A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk–Shell Structured Nanomaterials
Corresponding Author: Zhiming M. Wang
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 40
Abstract
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk–shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail.
Highlights:
1 In this review article, we have emphasized the recent developments of YS structured anodes and their applications for enhanced electrochemical performance in LIBs and SIBs.
2 An overview of recent advances in the novel YS structures of spheres, polyhedron and rods with controllable shape and compositions is provided.
3 Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials is discussed in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014). https://doi.org/10.1002/aenm.201300882
- X. Meng, X.Q. Yang, X. Sun, Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24(27), 3589–3615 (2012). https://doi.org/10.1002/adma.201200397
- J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
- W.D. He, L.H. Ye, K.C. Wen, Y.C. Liang, W.Q. Lv, G.L. Zhu, K.H.L. Zhang, Materials research advances towards high-capacity battery/fuel cell devices. J. Electron. Sci. Technol. 14(1), 12–20 (2016). https://doi.org/10.11989/JEST.1674-862X.511031
- X. Tong, Ferroelectric properties and application of hybrid organic–inorganic perovskites. J. Electron. Sci. Technol. 15(4), 326–332 (2017). https://doi.org/10.11989/JEST.1674-862X.7090905
- X. Tong, X.T. Kong, Y. Zhou, F. Navarro-Pardo, G.S. Selopal et al., Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv. Energy Mater. 8(2), 1701432 (2017). https://doi.org/10.1002/aenm.201701432
- Q. Fan, Q. Lan, M. Zhang, X. Fan, Z. Zhou, C. Zhang, Preparation and photocatalytic activities of 3D flower-like CuO nanostructures. J. Semicond. 37(8), 19–27 (2016). https://doi.org/10.1088/1674-4926/37/8/083002
- B. Luo, L. Zhi, Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 8(2), 456–477 (2015). https://doi.org/10.1039/C4EE02578D
- Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44(17), 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
- Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
- L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- K. Fu, Z. Wang, C. Yan, Z. Liu, Y. Yao et al., All-component transient lithium-ion batteries. Adv. Energy Mater. 6(10), 1502496 (2016). https://doi.org/10.1002/aenm.201502496
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
- S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
- G. Li, Y. Li, J. Chen, P. Zhao, D. Li, Y. Dong, L. Zhang, Synthesis and research of egg shell-yolk NiO/C porous composites as lithium-ion battery anode material. Electrochim. Acta 245, 941–948 (2017). https://doi.org/10.1016/j.electacta.2017.06.039
- Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu, A. Facchetti, Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
- M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary : understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4985 (2013). https://doi.org/10.1002/adma.201301795
- W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54(15), 4440–4457 (2015). https://doi.org/10.1002/anie.201409262
- P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B
- L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). https://doi.org/10.1039/C0EE00699H
- Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9(10), 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A
- M. Zhang, E. Liu, T. Cao, H. Wang, C. Shi et al., Sandwiched graphene inserted with graphene-encapsulated yolk–shell g-Fe2O3 nanops for efficient lithium ion storage. J. Mater. Chem. A 5(15), 7035–7042 (2017). https://doi.org/10.1039/C7TA01239J
- R. Luo, W. Lv, K. Wen, W. He, Overview of graphene as anode in lithium-ion batteries. J. Electron. Sci. Technol. (2017). https://doi.org/10.11989/JEST.1674-862X.6032519
- Z. Li, J. Ding, D. Mitlin, Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc. Chem. Res. 48(6), 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114
- M.-S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091
- X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
- H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015). https://doi.org/10.1039/C4TA06467D
- S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
- L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015). https://doi.org/10.1002/anie.201409776
- J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano Micro Lett. 10(1), 12 (2017). https://doi.org/10.1007/s40820-017-0165-1
- X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
- H. Chen, B. Qi, T. Moore, F. Wang, D.C. Colvin et al., Multifunctional yolk-in-shell nanops for ph-triggered drug release and imaging. Small 10(16), 3364–3370 (2014). https://doi.org/10.1002/smll.201303769
- X. Li, X. Zhou, H. Guo, C. Wang, J. Liu, P. Sun, F. Liu, G. Lu, Design of Au@ZnO yolk–shell nanospheres with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 6(21), 18661–18667 (2014). https://doi.org/10.1021/am5057322
- Z.-M. Cui, Z. Chen, C.-Y. Cao, L. Jiang, W.-G. Song, A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun. 49(23), 2332–2334 (2013). https://doi.org/10.1039/C3CC38649J
- Y.N. Ko, Y.C. Kang, S.B. Park, A new strategy for synthesizing yolk–shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5(19), 8899–8903 (2013). https://doi.org/10.1039/C3NR02625F
- Y.N. Ko, S.H. Choi, S.B. Park, Y.C. Kang, Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties. Nanoscale 6(18), 10511–10515 (2014). https://doi.org/10.1039/C4NR02538E
- P. Hou, H. Zhang, Z. Zi, L. Zhang, X. Xu, Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J. Mater. Chem. A 5(9), 4254–4279 (2017). https://doi.org/10.1039/C6TA10297B
