructures. Sci. Rep. 6, 21168 (2016). https://doi.org/10.1038/srep21168
M. Gurram, S. Omar, B.J. van Wees, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat. Commun. 8, 248 (2017). https://doi.org/10.1038/s41467-017-00317-w
A.L. Friedman, O.M.J. van't Erve, C.H. Li, J.T. Robinson, B.T. Jonker, Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 5, 3161 (2014). https://doi.org/10.1038/ncomms4161
K. Vaklinova, A. Hoyer, M. Burghard, K. Kern, Current-induced spin polarization in topological insulator-graphene heterostructures. Nano Lett. 16(4), 2595–2602 (2016). https://doi.org/10.1021/acs.nanolett.6b00167
T.C. Song, X.H. Cai, M.W.Y. Tu, X.O. Zhang, B.V. Huang et al., Giant tunneling magnetoresistance in spin-filter van der waals heterostructures. Science 360(6394), 1214 (2018). https://doi.org/10.1126/science.aar4851
D.R. Klein, D. MacNeill, J.L. Lado, D. Soriano, E. Navarro-Moratalla et al., Probing magnetism in 2d van der waals crystalline insulators via electron tunneling. Science 360(6394), 1218 (2018). https://doi.org/10.1126/science.aar3617
Z. Wang, I. Gutierrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini et al., Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun. 9, 2516 (2018). https://doi.org/10.1038/s41467-018-04953-8
H.H. Kim, B.W. Yang, T. Patel, F. Sfigakis, C.H. Li, S.J. Tian, H.C. Lei, A.W. Tsen, One million percent tunnel magnetoresistance in a magnetic van der waals heterostructure. Nano Lett. 18(8), 4885–4890 (2018). https://doi.org/10.1021/acs.nanolett.8b01552
D. Ghazaryan, M.T. Greenaway, Z. Wang, V.H. Guarochico-Moreira, I.J. Vera-Marun et al., Magnon-assisted tunnelling in van der waals heterostructures based on CrBr3. Nat. Electron. 1(6), 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z
T. Yamaguchi, R. Moriya, S. Oki, S. Yamada, S. Masubuchi, K. Hamaya, T. Machida, Spin injection into multilayer graphene from highly spin-polarized Co2FeSi heusler alloy. Appl. Phys. Express 9(6), 063006 (2016). https://doi.org/10.7567/Apex.9.063006
P.P. Aseev, S.N. Artemenko, Spin injection from topological insulator into metal leads. Physica B 460, 222–226 (2015). https://doi.org/10.1016/j.physb.2014.11.076
Q.L. Sun, N. Kioussis, Prediction of manganese trihalides as two-dimensional dirac half-metals. Phys. Rev. B 97(9), 094408 (2018). https://doi.org/10.1103/PhysRevB.97.094408
M. Ashton, D. Gluhovic, S.B. Sinnott, J. Guo, D.A. Stewart, R.G. Hennig, Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 17(9), 5251–5257 (2017). https://doi.org/10.1021/acs.nanolett.7b01367
J.J. He, S. Li, Two-dimensional janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity. Comput. Mater. Sci. 152, 151–157 (2018). https://doi.org/10.1016/j.commatsci.2018.05.049
S.J. Gong, C. Gong, Y.Y. Sun, W.Y. Tong, C.G. Duan, J.H. Chu, X. Zhang, Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl. Acad. Sci. USA 115(34), 8511–8516 (2018). https://doi.org/10.1073/pnas.1715465115
M. Bonilla, S. Kolekar, Y.J. Ma, H.C. Diaz, V. Kalappattil et al., Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotechnol. 13(4), 289 (2018). https://doi.org/10.1038/s41565-018-0063-9
D.J. O'Hara, T.C. Zhu, A.H. Trout, A.S. Ahmed, Y.K. Luo et al., Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18(5), 3125–3131 (2018). https://doi.org/10.1021/acs.nanolett.8b00683
