Advances in MoS2-Based Field Effect Transistors (FETs)
Corresponding Author: Zhiming M. Wang
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 203-218
Abstract
This paper reviews the original achievements and advances regarding the field effect transistor (FET) fabricated from one of the most studied transition metal dichalcogenides: two-dimensional MoS2. Not like graphene, which is highlighted by a gapless Dirac cone band structure, Monolayer MoS2 is featured with a 1.9 eV gapped direct energy band thus facilitates convenient electronic and/or optoelectronic modulation of its physical properties in FET structure. Indeed, many MoS2 devices based on FET architecture such as phototransistors, memory devices, and sensors have been studied and extraordinary properties such as excellent mobility, ON/OFF ratio, and sensitivity of these devices have been exhibited. However, further developments in FET device applications depend a lot on if novel physics would be involved in them. In this review, an overview on advances and developments in the MoS2-based FETs are presented. Engineering of MoS2-based FETs will be discussed in details for understanding contact physics, formation of gate dielectric, and doping strategies. Also reported are demonstrations of device behaviors such as low-frequency noise and photoresponse in MoS2-based FETs, which is crucial for developing electronic and optoelectronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). doi:10.1038/nnano.2012.193
- G. Plechinger, J. Mann, E. Preciado, D. Barroso, A. Nguyen, J. Eroms, C. Schueller, L. Bartels, T. Korn, A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy. Semicond. Sci Tech. 29(6), 064008 (2014). doi:10.1088/0268-1242/29/6/064008
- E.S. Kadantsev, P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Commun. 152(10), 909–913 (2012). doi:10.1016/j.ssc.2012.02.005
- A. Kumar, P.K. Ahluwalia, A first principle comparative study of electronic and optical properties of 1H-MoS2 and 2H-MoS2. Mater. Chem. Phys. 135(2–3), 755–761 (2012). doi:10.1016/j.matchemphys.2012.05.055
- Q. Zhang, Y. Cheng, L.Y. Gan, U. Schwingenschloegl, Giant valley drifts in uniaxially strained monolayer MoS2. Phys. Rev. B 88(24), 245447 (2013). doi:10.1103/PhysRevB.88.245447
- B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44(1), 92–96 (2013). doi:10.1002/jrs.4147
- Z.M. Wang, MoS2: Materials, Physics, and Devices (Springer, Ney work, 21, pp:1–291, 2014)
- R. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966). doi:10.1063/1.1708627
- Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
- H. Pan, Y.W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 116(21), 11752–11757 (2012). doi:10.1021/jp3015782
- Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu, Z. Wang, Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Mater. Lett. 131, 122–124 (2014). doi:10.1016/j.matlet.2014.05.162
- R. van Leeuwen, A. Castellanos-Gomez, G.A. Steele, H.S.J. van der Zant, W.J. Venstra, Time-domain response of atomically thin MoS2 nanomechanical resonators. Appl. Phys. Lett. 105(4), 041911 (2014). doi:10.1063/1.4892072
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). doi:10.1021/nn2024557
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13(2), 668–673 (2013). doi:10.1021/nl3043079
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). doi:10.1038/nnano.2013.100
- B. Radisavljevic, M.B. Whitwick, A. Kis, Small-signal amplifier based on single-layer MoS2. Appl. Phys. Lett. 101(4), 043103 (2012). doi:10.1063/1.4738986
- S. Ding, D. Zhang, J.S. Chen, X.W. Lou, Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012). doi:10.1039/c1nr11552a
- K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi:10.1021/nn200659w
- K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494–498 (2012). doi:10.1038/nnano.2012.96
- H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490–493 (2012). doi:10.1038/nnano.2012.95
- X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011). doi:10.1002/smll.201002009
- H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012). doi:10.1021/nl301485q
- H. Liu, J.J. Gu, P.D. Ye, MoS2 nanoribbon transistors: transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electr. Device L 33(9), 1273–1275 (2012). doi:10.1109/LED.2012.2202630
