Semi-Implantable Bioelectronics
Corresponding Author: Xi Xie
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 125
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of “Semi-implantable bioelectronics”, summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Highlights:
1 Concept of “Semi-implantable Bioelectronics” is raised to cover the major advances and emphasize new insights into building external device.
2 The principle and strategies of semi-implantable device for cell applications are summarized to discuss the typical methodologies to access to intracellular environment by cell penetration and various efficient applications.
3 The principle and strategies of semi-implantable device for in vivo applications are highlighted to discuss the various types of transdermal devices, brain electrodes and microneedle devices for the applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Casares, P.V. Escribá, C.A. Rosselló, Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20(9), 2167 (2019). https://doi.org/10.3390/ijms20092167
- V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005). https://doi.org/10.1038/nrd1632
- F. Wang, J. Xiao, S. Chen, H. Sun, B. Yang et al., Polymer vesicles: modular platforms for cancer theranostics. Adv. Mater. 30(17), 1705674 (2018). https://doi.org/10.1002/adma.201705674
- Y. Ma, R.J.M. Nolte, J.L.M. Cornelissen, Virus-based nanocarriers for drug delivery. Adv. Drug Deliv. Rev. 64(9), 811–825 (2012). https://doi.org/10.1016/j.addr.2012.01.005
- P. Vader, E.A. Mol, G. Pasterkamp, R.M. Schiffelers, Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 106, 148–156 (2016). https://doi.org/10.1016/j.addr.2016.02.006
- L.Y.T. Chou, K. Ming, W.C.W. Chan, Strategies for the intracellular delivery of nanops. Chem. Soc. Rev. 40(1), 233–245 (2011). https://doi.org/10.1039/C0CS00003E
- X. Qin, C. Yu, J. Wei, L. Li, C. Zhang et al., Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 31(46), 1902791 (2019). https://doi.org/10.1002/adma.201902791
- D.J. Stephens, R. Pepperkok, The many ways to cross the plasma membrane. PNAS 98(8), 4295 (2001). https://doi.org/10.1073/pnas.081065198
- N.J. Yang, M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266, 29–53 (2015). https://doi.org/10.1007/978-1-4939-2272-7_3
- W. Kang, R.L. McNaughton, H.D. Espinosa, Micro-and nanoscale technologies for delivery into adherent cells. Trends Biotechnol. 34(8), 665–678 (2016). https://doi.org/10.1016/j.tibtech.2016.05.003
- M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer et al., In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624), 183–192 (2016). https://doi.org/10.1038/nature19764
- P. Tiefenboeck, J.A. Kim, J.C. Leroux, Intracellular delivery of colloids: past and future contributions from microinjection. Adv. Drug Deliv. Rev. 132, 3–15 (2018). https://doi.org/10.1016/j.addr.2018.06.013
- B. Sakmann, E. Neher, Patch clamp techniques for studying ionic channels in excitable membranes. Ann. Rev. Physiol. 46, 455–472 (1984). https://doi.org/10.1146/annurev.ph.46.030184.002323
- J. Shi, Y. Ma, J. Zhu, Y. Chen, Y. Sun et al., A review on electroporation-based intracellular delivery. Molecules 23(11), 3044 (2018). https://doi.org/10.3390/molecules23113044
- D. Xu, J. Mo, X. Xie, N. Hu, In-cell nanoelectronics: opening the door to intracellular electrophysiology. Nano-Micro Lett. 13, 127 (2021). https://doi.org/10.1007/s40820-021-00655-x
- G. He, N. Hu, A.M. Xu, X. Li, Y. Zhao et al., Nanoneedle platforms: the many ways to pierce the cell membrane. Adv. Funct. Mater. 30(21), 1909890 (2020). https://doi.org/10.1002/adfm.201909890
- D. Xu, J. Fang, M. Zhang, H. Wang, T. Zhang et al., Synchronized intracellular and extracellular recording of action potentials by three-dimensional nanoroded electroporation. Biosens. Bioelectron. 192, 113501 (2021). https://doi.org/10.1016/j.bios.2021.113501
- A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. PNAS 107(5), 1870–1875 (2010). https://doi.org/10.1073/pnas.0909350107
- C. Chiappini, J.O. Martinez, E.D. Rosa, C.S. Almeida, E. Tasciotti et al., Biodegradable nanoneedles for localized delivery of nanops in vivo: exploring the biointerface. ACS Nano 9(5), 5500–5509 (2015). https://doi.org/10.1021/acsnano.5b01490
