Self-Healing, Self-Adhesive and Stable Organohydrogel-Based Stretchable Oxygen Sensor with High Performance at Room Temperature
Corresponding Author: Jin Wu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 52
Abstract
With the advent of the 5G era and the rise of the Internet of Things, various sensors have received unprecedented attention, especially wearable and stretchable sensors in the healthcare field. Here, a stretchable, self-healable, self-adhesive, and room-temperature oxygen sensor with excellent repeatability, a full concentration detection range (0-100%), low theoretical limit of detection (5.7 ppm), high sensitivity (0.2%/ppm), good linearity, excellent temperature, and humidity tolerances is fabricated by using polyacrylamide-chitosan (PAM-CS) double network (DN) organohydrogel as a novel transducing material. The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy. Compared with the pristine hydrogel, the DN organohydrogel displays greatly enhanced mechanical strength, moisture retention, freezing resistance, and sensitivity to oxygen. Notably, applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor. Furthermore, the response to the same concentration of oxygen before and after self-healing is basically the same. Importantly, we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments. The organohydrogel oxygen sensor is used to monitor human respiration in real-time, verifying the feasibility of its practical application. This work provides ideas for fabricating more stretchable, self-healable, self-adhesive, and high-performance gas sensors using ion-conducting organohydrogels.
Highlights:
1 The organohydrogel-based O2 sensor features full concentration detection range (0-100%), ultralow limit of detection (5.7 ppm), high sensitivity (0.2%/ppm), excellent selectivity, tunable response/recovery speeds, good linearity, and room-temperature operation.
2 The oxygen sensor can work normally under various extreme environmental conditions, such as low (below −18 °C) and high (above 40 °C) temperatures, dry (11.3% RH), and humid (90.5% RH) environments.
3 An electrochemical reaction-based mechanism is proposed to elucidate the oxygen sensing behavior of ion-conducting organohydrogel.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33(18), 2008701 (2021). https://doi.org/10.1002/adma.202008701
- J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang et al., Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl. Mater. Interfaces 12(18), 20623–20632 (2020). https://doi.org/10.1021/acsami.0c00578
- Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small (2021). https://doi.org/10.1002/smll.202104997
- H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
- D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13, 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
- S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
- Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu et al., Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. Sens. Actuators B 228, 74–84 (2016). https://doi.org/10.1016/j.snb.2016.01.002
- R. Maughan, Carbohydrate metabolism. Surgery 27(1), 6–10 (2009). https://doi.org/10.1016/j.mpsur.2008.12.002
- J.C. Downs, S.E. Conradi, C.A. Nichols, Suicide by environmental hypoxia (forced depletion of oxygen). Am. J. Forensic Med. Pathol. 15(3), 216–216 (1994). https://doi.org/10.1097/00000433-199409000-00008
- Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.S. Shim, J.M. Jeon et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles. J. Mater. Chem. A 4(16), 6070–6076 (2016). https://doi.org/10.1039/c6ta01277a
- G. Hedenstierna, Oxygen and anesthesia: What lung do we deliver to the post-operative ward? Acta Anaesthesiol. Scand. 56(6), 675–685 (2012). https://doi.org/10.1111/j.1399-6576.2012.02689.x
- J. Ernsting, Breathing systems in aerospace. IEE Seminar. Low flow anaesthesia breathing systems-technology, safety and economics. London, UK (1999). https://doi.org/10.1049/ic:19990341