- X. Wang, S. Yang, Q. Yue, F. Wu, J. Li, Response of MoS2 nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics. J. Alloy. Compd. 615, 989–993 (2014). doi:10.1016/j.jallcom.2014.07.016
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). doi:10.1021/nl201874w
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). doi:10.1038/nnano.2010.279
- Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors Be? Nano Lett. 11(9), 3768–3773 (2011). doi:10.1021/nl2018178
- F. Leonard, A.A. Talin, Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 6(12), 773–783 (2011). doi:10.1038/nnano.2011.196
- Y. Du, L. Yang, H. Liu, P.D. Ye, Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. Appl. Mater. 2(9), 092510 (2014). doi:10.1063/1.4894198
- H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012). doi:10.1021/nn303513c
- S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). doi:10.1021/nl303583v
- J.H. Kang, D. Sarkar, W. Liu, D. Jena, K. Banerjee, A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. 2012 IEEE Int. Electr. Devices Meet. (IEDM) (2012). doi:10.1109/IEDM.2012.6479060
- W. Liu, J.H. Kang, W. Cao, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, 2013 IEEE Int. Electr. Devices Meet. (IEDM) (2013). doi:10.1109/IEDM.2013.6724660
- J. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014). doi:10.1063/1.4866340
- S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, K. Kim, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). doi:10.1038/ncomms2018
- M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep-UK 3, 1634 (2013). doi:10.1038/srep01634
- S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R.M. Wallace, A. Javey, MoS2 P-type transistors and diodes enabled by high work function moox contacts. Nano Lett. 14(3), 1337–1342 (2014). doi:10.1021/nl4043505
- C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). doi:10.1021/nl404389u
- I. Popov, G. Seifert, D. Tomanek, Designing electrical contacts to MoS2 monolayers: a computational study. Phy. Rev. Lett. 108(15), 156802 (2012). doi:10.1103/PhysRevLett.108.156802
- J.-R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). doi:10.1021/nl4010157
- A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014). doi:10.1021/nn404961e
- N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P.M. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102(12), 123105 (2013). doi:10.1063/1.4799172
- W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013). doi:10.1063/1.4789365
- B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212–4216 (2013). doi:10.1021/nl401916s
- N.R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P.M. Ajayan, L. Balicas, Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities. ACS Nano 8(8), 7923–7929 (2014). doi:10.1021/nn501693d
- J. Yoon, W. Park, G.Y. Bae, Y. Kim, H.S. Jang, Y. Hyun, S.K. Lim, Y.H. Kahng, W.K. Hong, B.H. Lee, H.C. Ko, Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9(19), 3295–3300 (2013). doi:10.1002/smll.201300134
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). doi:10.1038/nmat4080
- M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102(19), 193107 (2013). doi:10.1063/1.4804546
- H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). doi:10.1021/nl302015v
- L. Zeng, Z. Xin, S. Chen, G. Du, J. Kang, X. Liu, Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl. Phys. Lett. 103(11), 113505 (2013). doi:10.1063/1.4821344
- D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98(13), 136805 (2007). doi:10.1103/PhysRevLett.98.136805
- H. Liu, K. Xu, X. Zhang, P.D. Ye, The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition. Appl. Phys. Lett. 100(15), 152115 (2012). doi:10.1063/1.3703595
- J. Swerts, N. Peys, L. Nyns, A. Delabie, A. Franquet, J.W. Maes, S. Van Elshocht, S. De Gendt, Impact of precursor chemistry and process conditions on the scalability of ALD HfO2 gate dielectrics. J. Electrochem. Soc. 157(1), G26–G31 (2010). doi:10.1149/1.3258664
- J. Yang, S. Kim, W. Choi, S.H. Park, Y. Jung, M.H. Cho, H. Kim, Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. ACS Appl. Mater. Inter. 5(11), 4739–4744 (2013). doi:10.1021/am303261c