Y.J. Deng, Y.J. Yu, Y.C. Song, J.Z. Zhang, N.Z. Wang et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563(7729), 94 (2018). https://doi.org/10.1038/s41586-018-0626-9
M. Inglot, V.K. Dugaev, E.Y. Sherman, J. Barnas, Optical spin injection in graphene with rashba spin–orbit interaction. Phys. Rev. B 89(15), 155411 (2014). https://doi.org/10.1103/PhysRevB.89.155411
J. Rioux, G. Burkard, Photoinduced pure spin-current injection in graphene with rashba spin–orbit interaction. Phys. Rev. B 90(3), 035210 (2014). https://doi.org/10.1103/PhysRevB.90.035210
Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, Z. Liu, Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 1–17 (2019). https://doi.org/10.1007/s12274-019-2497-2
Y.K. Luo, J.S. Xu, T.C. Zhu, G.Z. Wu, E.J. McCormick et al., Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17(6), 3877–3883 (2017). https://doi.org/10.1021/acs.nanolett.7b01393
A. Avsar, D. Unuchek, J.W. Liu, O.L. Sanchez, K. Watanabe, T. Taniguch, B. Ozyilmaz, A. Kis, Optospintronics in graphene via proximity coupling. ACS Nano 11(11), 11678–11686 (2017). https://doi.org/10.1021/acsnano.7b06800
L. Cheng, X.B. Wang, W.F. Yang, J.W. Chai, M. Yang et al., Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15(4), 347 (2019). https://doi.org/10.1038/s41567-018-0406-3
K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C.H.W. Barnes, S. Maekawa, E. Saitoh, Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 10(9), 655–659 (2011). https://doi.org/10.1038/Nmat3052
S.P. Dash, S. Sharma, R.S. Patel, M.P. de Jong, R. Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature 462(7272), 491–494 (2009). https://doi.org/10.1038/nature08570
B.T. Jonker, G. Kioseoglou, A.T. Hanbicki, C.H. Li, P.E. Thompson, Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3(8), 542–546 (2007). https://doi.org/10.1038/nphys673
M. Battiato, K. Held, Ultrafast and gigantic spin injection in semiconductors. Phys. Rev. Lett. 116(19), 196601 (2016). https://doi.org/10.1103/PhysRevLett.116.196601
A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539(7630), 509–517 (2016). https://doi.org/10.1038/nature19820
V.M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73(3), 233–235 (1990). https://doi.org/10.1016/0038-1098(90)90963-C
A. Hoffmann, Spin hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013). https://doi.org/10.1109/Tmag.2013.2262947
J.C. Rojas-Sanchez, S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud et al., Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: alpha-Sn films. Phys. Rev. Lett. 116(9), 096602 (2016). https://doi.org/10.1103/PhysRevLett.116.096602
Y. Xu, B.H. Yan, H.J. Zhang, J. Wang, G. Xu, P.Z. Tang, W.H. Duan, S.C. Zhang, Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 111(13), 136804 (2013). https://doi.org/10.1103/PhysRevLett.111.136804
F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020 (2015). https://doi.org/10.1038/Nmat4384
P.Z. Tang, P.C. Chen, W.D. Cao, H.Q. Huang, S. Cahangirov et al., Stable two-dimensional dumbbell stanene: a quantum spin hall insulator. Phys. Rev. B 90(12), 121408 (2014). https://doi.org/10.1103/PhysRevB.90.121408
C.C. Liu, W.X. Feng, Y.G. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107(7), 076802 (2011). https://doi.org/10.1103/PhysRevLett.107.076802