- S.H. Choi, Y.C. Kang, Ultrafast synthesis of yolk–shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl. Mater. Interfaces 6(4), 2312–2316 (2014). https://doi.org/10.1021/am404232x
- Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Appl. Catal. B Environ. 188, 324–341 (2016). https://doi.org/10.1016/j.apcatb.2016.01.067
- L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
- F. Xie, L. Zhang, D. Su, M. Jaroniec, S.-Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
- M. Kim, K. Sohn, H.B. Na, T. Hyeon, Synthesis of nanorattles composed of gold nanops encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2(12), 1383–1387 (2002). https://doi.org/10.1021/nl025820j
- J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill hela cells. J. Am. Chem. Soc. 129(5), 1428–1433 (2007). https://doi.org/10.1021/ja067785e
- J.S. Chen, C.M. Li, W.W. Zhou, Q.Y. Yan, L.A. Archer, X.W. Lou, One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 1(2), 280–285 (2009). https://doi.org/10.1039/B9NR00102F
- Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4(1), 529–539 (2010). https://doi.org/10.1021/nn901398j
- W. Wei, Y. Zhao, S. Peng, H. Zhang, Y. Bian, H. Li, H. Li, Yolk–shell nanoarchitectures with a Ru-containing core and a radially oriented mesoporous silica shell: facile synthesis and application for one-pot biomass conversion by combining with enzyme. ACS Appl. Mater. Interfaces 6(23), 20851–20859 (2014). https://doi.org/10.1021/am5052608
- X.-J. Wu, D. Xu, Soft template synthesis of yolk/silica shell ps. Adv. Mater. 22(13), 1516–1520 (2010). https://doi.org/10.1002/adma.200903879
- H. Wang, H. Lin, Y. Long, B. Ni, T. He, S. Zhang, H. Zhu, X. Wang, Titanocene dichloride (Cp2TiCl2) as a precursor for template-free fabrication of hollow TiO2 nanostructures with enhanced photocatalytic hydrogen production. Nanoscale 9(5), 2074–2081 (2017). https://doi.org/10.1039/C6NR09730H
- C.C. Yec, H.C. Zeng, Synthesis of complex nanomaterials via Ostwald ripening. J. Mater. Chem. A 2(14), 4843–4851 (2014). https://doi.org/10.1039/C3TA14203E
- B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
- R. Purbia, S. Paria, Yolk/shell nanops: classifications, synthesis, properties, and applications. Nanoscale 7(47), 19789–19873 (2015). https://doi.org/10.1039/C5NR04729C
- J. Liu, S.Z. Qiao, J.S. Chen, X.W. Lou, X. Xing, G.Q. Lu, Yolk/shell nanops: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47(47), 12578–12591 (2011). https://doi.org/10.1039/C1CC13658E
- Y. Zhang, M. Zhang, L. Ding, Y. Wang, J. Xu, One-pot method for multifunctional yolk structured nanocomposites with N-doped carbon shell using polydopamine as precursor. Nanoscale Res. Lett. 11(1), 212 (2016). https://doi.org/10.1186/s11671-016-1425-6
- J. Li, J. Wang, D. Wexler, D. Shi, J. Liang, H. Liu, S. Xiong, Y. Qian, Simple synthesis of yolk–shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 1(48), 15292–15299 (2013). https://doi.org/10.1039/C3TA13787B
- Y.J. Hong, M.Y. Son, Y.C. Kang, One-pot facile synthesis of double-shelled sno2 yolk–shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 25(16), 2279–2283 (2013). https://doi.org/10.1002/adma.201204506
- J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, Y. Qian, S. Xiong, Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 6(1), 24–30 (2014). https://doi.org/10.1021/am404841t
- J. Leng, Z. Wang, X. Li, H. Guo, H. Li, K. Shih, G. Yan, J. Wang, Accurate construction of a hierarchical nickel-cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. J. Mater. Chem. A 5(29), 14996–15001 (2017). https://doi.org/10.1039/C7TA02956J
- M.Y. Son, Y.J. Hong, Y.C. Kang, Superior electrochemical properties of Co3O4 yolk–shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 49(50), 5678–5680 (2013). https://doi.org/10.1039/C3CC42117A
- J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8(12), 3531–3538 (2015). https://doi.org/10.1039/C5EE02074C
- A. Guiet, C. Göbel, K. Klingan, M. Lublow, T. Reier et al., Hydrophobic nanoreactor soft-templating: a supramolecular approach to yolk@shell materials. Adv. Funct. Mater. 25(39), 6228–6240 (2015). https://doi.org/10.1002/adfm.201502388
- J.S. Cho, Y.C. Kang, Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 11(36), 4673–4681 (2015). https://doi.org/10.1002/smll.201500940
- L. Cao, D. Chen, R.A. Caruso, Surface-metastable phase-initiated seeding and Ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 52(42), 10986–10991 (2013). https://doi.org/10.1002/anie.201305819
- C. Dai, A. Zhang, J. Li, K. Hou, M. Liu, C. Song, X. Guo, Synthesis of yolk–shell HPW@Hollow silicalite-1 for esterification reaction. Chem. Commun. 50(37), 4846–4848 (2014). https://doi.org/10.1039/C4CC00693C
- B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide ps for hybrid supercapacitors. Adv. Mater. 29(17), 1605902 (2017). https://doi.org/10.1002/adma.201605902
- Y. Pan, J. Zhang, H. Lu, Uniform yolk–shell MoS2@Carbon microsphere anodes for high-performance lithium-ion batteries. Chem. Eur. J. 23(41), 9937–9945 (2017). https://doi.org/10.1002/chem.201701691
- M.Y. Son, Y.J. Hong, J.-K. Lee, Y. Chan Kang, One-pot synthesis of Fe2O3 yolk–shell ps with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 5(23), 11592–11597 (2013). https://doi.org/10.1039/C3NR03978A
- X. Fang, S. Liu, J. Zang, C. Xu, M.-S. Zheng, Q.-F. Dong, D. Sun, N. Zheng, Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk–shell carbon nanostructures. Nanoscale 5(15), 6908–6916 (2013). https://doi.org/10.1039/C3NR01723K
- T. Zhu, J. Wang, G.W. Ho, Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy 18, 273–282 (2015). https://doi.org/10.1016/j.nanoen.2015.10.035