- P. Wilmshurst, ABC of oxygen: diving and oxygen. BMJ 317, 996 (1998). https://doi.org/10.1136/bmj.317.7164.996
- Y. Katayama, Y. Fujioka, K. Tsukada, Development of a patch-type flexible oxygen partial pressure sensor. IEEE J. Transl. Eng. Health. Med. 8, 1400607 (2020). https://doi.org/10.1109/JTEHM.2020.3005477
- B. Liu, H. Ni, D. Zhang, D. Wang, D. Fu et al., Ultrasensitive detection of protein with wide linear dynamic range based on core-shell SERS nanotags and photonic crystal beads. ACS Sens. 2(7), 1035–1043 (2017). https://doi.org/10.1021/acssensors.7b00310
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
- Q. Zhou, B. Ji, F. Hu, J. Luo, B. Zhou, Magnetized micropillar-enabled wearable sensors for touchless and intelligent information communication. Nano-Micro Lett. 13, 197 (2021). https://doi.org/10.1007/s40820-021-00720-5
- K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
- H. He, M. Zhang, T. Zhao, H. Zeng, L. Xing et al., A self-powered gas sensor based on PDMS/Ppy triboelectric-gas-sensing arrays for the real-time monitoring of automotive exhaust gas at room temperature. Sci. China Mater. 62, 1433–1444 (2019). https://doi.org/10.1007/s40843-019-9445-9
- J.W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.M. Myoung, Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 9(38), 32876–32886 (2017). https://doi.org/10.1021/acsami.7b09251
- C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 261, 587–597 (2018). https://doi.org/10.1016/j.snb.2017.12.022
- E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
- Y. Zhao, J.G. Song, G.H. Ryu, K.Y. Ko, W.J. Woo et al., Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 10(19), 9338–9345 (2018). https://doi.org/10.1039/c8nr00108a
- Y. Xu, J. Xie, Y. Zhang, F. Tian, C. Yang et al., Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 411, 125120 (2021). https://doi.org/10.1016/j.jhazmat.2021.125120
- Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng et al., Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 7(6), 1519–1527 (2020). https://doi.org/10.1039/d0mh00495b
- W. Kosaka, Z. Liu, J. Zhang, Y. Sato, A. Hori et al., Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen. Nat. Commun. 9, 5420 (2018). https://doi.org/10.1038/s41467-018-07889-1
- J. Luo, T. Dziubla, R. Eitel, A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing. Sens. Actuators B 240, 392–397 (2017). https://doi.org/10.1016/j.snb.2016.08.180
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- K. Kadimisetty, S. Malla, J.F. Rusling, Automated 3-D printed arrays to evaluate genotoxic chemistry: e-cigarettes and water samples. ACS Sens. 2(5), 670–678 (2017). https://doi.org/10.1021/acssensors.7b00118
- Z. Li, X. Liu, M. Zhou, S. Zhang, S. Cao et al., Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J. Hazard. Mater. 415, 125757 (2021). https://doi.org/10.1016/j.jhazmat.2021.125757
- A.V. Raghu, K.K. Karuppanan, B. Pullithadathil, Highly sensitive, temperature-independent oxygen gas sensor based on anatase TiO2 nanoparticle grafted, 2D mixed valent VOx nanoflakelets. ACS Sens. 3(9), 1811–1821 (2018). https://doi.org/10.1021/acssensors.8b00544
- M.A. Stoeckel, M. Gobbi, S. Bonacchi, F. Liscio, L. Ferlauto et al., Reversible, fast, and wide-range oxygen sensor based on nanostructured organometal halide perovskite. Adv. Mater. 29(38), 1702469 (2017). https://doi.org/10.1002/adma.201702469
- H. Wang, L. Chen, J. Wang, Q. Sun, Y. Zhao, A micro oxygen sensor based on a nano sol-gel TiO2 thin film. Sensor 14(9), 16423–16433 (2014). https://doi.org/10.3390/s140916423
- Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li et al., Enhanced room temperature oxygen sensing properties of LaOCl-SnO2 hollow spheres by UV light illumination. ACS Sens. 2(5), 679–686 (2017). https://doi.org/10.1021/acssensors.7b00129