Z.G. Song, C.C. Liu, J.B. Yang, J.Z. Han, M. Ye et al., Quantum spin hall insulators and quantum valley hall insulators of Bix/Sbx (x = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 6, e147 (2014). https://doi.org/10.1038/am.2014.113
C.K. Safeer, J. Ingla-Aynes, F. Herling, J.H. Garcia, M. Vila et al., Room-temperature spin hall effect in graphene/MoS2 van der waals heterostructures. Nano Lett. 19(2), 1074–1082 (2019). https://doi.org/10.1021/acs.nanolett.8b04368
W.J. Yan, E. Sagasta, M. Ribeiro, Y. Niimi, L.E. Hueso, F. Casanova, Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure. Nat. Commun. 8, 661 (2017). https://doi.org/10.1038/s41467-017-00563-y
S. Roche, S.O. Valenzuela, Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys.-D Appl. Phys. 47(9), 094011 (2014). https://doi.org/10.1088/0022-3727/47/9/094011
H. Dery, H. Wu, B. Ciftcioglu, M. Huang, Y. Song et al., Nanospintronics based on magnetologic gates. IEEE Trans. Electron. Dev. 59(1), 259–262 (2012). https://doi.org/10.1109/Ted.2011.2173498
Y.P. Liu, S. Goolaup, C. Murapaka, W.S. Lew, S.K. Wong, Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 4(12), 7087–7092 (2010). https://doi.org/10.1021/nn101296x
Y.P. Liu, X. Liu, Y.J. Zhang, Q.L. Xia, J. He, Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology 28(23), 235303 (2017). https://doi.org/10.1088/1361-6528/aa703e
M. Gurram, S. Omar, B.J. van Wees, Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der waals heterostructures: progress and perspectives. 2D Mater. 5(3), 032004 (2018). https://doi.org/10.1088/2053-1583/aac34d
J. Sabio, C. Seoanez, S. Fratini, F. Guinea, A.H. Castro, F. Sols, Electrostatic interactions between graphene layers and their environment. Phys. Rev. B 77(19), 195409 (2008). https://doi.org/10.1103/PhysRevB.77.195409
J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008). https://doi.org/10.1038/nphys935
D.V. Tuan, F. Ortmann, A.W. Cummings, D. Soriano, S. Roche, Spin dynamics and relaxation in graphene dictated by electron-hole puddles. Sci. Rep. 6, 21046 (2016). https://doi.org/10.1038/srep21046
J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. Von Klitzing, A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4(2), 144–148 (2008). https://doi.org/10.1038/nphys781
T. Maassen, J.J. van den Berg, N. IJbema, F. Fromm, T. Seyller, R. Yakimova, B.J. van Wees, Long spin relaxation times in wafer scale epitaxial graphene on sic(0001). Nano Lett. 12(3), 1498–1502 (2012). https://doi.org/10.1021/nl2042497
B. Dlubak, M.B. Martin, C. Deranlot, B. Servet, S. Xavier et al., Highly efficient spin transport in epitaxial graphene on sic. Nat. Phys. 8(7), 557–561 (2012). https://doi.org/10.1038/Nphys2331
J.C. Leutenantsmeyer, A.A. Kaverzin, M. Wojtaszek, B.J. van Wees, Proximity induced room temperature ferromagnetism in graphene probed with spin currents. J Mater. 4(1), 014001 (2017). https://doi.org/10.1088/2053-1583/4/1/014001
S. Singh, J. Katoch, T.C. Zhu, K.Y. Meng, T.Y. Liu et al., Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118(18), 187201 (2017). https://doi.org/10.1103/PhysRevLett.118.187201
S. Omar, B.J. van Wees, Graphene-ws2 heterostructures for tunable spin injection and spin transport. Phys. Rev. B 95(8), 081404 (2017). https://doi.org/10.1103/PhysRevB.95.081404
A. Dankert, S.P. Dash, Electrical gate control of spin current in van der waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017). https://doi.org/10.1038/ncomms16093