- H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPy yolk–shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
- Y. Ma, A. Huang, H. Zhou, S. Ji, S. Zhang, R. Li, H. Yao, X. Cao, P. Jin, Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J. Mater. Chem. A 5(14), 6522–6531 (2017). https://doi.org/10.1039/C6TA11194G
- G. Li, Z. Tang, Noble metal nanop@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6(8), 3995–4011 (2014). https://doi.org/10.1039/C3NR06787D
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
- L. Su, Y. Xu, J. Xie, L. Wang, Y. Wang, Multi-yolk–shell SnO2/Co3Sn2@C nanocubes with high initial coulombic efficiency and oxygen reutilization for lithium storage. ACS Appl. Mater. Interfaces 8(51), 35172–35179 (2016). https://doi.org/10.1021/acsami.6b10450
- Y. Wu, J. Meng, Q. Li, C. Niu, X. Wang, W. Yang, W. Li, L. Mai, Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 10(7), 2364–2376 (2017). https://doi.org/10.1007/s12274-017-1433-6
- H. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24(27), 4337–4342 (2014). https://doi.org/10.1002/adfm.201400178
- R. Zhao, X. Shen, Q. Wu, X. Zhang, W. Li et al., Heterogeneous double-shelled constructed fe3o4 yolk–shell magnetite nanoboxes with superior lithium storage performances. ACS Appl. Mater. Interfaces. 9(29), 24662–24670 (2017). https://doi.org/10.1021/acsami.7b07443
- L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5(21), 1500981 (2015). https://doi.org/10.1002/aenm.201500981
- Y. Su, D. Ao, H. Liu, Y. Wang, MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5(18), 8680–8689 (2017). https://doi.org/10.1039/C7TA00855D
- J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, Y. Wang, Novel Fe2P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. J. Mater. Chem. A 4(25), 9923–9930 (2016). https://doi.org/10.1039/C6TA03501A
- Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
- Z. Liu, X.-Y. Yu, U. Paik, Etching-in-a-box: a novel strategy to synthesize unique yolk–shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv. Energy Mater. 6(6), 1502318 (2016). https://doi.org/10.1002/aenm.201502318
- J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
- Z. Liu, T. Lu, T. Song, X.-Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
- H. Zhang, X. Huang, O. Noonan, L. Zhou, C. Yu, Tailored yolk–shell Sn@C nanoboxes for high-performance lithium storage. Adv. Funct. Mater. 27(8), 1606023 (2017). https://doi.org/10.1002/adfm.201606023
- X. Yu, J. Bi, G. Yang, H. Tao, S. Yang, Synergistic effect induced high photothermal performance of Au nanorod@Cu7S4 yolk–shell nanooctahedron ps. J. Phys. Chem. C 120(43), 24533–24541 (2016). https://doi.org/10.1021/acs.jpcc.6b06213
- Z. Cai, L. Xu, M. Yan, C. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2015). https://doi.org/10.1021/nl504427d
- N. Wang, Z. Bai, Y. Qian, J. Yang, One-dimensional yolk–shell Sb@Ti–O–P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interfaces 9(1), 447–454 (2017). https://doi.org/10.1021/acsami.6b13193
- M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou, X.H. Bu, Yolk–shell MnO@ZnMn2O4/N-C nanorods derived from a-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12(40), 5564–5571 (2016). https://doi.org/10.1002/smll.201601959
- A. Li, P. Zhang, X. Chang, W. Cai, T. Wang, J. Gong, Gold nanorod@TiO2 yolk–shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 11(16), 1892–1899 (2015). https://doi.org/10.1002/smll.201403058
- J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk–shell nanops: Fe3O4@Fe3C core@shell nanops as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
- Y. Zhao, Z. Feng, Z.J. Xu, Yolk–shell Fe2O3⊙C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 7(21), 9520–9525 (2015). https://doi.org/10.1039/C5NR01281C
- B. Li, R. Qi, J. Zai, F. Du, C. Xue, Y. Jin, C. Jin, Z. Ma, X. Qian, Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12(38), 5281–5287 (2016). https://doi.org/10.1002/smll.201601914
- X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
- X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
- L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao, L. Mai, Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29(20), 1602914 (2017). https://doi.org/10.1002/adma.201602914
- L. Yu, H.B. Wu, X.W.D. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017). https://doi.org/10.1021/acs.accounts.6b00480
- Y. Ma, H. Tang, Y. Zhang, Z. Li, X. Zhang, Z. Tang, Facile synthesis of Si-C nanocomposites with yolk–shell structure as an anode for lithium-ion batteries. J. Alloy. Compd. 704, 599–606 (2017). https://doi.org/10.1016/j.jallcom.2017.02.083
- J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, Core-shell yolk–shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 342, 529–536 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.094
- J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu et al., Yolk–shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133–142 (2015). https://doi.org/10.1016/j.nanoen.2015.09.016
- M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1), 74–103 (2016). https://doi.org/10.1039/C5NR05116A
- N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk–shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). https://doi.org/10.1021/nl3014814
- D. Han, G. Guo, Y. Yan, T. Li, B. Wang, A. Dong, Pomegranate-like, carbon-coated Fe3O4 nanop superps for high-performance lithium storage. Energy Storage Mater. 10, 32–39 (2018). https://doi.org/10.1016/j.ensm.2017.08.003
- Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z. Guo, H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29(44), 1703028 (2017). https://doi.org/10.1002/adma.201703028