- C. Chiappini, E.D. Rosa, J. Martinez, X. Liu, J. Steele et al., Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14(5), 532–539 (2015). https://doi.org/10.1038/nmat4249
- E. Peer, A. Artzy-Schnirman, L. Gepstein, U. Sivan, Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano 6(6), 4940–4946 (2012). https://doi.org/10.1021/nn300443h
- J.H. Lee, A. Zhang, S.S. You, C.M. Lieber, Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Lett. 16(2), 1509–1513 (2016). https://doi.org/10.1021/acs.nanolett.6b00020
- B.D. Almquist, N.A. Melosh, Fusion of biomimetic stealth probes into lipid bilayer cores. PNAS 107(13), 5815–5820 (2010). https://doi.org/10.1073/pnas.0909250107
- V. Caprettini, A. Cerea, G. Melle, L. Lovato, R. Capozza et al., Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci. Rep. 7(1), 8524 (2017). https://doi.org/10.1038/s41598-017-08886-y
- G. He, H.J. Chen, D. Liu, Y. Feng, C. Yang et al., Fabrication of various structures of nanostraw arrays and their applications in gene delivery. Adv. Mater. Interfaces 5(10), 1701535 (2018). https://doi.org/10.1002/admi.201701535
- C. Yang, G. Yang, Q. Ouyang, S. Kuang, P. Song et al., Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator. Nano Energy 64, 103901 (2019). https://doi.org/10.1016/j.nanoen.2019.103901
- S. Bae, S. Park, J. Kim, J.S. Choi, K.H. Kim et al., Exogenous gene integration for microalgal cell transformation using a nanowire-incorporated microdevice. ACS Appl. Mater. Interfaces 7(49), 27554–27561 (2015). https://doi.org/10.1021/acsami.5b09964
- D. Matsumoto, R.R. Sathuluri, Y. Kato, Y.R. Silberberg, R. Kawamura et al., Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep. 5, 15325 (2015). https://doi.org/10.1038/srep15325
- G.C. Messina, M. Dipalo, R.L. Rocca, P. Zilio, V. Caprettini et al., Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv. Mater. 27(44), 7145–7149 (2015). https://doi.org/10.1002/adma.201503252
- M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17(6), 3932–3939 (2017). https://doi.org/10.1021/acs.nanolett.7b01523
- B. Tian, C.M. Lieber, Nanowired bioelectric interfaces. Chem. Rev. 119(15), 9136–9152 (2019). https://doi.org/10.1021/acs.chemrev.8b00795
- J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4(2), 232–241 (2020). https://doi.org/10.1038/s41551-019-0455-7
- C. Chiappini, Nanoneedle-based sensing in biological systems. ACS Sens. 2(8), 1086–1102 (2017). https://doi.org/10.1021/acssensors.7b00350
- P. Paulitschke, F. Keber, A. Lebedev, J. Stephan, H. Lorenz et al., Ultraflexible nanowire array for label-and distortion-free cellular force tracking. Nano Lett. 19(4), 2207–2214 (2018). https://doi.org/10.1021/acs.nanolett.8b02568
- S. Mieda, Y. Amemiya, T. Kihara, T. Okada, T. Sato et al., Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosen. Bioelectron. 31(1), 323–329 (2012). https://doi.org/10.1016/j.bios.2011.10.039
- A. Tay, N. Melosh, Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52(9), 2462–2471 (2019). https://doi.org/10.1021/acs.accounts.9b00272
- R. Elnathan, B. Delalat, D. Brodoceanu, H. Alhmoud, F.J. Harding et al., Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 25(46), 7215–7225 (2015). https://doi.org/10.1002/adfm.201503465
- Y. Qu, Y. Zheng, L. Yu, Y. Zhou, Y. Wang et al., A universal platform for high-efficiency “engineering” living cells: integration of cell capture, intracellular delivery of biomolecules, and cell harvesting functions. Adv. Funct. Mater. 30(3), 1906362 (2019). https://doi.org/10.1002/adfm.201906362
- C.M. Girardin, C. Huot, M. Gonthier, E. Delvin, Continuous glucose monitoring: a review of biochemical perspectives and clinical use in type 1 diabetes. Clin. Biochem. 42(3), 136–142 (2009). https://doi.org/10.1016/j.clinbiochem.2008.09.112
- R. Gifford, Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 14(10), 2032–2044 (2013). https://doi.org/10.1002/cphc.201300172
- S.P. Nichols, A. Koh, W.L. Storm, J.H. Shin, M.H. Schoenfisch, Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113(4), 2528–2549 (2013). https://doi.org/10.1021/cr300387j