- S. Xu, H. Fu, Y. Tian, T. Deng, J. Cai et al., Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. Int. Ed. 59(41), 17938–17943 (2020). https://doi.org/10.1002/anie.202006745
- X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
- Y. Shi, M. Wang, C. Hong, Z. Yang, J. Deng et al., Multi-junction joints network self-assembled with converging ZnO nanowires as multi-barrier gas sensor. Sens. Actuators B 177, 1027–1034 (2013). https://doi.org/10.1016/j.snb.2012.11.084
- J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/c8mh01160e
- X. Luo, M.Y. Akram, Y. Yuan, J. Nie, X. Zhu, Silicon dioxide/poly(vinyl alcohol) composite hydrogels with high mechanical properties and low swellability. J. Appl. Polym. Sci. 136(1), 46895 (2019). https://doi.org/10.1002/app.46895
- Y.Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat0098
- Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9(39), 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
- Y. Xu, L. Zhang, J. Xu, Y. Wei, X. Xu, Membrane permeability of the human pluripotent stem cells to Me2SO, glycerol and 1,2-propanediol. Arch. Biochem. Biophys. 550–551, 67–76 (2014). https://doi.org/10.1016/j.abb.2014.04.010
- D. Bao, Z. Wen, J. Shi, L. Xie, H. Jiang et al., An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020). https://doi.org/10.1039/d0ta03215h
- W. Ge, S. Cao, Y. Yang, O.J. Rojas, X. Wang, Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem. Eng. J. 408, 127306 (2021). https://doi.org/10.1016/j.cej.2020.127306
- H. Liao, X. Guo, P. Wan, G. Yu, Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
- X.P. Morelle, W.R. Illeperuma, K. Tian, R. Bai, Z. Suo et al., Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 30(35), e1801541 (2018). https://doi.org/10.1002/adma.201801541
- F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou et al., Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem. Int. Ed. 57(22), 6568–6571 (2018). https://doi.org/10.1002/anie.201803366
- T. Wang, S. Gunasekaran, State of water in chitosan–PVA hydrogel. J. Appl. Polym. Sci. 101(5), 3227–3232 (2006). https://doi.org/10.1002/app.23526
- Y. Xu, L. Zheng, C. Yang, X. Liu, J. Zhang, Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B 304, 127237 (2020). https://doi.org/10.1016/j.snb.2019.127237
- A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2(1), 1 (2011). https://doi.org/10.4103/2229-5186.79345
- J. Wu, Z. Wu, W. Huang, X. Yang, Y. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12(46), 52070–52081 (2020). https://doi.org/10.1021/acsami.0c17669
- X. Pan, Q. Wang, P. He, K. Liu, Y. Ni et al., A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chem. Eng. J. 379, 122271 (2020). https://doi.org/10.1016/j.cej.2019.122271
- X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/d0mh00361a
- C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive and strain sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
- J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2019). https://doi.org/10.1002/adfm.201901693
- Q. Liu, G. Nian, C. Yang, S. Qu, Z. Suo, Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018). https://doi.org/10.1038/s41467-018-03269-x
- J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
- X. Li, J. Lai, Y. Deng, J. Song, G. Zhao et al., Supramolecular adhesion at extremely low temperatures: a combined experimental and theoretical investigation. J. Am. Chem. Soc. 142(51), 21522–21529 (2020). https://doi.org/10.1021/jacs.0c10786
- C. Yan, J. Wang, X. Wang, W. Kang, M. Cui et al., An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv. Mater. 26(6), 943–950 (2014). https://doi.org/10.1002/adma.201304226
- R.S. Aga, D. Jowhar, A. Ueda, Z. Pan, W.E. Collins et al., Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot. Appl. Phys. Lett. 91, 232108 (2007). https://doi.org/10.1063/1.2822896
- Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