- J. Wang, W. Li, F. Wang, Y. Xia, A.M. Asiri, D. Zhao, Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 6(6), 3217–3222 (2014). https://doi.org/10.1039/C3NR06452B
- S.H. Choi, Y.C. Kang, Synthesis for yolk–shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 10(3), 474–478 (2014). https://doi.org/10.1002/smll.201301483
- H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., From zinc-cyanide hybrid coordination polymers to hierarchical yolk–shell structures for high-performance and ultra-stable lithium-ion batteries. Nano Energy 33, 168–176 (2017). https://doi.org/10.1016/j.nanoen.2017.01.043
- H.Z. Li, L.Y. Yang, J. Liu, S.T. Li, L.B. Fang, Y.K. Lu, H.R. Yang, S.L. Liu, M. Lei, Improved electrochemical performance of yolk–shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J. Power Sources 324, 780–787 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.011
- S. Li, Z. Wang, J. Liu, L. Yang, Y. Guo, L. Cheng, M. Lei, W. Wang, Yolk–shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 8(30), 19438–19445 (2016). https://doi.org/10.1021/acsami.6b04736
- L. Jiang, Y. Qu, Z. Ren, P. Yu, D. Zhao, W. Zhou, L. Wang, H. Fu, In Situ Carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(3), 1595–1601 (2015). https://doi.org/10.1021/am5070393
- J. Li, D. Yan, S. Hou, T. Lu, Y. Yao, D.H.C. Chua, L. Pan, Metal-organic frameworks derived yolk–shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018). https://doi.org/10.1016/j.cej.2017.10.183
- S. Li, J. Niu, Y.C. Zhao, K.P. So, C. Wang, C.A. Wang, J. Li, High-rate aluminium yolk–shell nanop anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 6, 7872 (2015). https://doi.org/10.1038/ncomms8872
- J.H. Kim, Y.C. Kang, Synthesis of uniquely structured yolk–shell metal oxide microspheres filled with nitrogen-doped graphitic carbon with excellent Li-ion storage performance. Small 13(39), 1701585 (2017). https://doi.org/10.1002/smll.201701585
- Y. Zhu, S.H. Choi, X. Fan, J. Shin, Z. Ma, M.R. Zachariah, J.W. Choi, C. Wang, Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7(7), 1601578 (2017). https://doi.org/10.1002/aenm.201601578
- J.H. Kim, Y.C. Kang, Yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: synthesis and application as anode materials for Na-ion batteries. Nano Res. 10(9), 3178–3188 (2017). https://doi.org/10.1007/s12274-017-1535-1
- L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanops via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
- M.A. Mahadik, Y.M. Hunge, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. J. Semicond. 36(3), 23–28 (2015). https://doi.org/10.1088/1674-4926/36/3/033002
- S.H. Choi, J.-K. Lee, Y.C. Kang, Controllable synthesis of yolk–shell-structured metal oxides with seven to ten components for finding materials with superior lithium storage properties. Nanoscale 6(21), 12421–12425 (2014). https://doi.org/10.1039/C4NR03777D
- T. Chen, Y. Hu, B. Cheng, R. Chen, H. Lv et al., Multi-yolk–shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20, 305–314 (2016). https://doi.org/10.1016/j.nanoen.2015.12.024
- W. Qiu, J. Jiao, J. Xia, H. Zhong, L. Chen, A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem. Eur. J. 21(11), 4359–4367 (2015). https://doi.org/10.1002/chem.201405821
- Y. Huang, D. Wu, A. Dianat, M. Bobeth, T. Huang, Y. Mai, F. Zhang, G. Cuniberti, X. Feng, Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. J. Mater. Chem. A 5(4), 1588–1594 (2017). https://doi.org/10.1039/C6TA09161J
- C. Wu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk–shell-like nanostructural design. Adv. Mater. 29(3), 1604015 (2017). https://doi.org/10.1002/adma.201604015
- R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk–shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017). https://doi.org/10.1038/ncomms13949
- D. Xu, R. Jiao, Y. Sun, D. Sun, X. Zhang, S. Zeng, Y. Di, l-Cysteine-assisted synthesis of urchin-like γ-MnS and its lithium storage properties. Nanoscale Res. Lett. 11(1), 444 (2016). https://doi.org/10.1186/s11671-016-1664-6
- L. Feng, Y. Zhang, R. Wang, Y. Zhang, W. Bai et al., Preparation of PPy-coated MnO2 hybrid micromaterials and their improved cyclic performance as anode for lithium-ion batteries. Nanoscale Res. Lett. 12(1), 518 (2017). https://doi.org/10.1186/s11671-017-2286-3
- S.H. Choi, Y.C. Kang, Synergetic effect of yolk–shell structure and uniform mixing of SnS–MoS2 nanocrystals for improved na-ion storage capabilities. ACS Appl. Mater. Interfaces 7(44), 24694–24702 (2015). https://doi.org/10.1021/acsami.5b07093
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/C2EE02781J
- Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173 (2017). https://doi.org/10.1002/aenm.201600173
- S. Qiu, L. Xiao, X. Ai, H. Yang, Y. Cao, Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(1), 345–353 (2017). https://doi.org/10.1021/acsami.6b12001
- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin et al., New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-Ion batteries. Nano Lett. 17(3), 2034–2042 (2017). https://doi.org/10.1021/acs.nanolett.7b00083
- H. Geng, J. Yang, Z. Dai, Y. Zhang, Y. Zheng et al., Co9S8/MoS2 yolk–shell spheres for advanced li/na storage. Small 13(14), 1603490 (2017). https://doi.org/10.1002/smll.201603490
- L. Ma, P. Yan, S. Wu, G. Zhu, Y. Shen, Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J. Mater. Chem. A 5(32), 16994–17000 (2017). https://doi.org/10.1039/C7TA04900E
- J. Wang, H. Tang, H. Wang, R. Yu, D. Wang, Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Mate. Chem. Front. 1(3), 414–430 (2017). https://doi.org/10.1039/C6QM00273K