- N. Sheehy, Electroencephalography: basic principles, clinical applications and related fields. J. Neurol. Neurosurg. Psychiatry 47(6), 654 (1984). https://doi.org/10.1136/jnnp.47.6.654-a
- M. Mahmood, D. Mzurikwao, Y.S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
- L.J. Gabard-Durnam, C. Wilkinson, K. Kapur, H. Tager-Flusberg, A.R. Levin et al., Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat. Commun. 10(1), 4188 (2019). https://doi.org/10.1038/s41467-019-12202-9
- W.H. Zhang, M.K. Herde, J.A. Mitchell, J.H. Whitfield, A.B. Wulff et al., Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14(9), 861–869 (2018). https://doi.org/10.1038/s41589-018-0108-2
- J. Wang, F. Wagner, D.A. Borton, J. Zhang, I. Ozden et al., Integrated device for combined optical neuromodulation and electrical recording for chronicin vivoapplications. J. Neural Eng. 9(1), 016001 (2011). https://doi.org/10.1088/1741-2560/9/1/016001
- H. Shin, H.J. Lee, U. Chae, H. Kim, J. Kim et al., Neural probes with multi-drug delivery capability. Lab Chip 15(18), 3730–3737 (2015). https://doi.org/10.1039/C5LC00582E
- S.R. Husain, J. Han, P. Au, K. Shannon, R.K. Puri, Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 22, 554–563 (2015). https://doi.org/10.1038/cgt.2015.58
- J. Liu, T. Gaj, Y. Yang, N. Wang, S. Shui et al., Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015). https://doi.org/10.1038/nprot.2015.117
- D. Wilbie, J. Walther, E. Mastrobattista, Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc. Chem. Res. 52(6), 1555–1564 (2019). https://doi.org/10.1021/acs.accounts.9b00106
- L. Yan, J. Zhang, C.S. Lee, X. Chen, Micro-and nanotechnologies for intracellular delivery. Small 10(22), 4487–4504 (2014). https://doi.org/10.1002/smll.201401532
- M.Y. Rotenberg, B. Tian, Talking to cells: semiconductor nanomaterials at the cellular interface. Adv. Biosys. 2(4), 1700242 (2018). https://doi.org/10.1002/adbi.201700242
- L. Chang, Y.C. Wang, F. Ershad, R. Yang, C. Yu et al., Wearable devices for single-cell sensing and transfection. Trends Biotechnol. 37(11), 1175–1188 (2019). https://doi.org/10.1016/j.tibtech.2019.04.001
- A.K. Fajrial, X. Ding, Advanced nanostructures for cell membrane poration. Nanotechnology 30(26), 264002 (2019). https://doi.org/10.1088/1361-6528/ab096b
- K. Yum, N. Wang, M.F. Yu, Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2(3), 363–372 (2010). https://doi.org/10.1039/B9NR00231F
- R. Elnathan, M. Kwiat, F. Patolsky, N. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9(2), 172–196 (2014). https://doi.org/10.1016/j.nantod.2014.04.001
- K. Lee, N. Lingampalli, A.P. Pisano, N. Murthy, H. So, Physical delivery of macromolecules using high-aspect ratio nanostructured materials. ACS Appl. Mater. Interfaces 7(42), 23387–23397 (2015). https://doi.org/10.1021/acsami.5b05520
- E. Lestrell, F. Patolsky, N.H. Voelcker, R. Elnathan, Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts. Mater. Today 33, 87–104 (2019). https://doi.org/10.1016/j.mattod.2019.08.012
- R. Singhal, Z. Orynbayeva, R.V.K. Sundaram, J.J. Niu, S. Bhattacharyya et al., Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotech. 6(1), 57–64 (2011). https://doi.org/10.1038/nnano.2010.241
- N. Fan, H. Jiang, Z. Ye, G. Wu, Y. Kang et al., The insertion mechanism of a living cell determined by the stress segmentation effect of the cell membrane during the tip–cell interaction. Small 14(22), 1703868 (2018). https://doi.org/10.1002/smll.201703868
- X. Chen, A. Kis, A. Zettl, C.R. Bertozzi, A cell nanoinjector based on carbon nanotubes. PNAS 104(20), 8218 (2007). https://doi.org/10.1073/pnas.0700567104
- X.T. Zheng, C.M. Li, Single cell analysis at the nanoscale. Chem. Soc. Rev. 41(6), 2061–2071 (2012). https://doi.org/10.1039/C1CS15265C
- M. Kwak, L. Han, J.J. Chen, R. Fan, Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11(42), 5600–5610 (2015). https://doi.org/10.1002/smll.201501236
- L. Yan, Y. Yang, W. Zhang, X. Chen, Advanced materials and nanotechnology for drug delivery. Adv. Mater. 26(31), 5533–5540 (2014). https://doi.org/10.1002/adma.201305683
- X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma et al., Mechanical model of vertical nanowire cell penetration. Nano Lett. 13(12), 6002–6008 (2013). https://doi.org/10.1021/nl403201a