- A. Azcatl, S. McDonnell, K.C. Santosh, X. Peng, H. Dong, X. Qin, R. Addou, G.I. Mordi, N. Lu, J. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 104(11), 111601 (2014). doi:10.1063/1.4869149
- L. Cheng, X. Qin, A.T. Lucero, A. Azcatl, J. Huang, R.M. Wallace, K. Cho, J. Kim, Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Inter. 6(15), 11834–11838 (2014). doi:10.1021/am5032105
- Y. Du, H. Liu, A.T. Neal, M. Si, P.D. Ye, Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electr. Device L 34(10), 1328–1330 (2013). doi:10.1109/LED.2013.2277311
- J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.A. Zhang, L. Wang, H. Zhang, A.T.S. Wee, W. Chen, Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323–5329 (2014). doi:10.1021/nn501580c
- H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13(5), 1991–1995 (2013). doi:10.1021/nl400044m
- D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. JACS 136(22), 7853–7856 (2014). doi:10.1021/ja5033327
- L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P.Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P.D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14(11), 6275–6280 (2014). doi:10.1021/nl502603d
- Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011). doi:10.1038/nature09979
- J.B. Johnson, The Schottky effect in low frequency circuits. Phys. Rev. 26(1), 71 (1925). doi:10.1103/PhysRev.26.71
- B.H. Calhoun, A. Wang, A. Chandrakasan, Device sizing for minimum energy operation in subthreshold circuits. (pp: 95–98, 3–6 Oct. 2004). doi:10.1109/CICC.2004.1358745
- J.M. Chang, A.A. Abidi, C.R. Viswanathan, Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures. IEEE Trans. Electron Devices 41(11), 1965–1971 (1994). doi:10.1109/16.333812
- S. Ghatak, A.N. Pal, A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011). doi:10.1021/nn202852j
- B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). doi:10.1021/nn203715c
- C. Kayis, J.H. Leach, C.Y. Zhu, M. Wu, X. Li, U. Oezguer, H. Morkoc, X. Yang, V. Misra, P.H. Handel, Low-frequency noise measurements of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfAlO gate dielectric. IEEE Electr. Device L. 31(9), 1041–1043 (2010). doi:10.1109/LED.2010.2055823
- A.A. Balandin, Noise and Fluctuations Control in Electronic Devices (American Scientific Publishers, Los Angeles, pp.1–411, 2002)
- E. Simoen, A. Mercha, C. Claeys, E. Young, Correlation between the 1/f noise parameters and the effective low-field mobility in HfO2 gate dielectric n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 85(6), 1057–1059 (2004). doi:10.1063/1.1779967
- X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M.J. Deen, K. Banerjee, Low-frequency noise in bilayer MoS2 transistor. ACS Nano 8(6), 5633–5640 (2014). doi:10.1021/nn4066473
- V.K. Sangwan, H.N. Arnold, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett. 13(9), 4351–4355 (2013). doi:10.1021/nl402150r
- H.-J. Kwon, H. Kang, J. Jang, S. Kim, C.P. Grigoropoulos, Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. Appl. Phys. Lett. 104(8), 083110 (2014). doi:10.1063/1.4866785
- J. Renteria, R. Samnakay, S.L. Rumyantsev, C. Jiang, P. Goli, M.S. Shur, A.A. Balandin, Low-frequency 1/f noise in MoS2 transistors: relative contributions of the channel and contacts. Appl. Phys. Lett. 104(15), 153104 (2014). doi:10.1063/1.4871374
- S. Ghatak, S. Mukherjee, M. Jain, D.D. Sarma, A. Ghosh, Microscopic origin of low frequency noise in MoS2 field-effect transistors. Appl. Mater. 2(9), 092515 (2014). doi:10.1063/1.4895955
- A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8(9), 634–638 (2013). doi:10.1038/nnano.2013.151
- N.R. Pradhan, S. Memaran, D.R.Z. Lu, J. Ludwig, Q. Zhou, P. Ajayan, D. Smirnov, L. Balicas, Pronounced photovoltaic response from PN-junctions of multi-layered MoSe2 on h-BN. arXiv:1411.2086 (2014)
- H.M. Li, D.Y. Lee, M.S. Choi, D. Qu, X. Liu, C.H. Ra, W.J. Yoo, Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. SCI Rep-UK 4, 4041 (2014). doi:10.1038/srep04041
- M.F. Khan, M.W. Iqbal, M.Z. Iqbal, M.A. Shehzad, Y. Seo, J. Eom, Photocurrent response of MoS2 field-effect transistor by deep ultraviolet light in atmospheric and N2 gas environments. ACS Appl. Mater. Interface 6(23), 21645–21651 (2014). doi:10.1021/am506716a