- G.G. Wildgoose, D. Giovanelli, N.S. Lawrence, R.G. Compton, High-temperature electrochemistry: a review. Electroanalysis 16(6), 421–433 (2004). https://doi.org/10.1002/elan.200302875
- S. Feng, Q. Li, S. Wang, B. Wang, Y. Hou et al., Tunable dual temperature-pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design. ACS Appl. Mater. Interfaces 11(23), 21049–21057 (2019). https://doi.org/10.1021/acsami.9b05214
- N. Lopez-Ruiz, J. Lopez-Torres, M.A.C. Rodriguez, I.P. Vargas-Sansalvador, A. Martinez-Olmos, Wearable system for monitoring of oxygen concentration in breath based on optical sensor. IEEE Sens. J. 15(7), 4039–4045 (2015). https://doi.org/10.1109/jsen.2015.2410789
- Z. Wu, W. Zhou, W. Deng, C. Xu, Y. Cai et al., Antibacterial and hemostatic thiol-modified chitosan-immobilized AgNPs composite sponges. ACS Appl. Mater. Interfaces 12(18), 20307–20320 (2020). https://doi.org/10.1021/acsami.0c05430
- M.C. Darnell, J.Y. Sun, M. Mehta, C. Johnson, P.R. Arany et al., Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33), 8042–8048 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.061
- F. Gottrup, Oxygen in wound healing and infection. World J. Surg. 28, 312–315 (2004). https://doi.org/10.1007/s00268-003-7398-5
References
K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33(18), 2008701 (2021). https://doi.org/10.1002/adma.202008701
J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang et al., Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl. Mater. Interfaces 12(18), 20623–20632 (2020). https://doi.org/10.1021/acsami.0c00578
Z. Wu, L. Rong, J. Yang, Y. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small (2021). https://doi.org/10.1002/smll.202104997
H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13, 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu et al., Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. Sens. Actuators B 228, 74–84 (2016). https://doi.org/10.1016/j.snb.2016.01.002
R. Maughan, Carbohydrate metabolism. Surgery 27(1), 6–10 (2009). https://doi.org/10.1016/j.mpsur.2008.12.002
J.C. Downs, S.E. Conradi, C.A. Nichols, Suicide by environmental hypoxia (forced depletion of oxygen). Am. J. Forensic Med. Pathol. 15(3), 216–216 (1994). https://doi.org/10.1097/00000433-199409000-00008
Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.S. Shim, J.M. Jeon et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles. J. Mater. Chem. A 4(16), 6070–6076 (2016). https://doi.org/10.1039/c6ta01277a
G. Hedenstierna, Oxygen and anesthesia: What lung do we deliver to the post-operative ward? Acta Anaesthesiol. Scand. 56(6), 675–685 (2012). https://doi.org/10.1111/j.1399-6576.2012.02689.x
J. Ernsting, Breathing systems in aerospace. IEE Seminar. Low flow anaesthesia breathing systems-technology, safety and economics. London, UK (1999). https://doi.org/10.1049/ic:19990341
P. Wilmshurst, ABC of oxygen: diving and oxygen. BMJ 317, 996 (1998). https://doi.org/10.1136/bmj.317.7164.996
Y. Katayama, Y. Fujioka, K. Tsukada, Development of a patch-type flexible oxygen partial pressure sensor. IEEE J. Transl. Eng. Health. Med. 8, 1400607 (2020). https://doi.org/10.1109/JTEHM.2020.3005477
B. Liu, H. Ni, D. Zhang, D. Wang, D. Fu et al., Ultrasensitive detection of protein with wide linear dynamic range based on core-shell SERS nanotags and photonic crystal beads. ACS Sens. 2(7), 1035–1043 (2017). https://doi.org/10.1021/acssensors.7b00310
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
Q. Zhou, B. Ji, F. Hu, J. Luo, B. Zhou, Magnetized micropillar-enabled wearable sensors for touchless and intelligent information communication. Nano-Micro Lett. 13, 197 (2021). https://doi.org/10.1007/s40820-021-00720-5
K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
H. He, M. Zhang, T. Zhao, H. Zeng, L. Xing et al., A self-powered gas sensor based on PDMS/Ppy triboelectric-gas-sensing arrays for the real-time monitoring of automotive exhaust gas at room temperature. Sci. China Mater. 62, 1433–1444 (2019). https://doi.org/10.1007/s40843-019-9445-9