- X. Xie, A. Aalipour, S.V. Gupta, N.A. Melosh, Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9(12), 11667–11677 (2015). https://doi.org/10.1021/acsnano.5b05498
- Y. Cao, H. Chen, R. Qiu, M. Hanna, E. Ma et al., Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4(10), aat8131 (2018). https://doi.org/10.1126/sciadv.aat8131
- C.J. Bettinger, R. Langer, J.T. Borenstein, Engineering substrate topography at the micro-and nanoscale to control cell function. Angew. Chem. Int. Ed. 48(30), 5406–5415 (2009). https://doi.org/10.1002/anie.200805179
- S. Bonde, N. Buch-Månson, K.R. Rostgaard, T.K. Andersen, T. Berthing et al., Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25(36), 362001 (2014). https://doi.org/10.1088/0957-4484/25/36/362001
- B.S. Gomes, B. Simões, P.M. Mendes, The increasing dynamic, functional complexity of bio-interface materials. Nat. Rev. Chem. 2(3), 0120 (2018). https://doi.org/10.1038/s41570-018-0120
- D. Nawarathna, T. Turan, H.K. Wickramasinghe, Selective probing of mRNA expression levels within a living cell. Appl. Phys. Lett. 95(8), 83117 (2009). https://doi.org/10.1063/1.3213343
- Y. Tao, H.K. Wickramasinghe, Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions. Appl. Phys. Lett. 110(7), 073701 (2017). https://doi.org/10.1063/1.4974939
- X. Li, Y. Tao, D.H. Lee, H.K. Wickramasinghe, A.P. Lee, In situ mrna isolation from a microfluidic single-cell array using an external afm nanoprobe. Lab Chip 17(9), 1635–1644 (2017). https://doi.org/10.1039/c7lc00133a
- B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010). https://doi.org/10.1126/science.1192033
- X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotech. 7(3), 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
- Z. Li, J. Song, G. Mantini, M.Y. Lu, H. Fang et al., Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett. 9(10), 3575–3580 (2009). https://doi.org/10.1021/nl901774m
- R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17(5), 2757–2764 (2017). https://doi.org/10.1021/acs.nanolett.6b04752
- H. Alhmoud, B. Delalat, R. Elnathan, A. Cifuentes-Rius, A. Chaix et al., Porous silicon nanodiscs for targeted drug delivery. Adv. Funct. Mater. 25(7), 1137–1145 (2015). https://doi.org/10.1002/adfm.201403414
- W. Hällström, M. Lexholm, D.B. Suyatin, G. Hammarin, D. Hessman et al., Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 10(3), 782–787 (2010). https://doi.org/10.1021/nl902675h
- S. Bonde, T. Berthing, M.H. Madsen, T.K. Andersen, N. Buch-Månson et al., Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5(21), 10510–10519 (2013). https://doi.org/10.1021/am402070k
- C. Xie, L. Hanson, Y. Cui, B. Cui, Vertical nanopillars for highly localized fluorescence imaging. PNAS 108(10), 3894–3899 (2011). https://doi.org/10.1073/pnas.1015589108
- J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotech. 12(5), 460–466 (2017). https://doi.org/10.1038/nnano.2017.3
- X. Xie, A.M. Xu, S. Leal-Ortiz, Y. Cao, C.C. Garner et al., Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7(5), 4351–4358 (2013). https://doi.org/10.1021/nn400874a
- G. He, J. Feng, A. Zhang, L. Zhou, R. Wen et al., Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Lett. 19(10), 7201–7209 (2019). https://doi.org/10.1021/acs.nanolett.9b02790
- R. Yan, J.H. Park, Y. Choi, C.J. Heo, S.M. Yang et al., Nanowire-based single-cell endoscopy. Nat. Nanotech. 7(3), 191–196 (2012). https://doi.org/10.1038/nnano.2011.226
- M. Galic, S. Jeong, F.C. Tsai, L.M. Joubert, Y.I. Wu et al., External push and internal pull forces recruit curvature-sensing n-bar domain proteins to the plasma membrane. Nat. Cell Biol. 14(8), 874–881 (2012). https://doi.org/10.1038/ncb2533
- T.E. McKnight, A.V. Melechko, G.D. Griffin, M.A. Guillorn, V.I. Merkulov et al., Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14(5), 551–556 (2003). https://doi.org/10.1088/0957-4484/14/5/313
- Y. Wang, Y. Yang, L. Yan, S.Y. Kwok, W. Li et al., Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014). https://doi.org/10.1038/ncomms5466
- R. Wen, A.H. Zhang, D. Liu, J. Feng, J. Yang et al., Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl. Mater. Interfaces 11(47), 43936–43948 (2019). https://doi.org/10.1021/acsami.9b15619