T. Maassen, J.J. van den Berg, E.H. Huisman, H. Dijkstra, F. Fromm, T. Seyller, B.J. van Wees, Localized states influence spin transport in epitaxial graphene. Phys. Rev. Lett. 110(6), 067209 (2013). https://doi.org/10.1103/PhysRevLett.110.067209
P.J. Zomer, M.H.D. Guimaraes, N. Tombros, B.J. van Wees, Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys. Rev. B 86(16), 161416 (2012). https://doi.org/10.1103/PhysRevB.86.161416
W. Han, J.R. Chen, D.Q. Wang, K.M. McCreary, H. Wen, A.G. Swartz, J. Shi, R.K. Kawakami, Spin relaxation in single-layer graphene with tunable mobility. Nano Lett. 12(7), 3443–3447 (2012). https://doi.org/10.1021/nl301567n
A.H. Castro Neto, F. Guinea, Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103(2), 026804 (2009). https://doi.org/10.1103/PhysRevLett.103.026804
M.H.D. Guimaraes, P.J. Zomer, J. Ingla-Aynes, J.C. Brant, N. Tombros, B.J. van Wees, Controlling spin relaxation in hexagonal bn-encapsulated graphene with a transverse electric field. Phys. Rev. Lett. 113(8), 086602 (2014). https://doi.org/10.1103/PhysRevLett.113.086602
M. Gurram, S. Omar, S. Zihlmann, P. Makk, C. Schonenberger, B.J. van Wees, Spin transport in fully hexagonal boron nitride encapsulated graphene. Phys. Rev. B 93(11), 115441 (2016). https://doi.org/10.1103/PhysRevB.93.115441
I.G. Serrano, J. Panda, F. Denoel, O. Vallin, D. Phuyal, O. Karis, M.V. Kamalakar, Two-dimensional flexible high diffusive spin circuits. Nano Lett. 19(2), 666–673 (2019). https://doi.org/10.1021/acs.nanolett.8b03520
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199
M.H.D. Guimaraes, A. Veligura, P.J. Zomer, T. Maassen, I.J. Vera-Marun, N. Tombros, B.J. van Arees, Spin transport in high-quality suspended graphene devices. Nano Lett. 12(7), 3512–3517 (2012). https://doi.org/10.1021/nl301050a
M. Drogeler, F. Volmer, M. Wolter, B. Terres, K. Watanabe et al., Nanosecond spin lifetimes in single- and few-layer graphene-hbn heterostructures at room temperature. Nano Lett. 14(11), 6050–6055 (2014). https://doi.org/10.1021/n1501278c
M. Drogeler, C. Franzen, F. Volmer, T. Pohlmann, L. Banszerus et al., Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16(6), 3533–3539 (2016). https://doi.org/10.1021/acs.nanolett.6b00497
M. Drogeler, L. Banszerus, F. Volmer, T. Taniguchi, K. Watanabe, B. Beschoten, C. Stampfer, Dry-transferred cvd graphene for inverted spin valve devices. Appl. Phys. Lett. 111(15), 5000545 (2017). https://doi.org/10.1063/1.5000545
W. Yan, L. Phillips, M. Barbone, S. Hämäläinen, A. Lombardo et al., Long spin diffusion length in few-layer graphene flakes. Phys. Rev. Lett. 117(14), 147201 (2016). https://doi.org/10.1103/PhysRevLett.117.147201
P. Stepanov, S. Che, D. Shcherbakov, J.W. Yang, R.Y. Chen et al., Long-distance spin transport through a graphene quantum hall antiferromagnet. Nat. Phys. 14(9), 967–967 (2018). https://doi.org/10.1038/s41567-018-0237-2
G. Long, D. Maryenko, J.Y. Shen, S.G. Xu, J.Q. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16(12), 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
Y. Xiang, Q.L. Xia, J.H. Luo, Y.P. Liu, Y.D. Peng, D.W. Wang, Y.Z. Nie, G.H. Guo, Observation of ferromagnetism in black phosphorus nanosheets with high magnetization by liquid exfoliation. Solid State Commun. 281, 1–5 (2018). https://doi.org/10.1016/j.ssc.2018.06.008