- B. Li, Z. Xiao, J. Zai, M. Chen, H. Wang, X. Liu, G. Li, X. Qian, A candidate strategy to achieve high initial Coulombic efficiency and long cycle life of Si anode materials: exterior carbon coating on porous Si microps. Mater. Today Energy 5, 299–304 (2017). https://doi.org/10.1016/j.mtener.2017.07.006
- S. Guo, X. Hu, Y. Hou, Z. Wen, Tunable synthesis of yolk–shell porous silicon@carbon for optimizing si/c-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9(48), 42084–42092 (2017). https://doi.org/10.1021/acsami.7b13035
- M. Delong, C. Zhanyi, H. Anming, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
- Y. Zhao, X. Li, J. Liu, C. Wang, Y. Zhao, G. Yue, MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8(10), 6472–6480 (2016). https://doi.org/10.1021/acsami.5b12562
References
X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014). https://doi.org/10.1002/aenm.201300882
X. Meng, X.Q. Yang, X. Sun, Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24(27), 3589–3615 (2012). https://doi.org/10.1002/adma.201200397
J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
W.D. He, L.H. Ye, K.C. Wen, Y.C. Liang, W.Q. Lv, G.L. Zhu, K.H.L. Zhang, Materials research advances towards high-capacity battery/fuel cell devices. J. Electron. Sci. Technol. 14(1), 12–20 (2016). https://doi.org/10.11989/JEST.1674-862X.511031
X. Tong, Ferroelectric properties and application of hybrid organic–inorganic perovskites. J. Electron. Sci. Technol. 15(4), 326–332 (2017). https://doi.org/10.11989/JEST.1674-862X.7090905
X. Tong, X.T. Kong, Y. Zhou, F. Navarro-Pardo, G.S. Selopal et al., Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv. Energy Mater. 8(2), 1701432 (2017). https://doi.org/10.1002/aenm.201701432
Q. Fan, Q. Lan, M. Zhang, X. Fan, Z. Zhou, C. Zhang, Preparation and photocatalytic activities of 3D flower-like CuO nanostructures. J. Semicond. 37(8), 19–27 (2016). https://doi.org/10.1088/1674-4926/37/8/083002
B. Luo, L. Zhi, Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 8(2), 456–477 (2015). https://doi.org/10.1039/C4EE02578D
Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44(17), 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
K. Fu, Z. Wang, C. Yan, Z. Liu, Y. Yao et al., All-component transient lithium-ion batteries. Adv. Energy Mater. 6(10), 1502496 (2016). https://doi.org/10.1002/aenm.201502496
Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
G. Li, Y. Li, J. Chen, P. Zhao, D. Li, Y. Dong, L. Zhang, Synthesis and research of egg shell-yolk NiO/C porous composites as lithium-ion battery anode material. Electrochim. Acta 245, 941–948 (2017). https://doi.org/10.1016/j.electacta.2017.06.039
Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu, A. Facchetti, Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary : understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4985 (2013). https://doi.org/10.1002/adma.201301795
W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54(15), 4440–4457 (2015). https://doi.org/10.1002/anie.201409262
P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B
L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). https://doi.org/10.1039/C0EE00699H
Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9(10), 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A
M. Zhang, E. Liu, T. Cao, H. Wang, C. Shi et al., Sandwiched graphene inserted with graphene-encapsulated yolk–shell g-Fe2O3 nanops for efficient lithium ion storage. J. Mater. Chem. A 5(15), 7035–7042 (2017). https://doi.org/10.1039/C7TA01239J
R. Luo, W. Lv, K. Wen, W. He, Overview of graphene as anode in lithium-ion batteries. J. Electron. Sci. Technol. (2017). https://doi.org/10.11989/JEST.1674-862X.6032519
Z. Li, J. Ding, D. Mitlin, Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc. Chem. Res. 48(6), 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114
M.-S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091
X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015). https://doi.org/10.1039/C4TA06467D
S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015). https://doi.org/10.1002/anie.201409776
J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano Micro Lett. 10(1), 12 (2017). https://doi.org/10.1007/s40820-017-0165-1
X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
H. Chen, B. Qi, T. Moore, F. Wang, D.C. Colvin et al., Multifunctional yolk-in-shell nanops for ph-triggered drug release and imaging. Small 10(16), 3364–3370 (2014). https://doi.org/10.1002/smll.201303769
X. Li, X. Zhou, H. Guo, C. Wang, J. Liu, P. Sun, F. Liu, G. Lu, Design of Au@ZnO yolk–shell nanospheres with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 6(21), 18661–18667 (2014). https://doi.org/10.1021/am5057322
Z.-M. Cui, Z. Chen, C.-Y. Cao, L. Jiang, W.-G. Song, A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun. 49(23), 2332–2334 (2013). https://doi.org/10.1039/C3CC38649J
Y.N. Ko, Y.C. Kang, S.B. Park, A new strategy for synthesizing yolk–shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5(19), 8899–8903 (2013). https://doi.org/10.1039/C3NR02625F
Y.N. Ko, S.H. Choi, S.B. Park, Y.C. Kang, Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties. Nanoscale 6(18), 10511–10515 (2014). https://doi.org/10.1039/C4NR02538E
P. Hou, H. Zhang, Z. Zi, L. Zhang, X. Xu, Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J. Mater. Chem. A 5(9), 4254–4279 (2017). https://doi.org/10.1039/C6TA10297B
S.H. Choi, Y.C. Kang, Ultrafast synthesis of yolk–shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl. Mater. Interfaces 6(4), 2312–2316 (2014). https://doi.org/10.1021/am404232x
Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Appl. Catal. B Environ. 188, 324–341 (2016). https://doi.org/10.1016/j.apcatb.2016.01.067
L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