- C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotech. 7(3), 185–190 (2012). https://doi.org/10.1038/nnano.2012.8
- A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
- C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119(15), 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
- L.N. Quan, J. Kang, C.Z. Ning, P. Yang, Nanowires for photonics. Chem. Rev. 119(15), 9153–9169 (2019). https://doi.org/10.1021/acs.chemrev.9b00240
- L. Xu, Y. Zhao, K.A. Owusu, Z. Zhuang, Q. Liu et al., Recent advances in nanowire-biosystem interfaces: from chemical conversion, energy production to electrophysiology. Chemistry 4(7), 1538–1559 (2018). https://doi.org/10.1016/j.chempr.2018.04.004
- J. Kammhuber, M.C. Cassidy, H. Zhang, Ö. Gül, F. Pei et al., Conductance quantization at zero magnetic field in InSb nanowires. Nano Lett. 16(6), 3482–3486 (2016). https://doi.org/10.1021/acs.nanolett.6b00051
- M.S. Chan, P.K. Lo, Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10(7), 1255–1260 (2014). https://doi.org/10.1002/smll.201302993
- B.G. Nair, K. Hagiwara, M. Ueda, H.H. Yu, H.R. Tseng et al., High density of aligned nanowire treated with polydopamine for efficient gene silencing by sirna according to cell membrane perturbation. ACS Appl. Mater. Interfaces 8(29), 18693–18700 (2016). https://doi.org/10.1021/acsami.6b04913
- Z. Liu, J. Nie, B. Miao, J. Li, Y. Cui et al., Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 31(12), 1807795 (2019). https://doi.org/10.1002/adma.201807795
- J.J. VanDersarl, A.M. Xu, N.A. Melosh, Nanostraws for direct fluidic intracellular access. Nano Lett. 12(8), 3881–3886 (2011). https://doi.org/10.1021/nl204051v
- G. He, C. Yang, T. Hang, D. Liu, H.J. Chen et al., Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively. ACS Sens. 3(9), 1675–1682 (2018). https://doi.org/10.1021/acssensors.8b00367
- J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotech. 7(3), 180–184 (2012). https://doi.org/10.1038/nnano.2011.249
- X. Zhu, M.F. Yuen, L. Yan, Z. Zhang, F. Ai et al., Diamond-nanoneedle-array-facilitated intracellular delivery and the potential influence on cell physiology. Adv. Health Mater. 5(10), 1157–1168 (2016). https://doi.org/10.1002/adhm.201500990
- T.M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. PNAS 111(4), 1259–1264 (2014). https://doi.org/10.1073/pnas.1323389111
- R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12(6), 3329–3333 (2012). https://doi.org/10.1021/nl301623p
- Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotech. 9(2), 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
- Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotech. 14, 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
- W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007). https://doi.org/10.1021/ja071456k
- T. Berthing, S. Bonde, C.B. Sørensen, P. Utko, J. Nygård et al., Intact mammalian cell function on semiconductor nanowire arrays: new perspectives for cell-based biosensing. Small 7(5), 640–647 (2011). https://doi.org/10.1002/smll.201001642
- J.J. VanDersarl, A.M. Xu, N.A. Melosh, Nanostraws for direct fluidic intracellular access. Nano Lett. 12(8), 3881–3886 (2012). https://doi.org/10.1021/nl204051v
- S. Qi, C. Yi, S. Ji, C.C. Fong, M. Yang, Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1(1), 30–34 (2009). https://doi.org/10.1021/am800027d
- C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui et al., Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10(10), 4020–4024 (2010). https://doi.org/10.1021/nl101950x
- H. Persson, C. Købler, K. Mølhave, L. Samuelson, J.O. Tegenfeldt et al., Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9(23), 4006–4016 (2013). https://doi.org/10.1002/smll.201300644
- A. Tay, N. Melosh, Transfection with nanostructure electro-injection is minimally perturbative. Adv. Therap. 2(12), 1900133 (2019). https://doi.org/10.1002/adtp.201900133
- M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118(16), 7409–7531 (2018). https://doi.org/10.1021/acs.chemrev.7b00678