J.W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.M. Myoung, Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 9(38), 32876–32886 (2017). https://doi.org/10.1021/acsami.7b09251
C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 261, 587–597 (2018). https://doi.org/10.1016/j.snb.2017.12.022
E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
Y. Zhao, J.G. Song, G.H. Ryu, K.Y. Ko, W.J. Woo et al., Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 10(19), 9338–9345 (2018). https://doi.org/10.1039/c8nr00108a
Y. Xu, J. Xie, Y. Zhang, F. Tian, C. Yang et al., Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 411, 125120 (2021). https://doi.org/10.1016/j.jhazmat.2021.125120
Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng et al., Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 7(6), 1519–1527 (2020). https://doi.org/10.1039/d0mh00495b
W. Kosaka, Z. Liu, J. Zhang, Y. Sato, A. Hori et al., Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen. Nat. Commun. 9, 5420 (2018). https://doi.org/10.1038/s41467-018-07889-1
J. Luo, T. Dziubla, R. Eitel, A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing. Sens. Actuators B 240, 392–397 (2017). https://doi.org/10.1016/j.snb.2016.08.180
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
K. Kadimisetty, S. Malla, J.F. Rusling, Automated 3-D printed arrays to evaluate genotoxic chemistry: e-cigarettes and water samples. ACS Sens. 2(5), 670–678 (2017). https://doi.org/10.1021/acssensors.7b00118
Z. Li, X. Liu, M. Zhou, S. Zhang, S. Cao et al., Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J. Hazard. Mater. 415, 125757 (2021). https://doi.org/10.1016/j.jhazmat.2021.125757
A.V. Raghu, K.K. Karuppanan, B. Pullithadathil, Highly sensitive, temperature-independent oxygen gas sensor based on anatase TiO2 nanoparticle grafted, 2D mixed valent VOx nanoflakelets. ACS Sens. 3(9), 1811–1821 (2018). https://doi.org/10.1021/acssensors.8b00544
M.A. Stoeckel, M. Gobbi, S. Bonacchi, F. Liscio, L. Ferlauto et al., Reversible, fast, and wide-range oxygen sensor based on nanostructured organometal halide perovskite. Adv. Mater. 29(38), 1702469 (2017). https://doi.org/10.1002/adma.201702469
H. Wang, L. Chen, J. Wang, Q. Sun, Y. Zhao, A micro oxygen sensor based on a nano sol-gel TiO2 thin film. Sensor 14(9), 16423–16433 (2014). https://doi.org/10.3390/s140916423
Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li et al., Enhanced room temperature oxygen sensing properties of LaOCl-SnO2 hollow spheres by UV light illumination. ACS Sens. 2(5), 679–686 (2017). https://doi.org/10.1021/acssensors.7b00129
S. Xu, H. Fu, Y. Tian, T. Deng, J. Cai et al., Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. Int. Ed. 59(41), 17938–17943 (2020). https://doi.org/10.1002/anie.202006745
X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017). https://doi.org/10.1002/adfm.201702168
Y. Shi, M. Wang, C. Hong, Z. Yang, J. Deng et al., Multi-junction joints network self-assembled with converging ZnO nanowires as multi-barrier gas sensor. Sens. Actuators B 177, 1027–1034 (2013). https://doi.org/10.1016/j.snb.2012.11.084
J. Wu, Z. Wu, H. Xu, Q. Wu, C. Liu et al., An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6(3), 595–603 (2019). https://doi.org/10.1039/c8mh01160e
X. Luo, M.Y. Akram, Y. Yuan, J. Nie, X. Zhu, Silicon dioxide/poly(vinyl alcohol) composite hydrogels with high mechanical properties and low swellability. J. Appl. Polym. Sci. 136(1), 46895 (2019). https://doi.org/10.1002/app.46895
Y.Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat0098
Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9(39), 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
Y. Xu, L. Zhang, J. Xu, Y. Wei, X. Xu, Membrane permeability of the human pluripotent stem cells to Me2SO, glycerol and 1,2-propanediol. Arch. Biochem. Biophys. 550–551, 67–76 (2014). https://doi.org/10.1016/j.abb.2014.04.010