F. Xie, L. Zhang, D. Su, M. Jaroniec, S.-Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
M. Kim, K. Sohn, H.B. Na, T. Hyeon, Synthesis of nanorattles composed of gold nanops encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2(12), 1383–1387 (2002). https://doi.org/10.1021/nl025820j
J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill hela cells. J. Am. Chem. Soc. 129(5), 1428–1433 (2007). https://doi.org/10.1021/ja067785e
J.S. Chen, C.M. Li, W.W. Zhou, Q.Y. Yan, L.A. Archer, X.W. Lou, One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 1(2), 280–285 (2009). https://doi.org/10.1039/B9NR00102F
Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4(1), 529–539 (2010). https://doi.org/10.1021/nn901398j
W. Wei, Y. Zhao, S. Peng, H. Zhang, Y. Bian, H. Li, H. Li, Yolk–shell nanoarchitectures with a Ru-containing core and a radially oriented mesoporous silica shell: facile synthesis and application for one-pot biomass conversion by combining with enzyme. ACS Appl. Mater. Interfaces 6(23), 20851–20859 (2014). https://doi.org/10.1021/am5052608
X.-J. Wu, D. Xu, Soft template synthesis of yolk/silica shell ps. Adv. Mater. 22(13), 1516–1520 (2010). https://doi.org/10.1002/adma.200903879
H. Wang, H. Lin, Y. Long, B. Ni, T. He, S. Zhang, H. Zhu, X. Wang, Titanocene dichloride (Cp2TiCl2) as a precursor for template-free fabrication of hollow TiO2 nanostructures with enhanced photocatalytic hydrogen production. Nanoscale 9(5), 2074–2081 (2017). https://doi.org/10.1039/C6NR09730H
C.C. Yec, H.C. Zeng, Synthesis of complex nanomaterials via Ostwald ripening. J. Mater. Chem. A 2(14), 4843–4851 (2014). https://doi.org/10.1039/C3TA14203E
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
R. Purbia, S. Paria, Yolk/shell nanops: classifications, synthesis, properties, and applications. Nanoscale 7(47), 19789–19873 (2015). https://doi.org/10.1039/C5NR04729C
J. Liu, S.Z. Qiao, J.S. Chen, X.W. Lou, X. Xing, G.Q. Lu, Yolk/shell nanops: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47(47), 12578–12591 (2011). https://doi.org/10.1039/C1CC13658E
Y. Zhang, M. Zhang, L. Ding, Y. Wang, J. Xu, One-pot method for multifunctional yolk structured nanocomposites with N-doped carbon shell using polydopamine as precursor. Nanoscale Res. Lett. 11(1), 212 (2016). https://doi.org/10.1186/s11671-016-1425-6
J. Li, J. Wang, D. Wexler, D. Shi, J. Liang, H. Liu, S. Xiong, Y. Qian, Simple synthesis of yolk–shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 1(48), 15292–15299 (2013). https://doi.org/10.1039/C3TA13787B
Y.J. Hong, M.Y. Son, Y.C. Kang, One-pot facile synthesis of double-shelled sno2 yolk–shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 25(16), 2279–2283 (2013). https://doi.org/10.1002/adma.201204506
J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, Y. Qian, S. Xiong, Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 6(1), 24–30 (2014). https://doi.org/10.1021/am404841t
J. Leng, Z. Wang, X. Li, H. Guo, H. Li, K. Shih, G. Yan, J. Wang, Accurate construction of a hierarchical nickel-cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. J. Mater. Chem. A 5(29), 14996–15001 (2017). https://doi.org/10.1039/C7TA02956J
M.Y. Son, Y.J. Hong, Y.C. Kang, Superior electrochemical properties of Co3O4 yolk–shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 49(50), 5678–5680 (2013). https://doi.org/10.1039/C3CC42117A
J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8(12), 3531–3538 (2015). https://doi.org/10.1039/C5EE02074C
A. Guiet, C. Göbel, K. Klingan, M. Lublow, T. Reier et al., Hydrophobic nanoreactor soft-templating: a supramolecular approach to yolk@shell materials. Adv. Funct. Mater. 25(39), 6228–6240 (2015). https://doi.org/10.1002/adfm.201502388
J.S. Cho, Y.C. Kang, Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 11(36), 4673–4681 (2015). https://doi.org/10.1002/smll.201500940
L. Cao, D. Chen, R.A. Caruso, Surface-metastable phase-initiated seeding and Ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 52(42), 10986–10991 (2013). https://doi.org/10.1002/anie.201305819
C. Dai, A. Zhang, J. Li, K. Hou, M. Liu, C. Song, X. Guo, Synthesis of yolk–shell HPW@Hollow silicalite-1 for esterification reaction. Chem. Commun. 50(37), 4846–4848 (2014). https://doi.org/10.1039/C4CC00693C
B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide ps for hybrid supercapacitors. Adv. Mater. 29(17), 1605902 (2017). https://doi.org/10.1002/adma.201605902
Y. Pan, J. Zhang, H. Lu, Uniform yolk–shell MoS2@Carbon microsphere anodes for high-performance lithium-ion batteries. Chem. Eur. J. 23(41), 9937–9945 (2017). https://doi.org/10.1002/chem.201701691
M.Y. Son, Y.J. Hong, J.-K. Lee, Y. Chan Kang, One-pot synthesis of Fe2O3 yolk–shell ps with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 5(23), 11592–11597 (2013). https://doi.org/10.1039/C3NR03978A
X. Fang, S. Liu, J. Zang, C. Xu, M.-S. Zheng, Q.-F. Dong, D. Sun, N. Zheng, Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk–shell carbon nanostructures. Nanoscale 5(15), 6908–6916 (2013). https://doi.org/10.1039/C3NR01723K
T. Zhu, J. Wang, G.W. Ho, Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy 18, 273–282 (2015). https://doi.org/10.1016/j.nanoen.2015.10.035
H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPy yolk–shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
Y. Ma, A. Huang, H. Zhou, S. Ji, S. Zhang, R. Li, H. Yao, X. Cao, P. Jin, Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J. Mater. Chem. A 5(14), 6522–6531 (2017). https://doi.org/10.1039/C6TA11194G
G. Li, Z. Tang, Noble metal nanop@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6(8), 3995–4011 (2014). https://doi.org/10.1039/C3NR06787D