- K. Cho, T.Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, T. Lee, Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors. Nanotechnology 25(15), 155201 (2014). doi:10.1088/0957-4484/25/15/155201
- D.S. Tsai, D.H. Lien, M.L. Tsai, S.H. Su, K.M. Chen, J.J. Ke, Y.C. Yu, L.J. Li, J.H. He, Trilayered MoS2 metal-semiconductor-metal photodetectors: photogain and radiation resistance. IEEE J. Sel. Top. Quantum 20(1), 3800206 (2014). doi:10.1109/JSTQE.2013.2268383
- A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, N.J. Halas, Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104(3), 031112 (2014). doi:10.1063/1.4862745
- X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). doi:10.1038/nnano.2014.167
- N. Huo, J. Kang, Z. Wei, S.S. Li, J. Li, S.H. Wei, Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24(44), 7025–7031 (2014). doi:10.1002/adfm.201401504
- D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014). doi:10.1021/nn5009148
- L. Wang, Y. Wang, J.I. Wong, T. Palacios, J. Kong, H.Y. Yang, Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6), 1101–1105 (2014). doi:10.1002/smll.201302081
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). doi:10.1021/nn5015215
- S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013). doi:10.1038/nmat3673
- H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). doi:10.1002/smll.201101016
- D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). doi:10.1021/nn400026u
- A.L. Friedman, F.K. Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State Electron. 101, 2–7 (2014). doi:10.1016/j.sse.2014.06.013
- J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M.A. Alam, S. Kim, Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). doi:10.1038/srep07352
- Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Multibit storage of organic thin-film field-effect transistors. Adv. Mater. 21(19), 1954–1959 (2009). doi:10.1002/adma.200802430
- J.I. Sohn, S.S. Choi, S.M. Morris, J.S. Bendall, H.J. Coles, W.K. Hong, G. Jo, T. Lee, M.E. Welland, Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 10(11), 4316–4320 (2010). doi:10.1021/nl1013713
- T. Nirschl, J.B. Philipp, T.D. Flapp, G.W. Burr, B. Rajendran, M.H. Leeo, A. Schrott, M. Yang, M. Breitwisch, C.F. Chen, E. Joseph, M. Lamorey, R. Cheek, S.H. Chen, S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.L. Lung, C. Lam, Write strategies for 2 and 4-bit multi-level phase-change memory. IEEE Electr. Devices Meet. (pp: 461–464, 10–12 Dec. 2007). doi:10.1109/IEDM.2007.4418973
- M. Chen, H. Nam, S. Wi, G. Priessnitz, I.M. Gunawan, X. Liang, Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8(4), 4023–4032 (2014). doi:10.1021/nn501181t
- M. Kang, Y.A. Kim, J.M. Yun, D. Khim, J. Kim, Y.Y. Noh, K.J. Baeg, D.Y. Kim, Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 6(21), 12315–12323 (2014). doi:10.1039/C4NR03448A
References
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). doi:10.1038/nnano.2012.193
G. Plechinger, J. Mann, E. Preciado, D. Barroso, A. Nguyen, J. Eroms, C. Schueller, L. Bartels, T. Korn, A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy. Semicond. Sci Tech. 29(6), 064008 (2014). doi:10.1088/0268-1242/29/6/064008
E.S. Kadantsev, P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Commun. 152(10), 909–913 (2012). doi:10.1016/j.ssc.2012.02.005
A. Kumar, P.K. Ahluwalia, A first principle comparative study of electronic and optical properties of 1H-MoS2 and 2H-MoS2. Mater. Chem. Phys. 135(2–3), 755–761 (2012). doi:10.1016/j.matchemphys.2012.05.055
Q. Zhang, Y. Cheng, L.Y. Gan, U. Schwingenschloegl, Giant valley drifts in uniaxially strained monolayer MoS2. Phys. Rev. B 88(24), 245447 (2013). doi:10.1103/PhysRevB.88.245447
B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44(1), 92–96 (2013). doi:10.1002/jrs.4147
Z.M. Wang, MoS2: Materials, Physics, and Devices (Springer, Ney work, 21, pp:1–291, 2014)
R. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966). doi:10.1063/1.1708627
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
H. Pan, Y.W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 116(21), 11752–11757 (2012). doi:10.1021/jp3015782
Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu, Z. Wang, Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Mater. Lett. 131, 122–124 (2014). doi:10.1016/j.matlet.2014.05.162
R. van Leeuwen, A. Castellanos-Gomez, G.A. Steele, H.S.J. van der Zant, W.J. Venstra, Time-domain response of atomically thin MoS2 nanomechanical resonators. Appl. Phys. Lett. 105(4), 041911 (2014). doi:10.1063/1.4892072
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). doi:10.1021/nn2024557
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13(2), 668–673 (2013). doi:10.1021/nl3043079
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). doi:10.1038/nnano.2013.100
B. Radisavljevic, M.B. Whitwick, A. Kis, Small-signal amplifier based on single-layer MoS2. Appl. Phys. Lett. 101(4), 043103 (2012). doi:10.1063/1.4738986
S. Ding, D. Zhang, J.S. Chen, X.W. Lou, Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012). doi:10.1039/c1nr11552a
K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi:10.1021/nn200659w
K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494–498 (2012). doi:10.1038/nnano.2012.96
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490–493 (2012). doi:10.1038/nnano.2012.95
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011). doi:10.1002/smll.201002009
H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012). doi:10.1021/nl301485q
H. Liu, J.J. Gu, P.D. Ye, MoS2 nanoribbon transistors: transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electr. Device L 33(9), 1273–1275 (2012). doi:10.1109/LED.2012.2202630
X. Wang, S. Yang, Q. Yue, F. Wu, J. Li, Response of MoS2 nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics. J. Alloy. Compd. 615, 989–993 (2014). doi:10.1016/j.jallcom.2014.07.016
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). doi:10.1021/nl201874w
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). doi:10.1038/nnano.2010.279
Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors Be? Nano Lett. 11(9), 3768–3773 (2011). doi:10.1021/nl2018178
F. Leonard, A.A. Talin, Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 6(12), 773–783 (2011). doi:10.1038/nnano.2011.196
Y. Du, L. Yang, H. Liu, P.D. Ye, Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. Appl. Mater. 2(9), 092510 (2014). doi:10.1063/1.4894198
H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012). doi:10.1021/nn303513c
S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). doi:10.1021/nl303583v
J.H. Kang, D. Sarkar, W. Liu, D. Jena, K. Banerjee, A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. 2012 IEEE Int. Electr. Devices Meet. (IEDM) (2012). doi:10.1109/IEDM.2012.6479060
W. Liu, J.H. Kang, W. Cao, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, 2013 IEEE Int. Electr. Devices Meet. (IEDM) (2013). doi:10.1109/IEDM.2013.6724660
J. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014). doi:10.1063/1.4866340
S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, K. Kim, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). doi:10.1038/ncomms2018
M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep-UK 3, 1634 (2013). doi:10.1038/srep01634
S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R.M. Wallace, A. Javey, MoS2 P-type transistors and diodes enabled by high work function moox contacts. Nano Lett. 14(3), 1337–1342 (2014). doi:10.1021/nl4043505
C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). doi:10.1021/nl404389u
I. Popov, G. Seifert, D. Tomanek, Designing electrical contacts to MoS2 monolayers: a computational study. Phy. Rev. Lett. 108(15), 156802 (2012). doi:10.1103/PhysRevLett.108.156802
J.-R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). doi:10.1021/nl4010157
A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014). doi:10.1021/nn404961e
N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P.M. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102(12), 123105 (2013). doi:10.1063/1.4799172
W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013). doi:10.1063/1.4789365
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212–4216 (2013). doi:10.1021/nl401916s
N.R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P.M. Ajayan, L. Balicas, Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities. ACS Nano 8(8), 7923–7929 (2014). doi:10.1021/nn501693d