D. Bao, Z. Wen, J. Shi, L. Xie, H. Jiang et al., An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020). https://doi.org/10.1039/d0ta03215h
W. Ge, S. Cao, Y. Yang, O.J. Rojas, X. Wang, Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem. Eng. J. 408, 127306 (2021). https://doi.org/10.1016/j.cej.2020.127306
H. Liao, X. Guo, P. Wan, G. Yu, Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
X.P. Morelle, W.R. Illeperuma, K. Tian, R. Bai, Z. Suo et al., Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 30(35), e1801541 (2018). https://doi.org/10.1002/adma.201801541
F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou et al., Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem. Int. Ed. 57(22), 6568–6571 (2018). https://doi.org/10.1002/anie.201803366
T. Wang, S. Gunasekaran, State of water in chitosan–PVA hydrogel. J. Appl. Polym. Sci. 101(5), 3227–3232 (2006). https://doi.org/10.1002/app.23526
Y. Xu, L. Zheng, C. Yang, X. Liu, J. Zhang, Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B 304, 127237 (2020). https://doi.org/10.1016/j.snb.2019.127237
A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2(1), 1 (2011). https://doi.org/10.4103/2229-5186.79345
J. Wu, Z. Wu, W. Huang, X. Yang, Y. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12(46), 52070–52081 (2020). https://doi.org/10.1021/acsami.0c17669
X. Pan, Q. Wang, P. He, K. Liu, Y. Ni et al., A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chem. Eng. J. 379, 122271 (2020). https://doi.org/10.1016/j.cej.2019.122271
X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/d0mh00361a
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive and strain sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2019). https://doi.org/10.1002/adfm.201901693
Q. Liu, G. Nian, C. Yang, S. Qu, Z. Suo, Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018). https://doi.org/10.1038/s41467-018-03269-x
J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
X. Li, J. Lai, Y. Deng, J. Song, G. Zhao et al., Supramolecular adhesion at extremely low temperatures: a combined experimental and theoretical investigation. J. Am. Chem. Soc. 142(51), 21522–21529 (2020). https://doi.org/10.1021/jacs.0c10786
C. Yan, J. Wang, X. Wang, W. Kang, M. Cui et al., An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv. Mater. 26(6), 943–950 (2014). https://doi.org/10.1002/adma.201304226
R.S. Aga, D. Jowhar, A. Ueda, Z. Pan, W.E. Collins et al., Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot. Appl. Phys. Lett. 91, 232108 (2007). https://doi.org/10.1063/1.2822896
Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
G.G. Wildgoose, D. Giovanelli, N.S. Lawrence, R.G. Compton, High-temperature electrochemistry: a review. Electroanalysis 16(6), 421–433 (2004). https://doi.org/10.1002/elan.200302875
S. Feng, Q. Li, S. Wang, B. Wang, Y. Hou et al., Tunable dual temperature-pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design. ACS Appl. Mater. Interfaces 11(23), 21049–21057 (2019). https://doi.org/10.1021/acsami.9b05214
N. Lopez-Ruiz, J. Lopez-Torres, M.A.C. Rodriguez, I.P. Vargas-Sansalvador, A. Martinez-Olmos, Wearable system for monitoring of oxygen concentration in breath based on optical sensor. IEEE Sens. J. 15(7), 4039–4045 (2015). https://doi.org/10.1109/jsen.2015.2410789
Z. Wu, W. Zhou, W. Deng, C. Xu, Y. Cai et al., Antibacterial and hemostatic thiol-modified chitosan-immobilized AgNPs composite sponges. ACS Appl. Mater. Interfaces 12(18), 20307–20320 (2020). https://doi.org/10.1021/acsami.0c05430
M.C. Darnell, J.Y. Sun, M. Mehta, C. Johnson, P.R. Arany et al., Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33), 8042–8048 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.061
F. Gottrup, Oxygen in wound healing and infection. World J. Surg. 28, 312–315 (2004). https://doi.org/10.1007/s00268-003-7398-5