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
L. Su, Y. Xu, J. Xie, L. Wang, Y. Wang, Multi-yolk–shell SnO2/Co3Sn2@C nanocubes with high initial coulombic efficiency and oxygen reutilization for lithium storage. ACS Appl. Mater. Interfaces 8(51), 35172–35179 (2016). https://doi.org/10.1021/acsami.6b10450
Y. Wu, J. Meng, Q. Li, C. Niu, X. Wang, W. Yang, W. Li, L. Mai, Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 10(7), 2364–2376 (2017). https://doi.org/10.1007/s12274-017-1433-6
H. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24(27), 4337–4342 (2014). https://doi.org/10.1002/adfm.201400178
R. Zhao, X. Shen, Q. Wu, X. Zhang, W. Li et al., Heterogeneous double-shelled constructed fe3o4 yolk–shell magnetite nanoboxes with superior lithium storage performances. ACS Appl. Mater. Interfaces. 9(29), 24662–24670 (2017). https://doi.org/10.1021/acsami.7b07443
L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5(21), 1500981 (2015). https://doi.org/10.1002/aenm.201500981
Y. Su, D. Ao, H. Liu, Y. Wang, MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5(18), 8680–8689 (2017). https://doi.org/10.1039/C7TA00855D
J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, Y. Wang, Novel Fe2P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. J. Mater. Chem. A 4(25), 9923–9930 (2016). https://doi.org/10.1039/C6TA03501A
Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
Z. Liu, X.-Y. Yu, U. Paik, Etching-in-a-box: a novel strategy to synthesize unique yolk–shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv. Energy Mater. 6(6), 1502318 (2016). https://doi.org/10.1002/aenm.201502318
J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
Z. Liu, T. Lu, T. Song, X.-Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
H. Zhang, X. Huang, O. Noonan, L. Zhou, C. Yu, Tailored yolk–shell Sn@C nanoboxes for high-performance lithium storage. Adv. Funct. Mater. 27(8), 1606023 (2017). https://doi.org/10.1002/adfm.201606023
X. Yu, J. Bi, G. Yang, H. Tao, S. Yang, Synergistic effect induced high photothermal performance of Au nanorod@Cu7S4 yolk–shell nanooctahedron ps. J. Phys. Chem. C 120(43), 24533–24541 (2016). https://doi.org/10.1021/acs.jpcc.6b06213
Z. Cai, L. Xu, M. Yan, C. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2015). https://doi.org/10.1021/nl504427d
N. Wang, Z. Bai, Y. Qian, J. Yang, One-dimensional yolk–shell Sb@Ti–O–P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interfaces 9(1), 447–454 (2017). https://doi.org/10.1021/acsami.6b13193
M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou, X.H. Bu, Yolk–shell MnO@ZnMn2O4/N-C nanorods derived from a-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12(40), 5564–5571 (2016). https://doi.org/10.1002/smll.201601959
A. Li, P. Zhang, X. Chang, W. Cai, T. Wang, J. Gong, Gold nanorod@TiO2 yolk–shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 11(16), 1892–1899 (2015). https://doi.org/10.1002/smll.201403058
J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk–shell nanops: Fe3O4@Fe3C core@shell nanops as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
Y. Zhao, Z. Feng, Z.J. Xu, Yolk–shell Fe2O3⊙C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 7(21), 9520–9525 (2015). https://doi.org/10.1039/C5NR01281C
B. Li, R. Qi, J. Zai, F. Du, C. Xue, Y. Jin, C. Jin, Z. Ma, X. Qian, Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12(38), 5281–5287 (2016). https://doi.org/10.1002/smll.201601914
X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao, L. Mai, Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29(20), 1602914 (2017). https://doi.org/10.1002/adma.201602914
L. Yu, H.B. Wu, X.W.D. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017). https://doi.org/10.1021/acs.accounts.6b00480
Y. Ma, H. Tang, Y. Zhang, Z. Li, X. Zhang, Z. Tang, Facile synthesis of Si-C nanocomposites with yolk–shell structure as an anode for lithium-ion batteries. J. Alloy. Compd. 704, 599–606 (2017). https://doi.org/10.1016/j.jallcom.2017.02.083
J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, Core-shell yolk–shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 342, 529–536 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.094
J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu et al., Yolk–shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133–142 (2015). https://doi.org/10.1016/j.nanoen.2015.09.016
M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1), 74–103 (2016). https://doi.org/10.1039/C5NR05116A
N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk–shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). https://doi.org/10.1021/nl3014814
D. Han, G. Guo, Y. Yan, T. Li, B. Wang, A. Dong, Pomegranate-like, carbon-coated Fe3O4 nanop superps for high-performance lithium storage. Energy Storage Mater. 10, 32–39 (2018). https://doi.org/10.1016/j.ensm.2017.08.003
Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z. Guo, H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29(44), 1703028 (2017). https://doi.org/10.1002/adma.201703028
J. Wang, W. Li, F. Wang, Y. Xia, A.M. Asiri, D. Zhao, Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 6(6), 3217–3222 (2014). https://doi.org/10.1039/C3NR06452B
S.H. Choi, Y.C. Kang, Synthesis for yolk–shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 10(3), 474–478 (2014). https://doi.org/10.1002/smll.201301483
H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., From zinc-cyanide hybrid coordination polymers to hierarchical yolk–shell structures for high-performance and ultra-stable lithium-ion batteries. Nano Energy 33, 168–176 (2017). https://doi.org/10.1016/j.nanoen.2017.01.043