J. Yoon, W. Park, G.Y. Bae, Y. Kim, H.S. Jang, Y. Hyun, S.K. Lim, Y.H. Kahng, W.K. Hong, B.H. Lee, H.C. Ko, Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9(19), 3295–3300 (2013). doi:10.1002/smll.201300134
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). doi:10.1038/nmat4080
M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102(19), 193107 (2013). doi:10.1063/1.4804546
H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). doi:10.1021/nl302015v
L. Zeng, Z. Xin, S. Chen, G. Du, J. Kang, X. Liu, Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl. Phys. Lett. 103(11), 113505 (2013). doi:10.1063/1.4821344
D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98(13), 136805 (2007). doi:10.1103/PhysRevLett.98.136805
H. Liu, K. Xu, X. Zhang, P.D. Ye, The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition. Appl. Phys. Lett. 100(15), 152115 (2012). doi:10.1063/1.3703595
J. Swerts, N. Peys, L. Nyns, A. Delabie, A. Franquet, J.W. Maes, S. Van Elshocht, S. De Gendt, Impact of precursor chemistry and process conditions on the scalability of ALD HfO2 gate dielectrics. J. Electrochem. Soc. 157(1), G26–G31 (2010). doi:10.1149/1.3258664
J. Yang, S. Kim, W. Choi, S.H. Park, Y. Jung, M.H. Cho, H. Kim, Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. ACS Appl. Mater. Inter. 5(11), 4739–4744 (2013). doi:10.1021/am303261c
A. Azcatl, S. McDonnell, K.C. Santosh, X. Peng, H. Dong, X. Qin, R. Addou, G.I. Mordi, N. Lu, J. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 104(11), 111601 (2014). doi:10.1063/1.4869149
L. Cheng, X. Qin, A.T. Lucero, A. Azcatl, J. Huang, R.M. Wallace, K. Cho, J. Kim, Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Inter. 6(15), 11834–11838 (2014). doi:10.1021/am5032105
Y. Du, H. Liu, A.T. Neal, M. Si, P.D. Ye, Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electr. Device L 34(10), 1328–1330 (2013). doi:10.1109/LED.2013.2277311
J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.A. Zhang, L. Wang, H. Zhang, A.T.S. Wee, W. Chen, Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323–5329 (2014). doi:10.1021/nn501580c
H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13(5), 1991–1995 (2013). doi:10.1021/nl400044m
D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. JACS 136(22), 7853–7856 (2014). doi:10.1021/ja5033327
L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P.Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P.D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14(11), 6275–6280 (2014). doi:10.1021/nl502603d
Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011). doi:10.1038/nature09979
J.B. Johnson, The Schottky effect in low frequency circuits. Phys. Rev. 26(1), 71 (1925). doi:10.1103/PhysRev.26.71
B.H. Calhoun, A. Wang, A. Chandrakasan, Device sizing for minimum energy operation in subthreshold circuits. (pp: 95–98, 3–6 Oct. 2004). doi:10.1109/CICC.2004.1358745
J.M. Chang, A.A. Abidi, C.R. Viswanathan, Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures. IEEE Trans. Electron Devices 41(11), 1965–1971 (1994). doi:10.1109/16.333812
S. Ghatak, A.N. Pal, A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011). doi:10.1021/nn202852j
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). doi:10.1021/nn203715c
C. Kayis, J.H. Leach, C.Y. Zhu, M. Wu, X. Li, U. Oezguer, H. Morkoc, X. Yang, V. Misra, P.H. Handel, Low-frequency noise measurements of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfAlO gate dielectric. IEEE Electr. Device L. 31(9), 1041–1043 (2010). doi:10.1109/LED.2010.2055823
A.A. Balandin, Noise and Fluctuations Control in Electronic Devices (American Scientific Publishers, Los Angeles, pp.1–411, 2002)
E. Simoen, A. Mercha, C. Claeys, E. Young, Correlation between the 1/f noise parameters and the effective low-field mobility in HfO2 gate dielectric n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 85(6), 1057–1059 (2004). doi:10.1063/1.1779967
X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M.J. Deen, K. Banerjee, Low-frequency noise in bilayer MoS2 transistor. ACS Nano 8(6), 5633–5640 (2014). doi:10.1021/nn4066473
V.K. Sangwan, H.N. Arnold, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett. 13(9), 4351–4355 (2013). doi:10.1021/nl402150r