Z.S. Popovic, J.M. Kurdestany, S. Satpathy, Electronic structure and anisotropic rashba spin–orbit coupling in monolayer black phosphorus. Phys. Rev. B 92(3), 035135 (2015). https://doi.org/10.1103/PhysRevB.92.035135
A. Avsar, J.Y. Tan, M. Kurpas, M. Gmitra, K. Watanabe, T. Taniguchi, J. Fabian, B. Ozyilmaz, Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13(9), 888 (2017). https://doi.org/10.1038/Nphys4141
N. Xu, Spin-polarized transport in multiterminal silicene nanodevices. Phys. Lett. A 382(4), 220–223 (2018). https://doi.org/10.1016/j.physleta.2017.11.017
J.J. Zhao, H.S. Liu, Z.M. Yu, R.G. Quhe, S. Zhou et al., Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 83, 24–151 (2016). https://doi.org/10.1016/j.pmatsci.2016.04.001
Z.G. Shao, X.S. Ye, L. Yang, C.L. Wang, First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114(9), 4820526 (2013). https://doi.org/10.1063/1.4820526
N. Pournaghavi, M. Esmaeilzadeh, A. Abrishamifar, S. Ahmadi, Extrinsic Rashba spin–orbit coupling effect on silicene spin polarized field effect transistors. J. Phys.: Condens. Matter 29(14), 145501 (2017). https://doi.org/10.1088/1361-648X/aa5b06
K. Shakouri, H. Simchi, M. Esmaeilzadeh, H. Mazidabadi, F.M. Peeters, Tunable spin and charge transport in silicene nanoribbons. Phys. Rev. B 92(3), 035413 (2015). https://doi.org/10.1103/PhysRevB.92.035413
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). https://doi.org/10.1038/Nnano.2014.325
S.H. Liang, H.W. Yang, P. Renucci, B.S. Tao, P. Laczkowski et al., Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 8, 14947 (2017). https://doi.org/10.1038/ncomms14947
S. Roche, J. Åkerman, B. Beschoten, J.-C. Charlier, M. Chshiev et al., Graphene spintronics: the European flagship perspective. 2D Mater. 2(3), 030202 (2015). https://doi.org/10.1088/2053-1583/2/3/030202
S.W. Jiang, L.Z. Li, Z.F. Wang, K.F. Mak, J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13(7), 549 (2018). https://doi.org/10.1038/s41565-018-0135-x
L.D. Casto, A.J. Clune, M.O. Yokosuk, J.L. Musfeldt, T.J. Williams et al., Strong spin-lattice coupling in CrSiTe3. APL Mater. 3(4), 041515 (2015). https://doi.org/10.1063/1.4914134
Y. Tian, M.J. Gray, H.W. Ji, R.J. Cava, K.S. Burch, Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal. 2D Mater. 3(2), 025035 (2016). https://doi.org/10.1088/2053-1583/3/2/025035
H.L.L. Zhuang, P.R.C. Kent, R.G. Hennig, Strong anisotropy and magnetostriction in the two-dimensional stoner ferromagnet Fe3GeTe2. Phys. Rev. B 93(13), 134407 (2016). https://doi.org/10.1103/PhysRevB.93.134407
N. Sivadas, S. Okamoto, X.D. Xu, C.J. Fennie, D. Xiao, Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18(12), 7658–7664 (2018). https://doi.org/10.1021/acs.nanolett.8b03321
J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.C. Neto, B. Özyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9(5), 284–287 (2013). https://doi.org/10.1038/nphys2576
D. Khokhriakov, A.W. Cummings, K. Song, M. Vila, B. Karpiak, A. Dankert, S. Roche, S.P. Dash, Tailoring emergent spin phenomena in dirac material heterostructures. Sci. Adv. 4(9), 349 (2018). https://doi.org/10.1126/sciadv.aat9349
K. Song, D. Soriano, A.W. Cummings, R. Robles, P. Ordejón, S. Roche, Spin proximity effects in graphene/topological insulator heterostructures. Nano Lett. 18(3), 2033–2039 (2018). https://doi.org/10.1021/acs.nanolett.7b05482