H.Z. Li, L.Y. Yang, J. Liu, S.T. Li, L.B. Fang, Y.K. Lu, H.R. Yang, S.L. Liu, M. Lei, Improved electrochemical performance of yolk–shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J. Power Sources 324, 780–787 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.011
S. Li, Z. Wang, J. Liu, L. Yang, Y. Guo, L. Cheng, M. Lei, W. Wang, Yolk–shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 8(30), 19438–19445 (2016). https://doi.org/10.1021/acsami.6b04736
L. Jiang, Y. Qu, Z. Ren, P. Yu, D. Zhao, W. Zhou, L. Wang, H. Fu, In Situ Carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(3), 1595–1601 (2015). https://doi.org/10.1021/am5070393
J. Li, D. Yan, S. Hou, T. Lu, Y. Yao, D.H.C. Chua, L. Pan, Metal-organic frameworks derived yolk–shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018). https://doi.org/10.1016/j.cej.2017.10.183
S. Li, J. Niu, Y.C. Zhao, K.P. So, C. Wang, C.A. Wang, J. Li, High-rate aluminium yolk–shell nanop anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 6, 7872 (2015). https://doi.org/10.1038/ncomms8872
J.H. Kim, Y.C. Kang, Synthesis of uniquely structured yolk–shell metal oxide microspheres filled with nitrogen-doped graphitic carbon with excellent Li-ion storage performance. Small 13(39), 1701585 (2017). https://doi.org/10.1002/smll.201701585
Y. Zhu, S.H. Choi, X. Fan, J. Shin, Z. Ma, M.R. Zachariah, J.W. Choi, C. Wang, Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7(7), 1601578 (2017). https://doi.org/10.1002/aenm.201601578
J.H. Kim, Y.C. Kang, Yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: synthesis and application as anode materials for Na-ion batteries. Nano Res. 10(9), 3178–3188 (2017). https://doi.org/10.1007/s12274-017-1535-1
L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanops via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
M.A. Mahadik, Y.M. Hunge, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. J. Semicond. 36(3), 23–28 (2015). https://doi.org/10.1088/1674-4926/36/3/033002
S.H. Choi, J.-K. Lee, Y.C. Kang, Controllable synthesis of yolk–shell-structured metal oxides with seven to ten components for finding materials with superior lithium storage properties. Nanoscale 6(21), 12421–12425 (2014). https://doi.org/10.1039/C4NR03777D
T. Chen, Y. Hu, B. Cheng, R. Chen, H. Lv et al., Multi-yolk–shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20, 305–314 (2016). https://doi.org/10.1016/j.nanoen.2015.12.024
W. Qiu, J. Jiao, J. Xia, H. Zhong, L. Chen, A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem. Eur. J. 21(11), 4359–4367 (2015). https://doi.org/10.1002/chem.201405821
Y. Huang, D. Wu, A. Dianat, M. Bobeth, T. Huang, Y. Mai, F. Zhang, G. Cuniberti, X. Feng, Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. J. Mater. Chem. A 5(4), 1588–1594 (2017). https://doi.org/10.1039/C6TA09161J
C. Wu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk–shell-like nanostructural design. Adv. Mater. 29(3), 1604015 (2017). https://doi.org/10.1002/adma.201604015
R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk–shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017). https://doi.org/10.1038/ncomms13949
D. Xu, R. Jiao, Y. Sun, D. Sun, X. Zhang, S. Zeng, Y. Di, l-Cysteine-assisted synthesis of urchin-like γ-MnS and its lithium storage properties. Nanoscale Res. Lett. 11(1), 444 (2016). https://doi.org/10.1186/s11671-016-1664-6
L. Feng, Y. Zhang, R. Wang, Y. Zhang, W. Bai et al., Preparation of PPy-coated MnO2 hybrid micromaterials and their improved cyclic performance as anode for lithium-ion batteries. Nanoscale Res. Lett. 12(1), 518 (2017). https://doi.org/10.1186/s11671-017-2286-3
S.H. Choi, Y.C. Kang, Synergetic effect of yolk–shell structure and uniform mixing of SnS–MoS2 nanocrystals for improved na-ion storage capabilities. ACS Appl. Mater. Interfaces 7(44), 24694–24702 (2015). https://doi.org/10.1021/acsami.5b07093
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/C2EE02781J
Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173 (2017). https://doi.org/10.1002/aenm.201600173
S. Qiu, L. Xiao, X. Ai, H. Yang, Y. Cao, Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(1), 345–353 (2017). https://doi.org/10.1021/acsami.6b12001
J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin et al., New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-Ion batteries. Nano Lett. 17(3), 2034–2042 (2017). https://doi.org/10.1021/acs.nanolett.7b00083
H. Geng, J. Yang, Z. Dai, Y. Zhang, Y. Zheng et al., Co9S8/MoS2 yolk–shell spheres for advanced li/na storage. Small 13(14), 1603490 (2017). https://doi.org/10.1002/smll.201603490
L. Ma, P. Yan, S. Wu, G. Zhu, Y. Shen, Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J. Mater. Chem. A 5(32), 16994–17000 (2017). https://doi.org/10.1039/C7TA04900E
J. Wang, H. Tang, H. Wang, R. Yu, D. Wang, Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Mate. Chem. Front. 1(3), 414–430 (2017). https://doi.org/10.1039/C6QM00273K
B. Li, Z. Xiao, J. Zai, M. Chen, H. Wang, X. Liu, G. Li, X. Qian, A candidate strategy to achieve high initial Coulombic efficiency and long cycle life of Si anode materials: exterior carbon coating on porous Si microps. Mater. Today Energy 5, 299–304 (2017). https://doi.org/10.1016/j.mtener.2017.07.006
S. Guo, X. Hu, Y. Hou, Z. Wen, Tunable synthesis of yolk–shell porous silicon@carbon for optimizing si/c-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9(48), 42084–42092 (2017). https://doi.org/10.1021/acsami.7b13035
M. Delong, C. Zhanyi, H. Anming, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
Y. Zhao, X. Li, J. Liu, C. Wang, Y. Zhao, G. Yue, MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8(10), 6472–6480 (2016). https://doi.org/10.1021/acsami.5b12562