H.-J. Kwon, H. Kang, J. Jang, S. Kim, C.P. Grigoropoulos, Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. Appl. Phys. Lett. 104(8), 083110 (2014). doi:10.1063/1.4866785
J. Renteria, R. Samnakay, S.L. Rumyantsev, C. Jiang, P. Goli, M.S. Shur, A.A. Balandin, Low-frequency 1/f noise in MoS2 transistors: relative contributions of the channel and contacts. Appl. Phys. Lett. 104(15), 153104 (2014). doi:10.1063/1.4871374
S. Ghatak, S. Mukherjee, M. Jain, D.D. Sarma, A. Ghosh, Microscopic origin of low frequency noise in MoS2 field-effect transistors. Appl. Mater. 2(9), 092515 (2014). doi:10.1063/1.4895955
A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8(9), 634–638 (2013). doi:10.1038/nnano.2013.151
N.R. Pradhan, S. Memaran, D.R.Z. Lu, J. Ludwig, Q. Zhou, P. Ajayan, D. Smirnov, L. Balicas, Pronounced photovoltaic response from PN-junctions of multi-layered MoSe2 on h-BN. arXiv:1411.2086 (2014)
H.M. Li, D.Y. Lee, M.S. Choi, D. Qu, X. Liu, C.H. Ra, W.J. Yoo, Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. SCI Rep-UK 4, 4041 (2014). doi:10.1038/srep04041
M.F. Khan, M.W. Iqbal, M.Z. Iqbal, M.A. Shehzad, Y. Seo, J. Eom, Photocurrent response of MoS2 field-effect transistor by deep ultraviolet light in atmospheric and N2 gas environments. ACS Appl. Mater. Interface 6(23), 21645–21651 (2014). doi:10.1021/am506716a
K. Cho, T.Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, T. Lee, Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors. Nanotechnology 25(15), 155201 (2014). doi:10.1088/0957-4484/25/15/155201
D.S. Tsai, D.H. Lien, M.L. Tsai, S.H. Su, K.M. Chen, J.J. Ke, Y.C. Yu, L.J. Li, J.H. He, Trilayered MoS2 metal-semiconductor-metal photodetectors: photogain and radiation resistance. IEEE J. Sel. Top. Quantum 20(1), 3800206 (2014). doi:10.1109/JSTQE.2013.2268383
A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, N.J. Halas, Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104(3), 031112 (2014). doi:10.1063/1.4862745
X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). doi:10.1038/nnano.2014.167
N. Huo, J. Kang, Z. Wei, S.S. Li, J. Li, S.H. Wei, Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24(44), 7025–7031 (2014). doi:10.1002/adfm.201401504
D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014). doi:10.1021/nn5009148
L. Wang, Y. Wang, J.I. Wong, T. Palacios, J. Kong, H.Y. Yang, Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6), 1101–1105 (2014). doi:10.1002/smll.201302081
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). doi:10.1021/nn5015215
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013). doi:10.1038/nmat3673
H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). doi:10.1002/smll.201101016
D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). doi:10.1021/nn400026u
A.L. Friedman, F.K. Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State Electron. 101, 2–7 (2014). doi:10.1016/j.sse.2014.06.013
J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M.A. Alam, S. Kim, Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). doi:10.1038/srep07352
Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Multibit storage of organic thin-film field-effect transistors. Adv. Mater. 21(19), 1954–1959 (2009). doi:10.1002/adma.200802430
J.I. Sohn, S.S. Choi, S.M. Morris, J.S. Bendall, H.J. Coles, W.K. Hong, G. Jo, T. Lee, M.E. Welland, Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 10(11), 4316–4320 (2010). doi:10.1021/nl1013713
T. Nirschl, J.B. Philipp, T.D. Flapp, G.W. Burr, B. Rajendran, M.H. Leeo, A. Schrott, M. Yang, M. Breitwisch, C.F. Chen, E. Joseph, M. Lamorey, R. Cheek, S.H. Chen, S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.L. Lung, C. Lam, Write strategies for 2 and 4-bit multi-level phase-change memory. IEEE Electr. Devices Meet. (pp: 461–464, 10–12 Dec. 2007). doi:10.1109/IEDM.2007.4418973
M. Chen, H. Nam, S. Wi, G. Priessnitz, I.M. Gunawan, X. Liang, Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8(4), 4023–4032 (2014). doi:10.1021/nn501181t
M. Kang, Y.A. Kim, J.M. Yun, D. Khim, J. Kim, Y.Y. Noh, K.J. Baeg, D.Y. Kim, Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 6(21), 12315–12323 (2014). doi:10.1039/C4NR03448A