W.J. Yan, O. Txoperena, R. Llopis, H. Dery, L.E. Hueso, F. Casanova, A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016). https://doi.org/10.1038/ncomms13372
S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990). https://doi.org/10.1063/1.102730
J.S. Xu, S. Singh, J. Katoch, G.Z. Wu, T.C. Zhu, I. Zutic, R.K. Kawakami, Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts. Nat. Commun. 9, 2869 (2018). https://doi.org/10.1038/s41467-018-05358-3
K. Zollner, M. Gmitra, J. Fabian, Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. New J. Phys. 20(7), 073007 (2018). https://doi.org/10.1088/1367-2630/aace51
X.Y. Lin, L. Su, Z.Z. Si, Y.G. Zhang, A. Bournel et al., Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8(3), 034006 (2017). https://doi.org/10.1103/PhysRevApplied.8.034006
M. Piquemal-Banci, R. Galceran, S. Caneva, M.B. Martin, R.S. Weatherup et al., Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108(10), 102404 (2016). https://doi.org/10.1063/1.4943516
M. Piquemal-Banci, R. Galceran, F. Godel, S. Caneva, M.B. Martin et al., Insulator-to-metallic spin-filtering in 2d-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12(5), 4712–4718 (2018). https://doi.org/10.1021/acsnano.8b01354
W.Y. Wang, A. Narayan, L. Tang, K. Dolui, Y.W. Liu et al., Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett. 15(8), 5261–5267 (2015). https://doi.org/10.1021/acs.nanolett.5b01553
K. Dolui, A. Narayan, I. Rungger, S. Sanvito, Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90(4), 041401 (2014). https://doi.org/10.1103/PhysRevB.90.041401
J.R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). https://doi.org/10.1021/nl4010157
M.Z. Iqbal, M.W. Iqbal, S. Siddique, M.F. Khan, S.M. Ramay, Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci. Rep. 6, 21038 (2016). https://doi.org/10.1038/srep21038
A. Dankert, P. Pashaei, M.V. Kamalakar, A.P.S. Gaur, S. Sahoo et al., Spin-polarized tunneling through chemical vapor deposited multilayer molybdenum disulfide. ACS Nano 11(6), 6389–6395 (2017). https://doi.org/10.1021/acsnano.7b02819
Z. Wang, D. Sapkota, T. Taniguchi, K. Watanabe, D. Mandrus, A.F. Morpurgo, Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der waals heterostructures. Nano Lett. 18(7), 4303–4308 (2018). https://doi.org/10.1021/acs.nanolett.8b01278
V.M. Karpan, G. Giovannetti, P.A. Khomyakov, M. Talanana, A.A. Starikov et al., Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99(17), 176602 (2007). https://doi.org/10.1103/PhysRevLett.99.176602
V.M. Karpan, P.A. Khomyakov, A.A. Starikov, G. Giovannetti, M. Zwierzycki et al., Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 78(19), 195419 (2008). https://doi.org/10.1103/PhysRevB.78.195419
E.D. Cobas, O.M.J. van't Erve, S.F. Cheng, J.C. Culbertson, G.G. Jernigan, K. Bussman, B.T. Jonker, Room-temperature spin filtering in metallic ferromagnet-multilayer graphene-ferromagnet junctions. ACS Nano 10(11), 10357–10365 (2016). https://doi.org/10.1021/acsnano.6b06092
Q. Xie, W. Lin, B. Yang, X. Shu, S. Chen et al., Giant enhancements of perpendicular magnetic anisotropy and spin–orbit torque by a MoS2 layer. Adv. Mater. 31(21), 1900776 (2019). https://doi.org/10.1002/adma.201900776
R. Sbiaa, H. Meng, S.N. Piramanayagam, Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi R 5(12), 413–419 (2011). https://doi.org/10.1002/pssr.201105420