- W. Kang, F. Yavari, M. Minary-Jolandan, J.P. Giraldo-Vela, A. Safi et al., Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett. 13(6), 2448–2457 (2013). https://doi.org/10.1021/nl400423c
- R. Yang, V. Lemaître, C. Huang, A. Haddadi, R. McNaughton et al., Monoclonal cell line generation and CRISPR/Cas9 manipulation via single-cell electroporation. Small 14(12), 1702495 (2018). https://doi.org/10.1002/smll.201702495
- P.E. Boukany, A. Morss, W.C. Liao, B. Henslee, H. Jung et al., Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotech. 6(11), 747–754 (2011). https://doi.org/10.1038/nnano.2011.164
- X. Ding, M.P. Stewart, A. Sharei, J.C. Weaver, R.S. Langer et al., High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1(3), 0039 (2017). https://doi.org/10.1038/s41551-017-0039
- P. Mukherjee, S.S.P. Nathamgari, J.A. Kessler, H.D. Espinosa, Combined numerical and experimental investigation of localized electroporation-based cell transfection and sampling. ACS Nano 12(12), 12118–12128 (2018). https://doi.org/10.1021/acsnano.8b05473
- Y. Cao, E. Ma, S. Cestellos-Blanco, B. Zhang, R. Qiu et al., Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. PNAS 116(16), 7899–7904 (2019). https://doi.org/10.1073/pnas.1818553116
- L. Chang, L. Li, J. Shi, Y. Sheng, W. Lu et al., Micro-/nanoscale electroporation. Lab Chip 16(21), 4047–4062 (2016). https://doi.org/10.1039/C6LC00840B
- S. Okumoto, A. Jones, W.B. Frommer, Quantitative imaging with fluorescent biosensors. Ann. Rev. Plant Biol. 63(1), 663–706 (2012). https://doi.org/10.1146/annurev-arplant-042110-103745
- M. Hu, L. Li, H. Wu, Y. Su, P.Y. Yang et al., Multicolor, one- and two-photon imaging of enzymatic activities in live cells with fluorescently quenched activity-based probes (qABPs). J. Am. Chem. Soc. 133(31), 12009–12020 (2011). https://doi.org/10.1021/ja200808y
- K.D. Greis, Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26(3), 324–339 (2007). https://doi.org/10.1002/mas.20127
- A. Liesener, U. Karst, Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal. Bioanal. Chem. 382(7), 1451–1464 (2005). https://doi.org/10.1007/s00216-005-3305-2
- P. Actis, M.M. Maalouf, H.J. Kim, A. Lohith, B. Vilozny et al., Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8(1), 546–553 (2014). https://doi.org/10.1021/nn405097u
- Y. Nashimoto, Y. Takahashi, Y. Zhou, H. Ito, H. Ida et al., Evaluation of mRNA localization using double barrel scanning ion conductance microscopy. ACS Nano 10(7), 6915–6922 (2016). https://doi.org/10.1021/acsnano.6b02753
- X. Li, S. Majdi, J. Dunevall, H. Fathali, A.G. Ewing, Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54(41), 11978–11982 (2015). https://doi.org/10.1002/anie.201504839
- B.P. Nadappuram, P. Cadinu, A. Barik, A.J. Ainscough, M.J. Devine et al., Nanoscale tweezers for single-cell biopsies. Nat. Nanotech. 14(1), 80–88 (2019). https://doi.org/10.1038/s41565-018-0315-8
- Y. Cao, M. Hjort, H. Chen, F. Birey, S.A. Leal-Ortiz et al., Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. PNAS 114(10), E1866–E1874 (2017). https://doi.org/10.1073/pnas.1615375114
- J. Abbott, T. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51(3), 600–608 (2018). https://doi.org/10.1021/acs.accounts.7b00519
- G. Hong, C.M. Lieber, Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019). https://doi.org/10.1038/s41583-019-0140-6
- S.R. Patel, C.M. Lieber, Precision electronic medicine in the brain. Nat. Biotechnol. 37(9), 1007–1012 (2019). https://doi.org/10.1038/s41587-019-0234-8
- M.D. Ferro, N.A. Melosh, Electronic and ionic materials for neurointerfaces. Adv. Funct. Mater. 28(12), 1704335 (2018). https://doi.org/10.1002/adfm.201704335
- M.G. Schrlau, N.J. Dun, H.H. Bau, Cell electrophysiology with carbon nanopipettes. ACS Nano 3(3), 563–568 (2009). https://doi.org/10.1021/nn800851d
- J.J. Mastrototaro, The minimed continuous glucose monitoring system. Diabetes Technol. Ther. 2, 13–18 (2004). https://doi.org/10.1089/15209150050214078
- S.J. Updike, G.P. Hicks, The enzyme electrode. Nature 214(5092), 986–988 (1967). https://doi.org/10.1038/214986a0
- G.G. Guilbault, G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 64(3), 439–455 (1973). https://doi.org/10.1016/S0003-2670(01)82476-4
- J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008). https://doi.org/10.1021/cr068123a
- S. Vaddiraju, D.J. Burgess, I. Tomazos, F.C. Jain, F. Papadimitrakopoulos, Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. 4(6), 1540–1562 (2010). https://doi.org/10.1177/193229681000400632
- A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008). https://doi.org/10.1021/cr068069y
- J. Wang, In vivo glucose monitoring: towards ‘sense and act’ feedback-loop individualized medical systems. Talanta 75(3), 636–641 (2008). https://doi.org/10.1016/j.talanta.2007.10.023
- G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005). https://doi.org/10.1016/j.bios.2004.12.003
- I. Galeska, D. Chattopadhyay, F. Moussy, F. Papadimitrakopoulos, Calcification-resistant nafion/Fe3+ assemblies for implantable biosensors. Biomacromol 1(2), 202–207 (2000). https://doi.org/10.1021/bm0002813
- T.F. Tseng, Y.L. Yang, Y.J. Lin, S.L. Lou, Effects of electric potential treatment of a chromium hexacyanoferrate modified biosensor based on PQQ-dependent glucose dehydrogenase. Sensors 10(7), 6347–6360 (2010). https://doi.org/10.3390/s100706347
- H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7(8), 1701150 (2018). https://doi.org/10.1002/adhm.201701150
- S. Abdellaoui, R.D. Milton, T. Quah, S.D. Minteer, NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD. Chem. Commun. 52(6), 1147–1150 (2016). https://doi.org/10.1039/C5CC09161F
- T.G. Schleis, Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 27(9), 1313–1321 (2007). https://doi.org/10.1592/phco.27.9.1313
- S. Igarashi, T. Hirokawa, K. Sode, Engineering PQQ glucose dehydrogenase with improved substrate specificity: site-directed mutagenesis studies on the active center of PQQ glucose dehydrogenase. Biomol. Eng. 21(2), 81–89 (2004). https://doi.org/10.1016/j.bioeng.2003.12.001
- H. Yamaoka, Y. Yamashita, S. Ferri, K. Sode, Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of burkholderia cepacia. Biotechnol. Lett. 30(11), 1967–1972 (2008). https://doi.org/10.1007/s10529-008-9777-3
- N. Hamamatsu, A. Suzumura, Y. Nomiya, M. Sato, T. Aita et al., Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Appl. Microbiol. Biotech. 73(3), 607–617 (2006). https://doi.org/10.1007/s00253-006-0521-4
- S.R. Corrie, J.W. Coffey, J. Islam, K.A. Markey, M.A.F. Kendall, Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 140(13), 4350–4364 (2015). https://doi.org/10.1039/C5AN00464K
- G. McGarraugh, The chemistry of commercial continuous glucose monitors. Diabetes Technol. Ther. 11(S1), S17–S24 (2009). https://doi.org/10.1089/dia.2008.0133
- B.W.B.T.M. Gross, D. Einhorn, D.M. Kayne, J.H. Reed, N.H. White et al., Performance evaluation of the minimed® continuous glucose monitoring system during patient home use. Diabetes Technol. Ther. 2(1), 49–56 (2000). https://doi.org/10.1089/152091500316737
- F. Lucarelli, F. Ricci, F. Caprio, F. Valgimigli, C. Scuffi et al., Glucomen day continuous glucose monitoring system: a screening for enzymatic and electrochemical interferents. J. Diabetes Sci. Technol. 6(5), 1172–1181 (2012). https://doi.org/10.1177/193229681200600522
- M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, H. Abe, Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 320(8308), 1129–1131 (1982). https://doi.org/10.1016/S0140-6736(82)92788-X
- J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13(12), 983–988 (2001). https://doi.org/10.1002/1616-8984(200201)10:1%3c107::AID-SEUP107%3e3.0.CO;2-Q
- I.B. Hirsch, Realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. JCEM 94(7), 2232–2238 (2009). https://doi.org/10.1210/jc.2008-2625
- T. Battelino, M. Phillip, N. Bratina, R. Nimri, P. Oskarsson et al., Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34(4), 795–800 (2011). https://doi.org/10.2337/dc10-1989
- W.V. Tamborlane, R.W. Beck, Continuous glucose monitoring in type 1 diabetes mellitus. Lancet 373(9677), 1744–1746 (2009). https://doi.org/10.1016/S0140-6736(09)60962-4
- M. Tauschmann, R. Hovorka, Technology in the management of type 1 diabetes mellitus—current status and future prospects. Nat. Rev. Endocrinol. 14(8), 464–475 (2018). https://doi.org/10.1038/s41574-018-0044-y
- L. Ringholm, P. Damm, E.R. Mathiesen, Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nat. Rev. Endocrinol. 15(7), 406–416 (2019). https://doi.org/10.1038/s41574-019-0197-3
- B.P. Kovatchev, Metrics for glycaemic control—from hba1c to continuous glucose monitoring. Nat. Rev. Endocrinol. 13, 425–436 (2017). https://doi.org/10.1038/nrendo.2017.3
- F. Waldron-Lynch, K.C. Herold, Continuous glucose monitoring: long live the revolution! Nat. Clin. Practice Endocrinol. 5(2), 82–83 (2009). https://doi.org/10.1038/ncpendmet1044
- D. Rodbard, Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18(S2), S2-3-S2-13 (2016). https://doi.org/10.1089/dia.2015.0417
- C. N. Kotanen, F. G. Moussy, S. Carrara, A. Guiseppi-Elie. Implantable enzyme amperometric biosensors. Biosens Bioelectron. 35(1), 14–26 (2012). https://doi.org/10.1016/j.bios.2012.03.016
- M. Gerritsen, Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2), 143–145 (2000). https://doi.org/10.2337/diacare.23.2.143
- T. Danne, R. Nimri, T. Battelino, R. M. Bergenstal, K. L. Close, J. H. DeVries, S. Garg, L. Heinemann, I. Hirsch, S. A. Amiel, R. Beck, E. Bosi, B. Buckingham, C. Cobelli, E. Dassau, F. J. Doyle, 3rd, S. Heller, R. Hovorka, W. Jia, T. Jones, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, D. Maahs, H. R. Murphy, K. Norgaard, C. G. Parkin, E. Renard, B. Saboo, M. Scharf, W. V. Tamborlane, S. A. Weinzimer, M. Phillip. International consensus on use of continuous glucose monitoring. Diabetes Care. 40(12), 1631–1640 (2017). https://doi.org/10.2337/dc17-1600
- M. Gerritsen, J.A. Jansen, J.A. Lutterman, Performance of subcutaneously implanted glucose sensors for continuous monitoring. Neth. J. Med. 54(4), 167–179 (1999). https://doi.org/10.1016/S0300-2977(99)00006-6
- M.T. Novak, F. Yuan, W.M. Reichert, Predicting glucose sensor behavior in blood using transport modeling: relative impacts of protein biofouling and cellular metabolic effects. J. Diabetes Sci. Technol. 7(6), 1547–1560 (2013). https://doi.org/10.1177/193229681300700615
- T. Jadviscokova, Z. Fajkusova, M. Pallayova, J. Luza, G. Kuzmina et al., Occurence of adverse events due to continuous glucose monitoring. Pap. Med. Fac. Univ. Palacky Olomouc Czech. 151(2), 263–266 (2007). https://doi.org/10.5507/bp.2007.044
- M.S. Boyne, D.M. Silver, J. Kaplan, C.D. Saudek, Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52(11), 2790–2794 (2003). https://doi.org/10.2337/diabetes.52.11.2790
- J.M. Ellison, J.M. Stegmann, S.L. Colner, R.H. Michael, M.K. Sharma et al., Rapid changes in postprandial blood glucose produce concentration differences at finger, forearm, and thigh sampling sites. Diabetes Care 25(6), 961–964 (2002). https://doi.org/10.2337/diacare.25.6.961
- H.F. Sylvain, M.E. Pokorny, S.M. English, N.H. Benson, T.W. Whitley et al., Accuracy of fingerstick glucose values in shock patients. Am. J. Crit. Care 4(1), 44–48 (1995). https://doi.org/10.4037/ajcc1995.4.1.44
- Y. Hu, B. Liang, L. Fang, G. Ma, G. Yang et al., Antifouling zwitterionic coating via electrochemically mediated atom transfer radical polymerization on enzyme-based glucose sensors for long-time stability in 37 ℃ serum. Langmuir 32(45), 11763–11770 (2016). https://doi.org/10.1021/acs.langmuir.6b03016
- H. Wu, C.J. Lee, H. Wang, Y. Hu, M. Young et al., Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chem. Sci. 9(9), 2540–2546 (2018). https://doi.org/10.1039/C7SC05104B
- X. Xie, J.C. Doloff, V. Yesilyurt, A. Sadraei, J.J. McGarrigle et al., Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2(12), 894–906 (2018). https://doi.org/10.1038/s41551-018-0273-3
- R. Hovorka, Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7(7), 385–395 (2011). https://doi.org/10.1038/nrendo.2011.32
- G.M. Steil, A.E. Panteleon, K. Rebrin, Closed-loop insulin delivery—the path to physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004). https://doi.org/10.1016/j.addr.2003.08.011
- S.A. Weinzimer, G.M. Steil, K.L. Swan, J. Dziura, N. Kurtz et al., Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008). https://doi.org/10.2337/dc07-1967
- R. Hovorka, J.M. Allen, D. Elleri, L.J. Chassin, J. Harris et al., Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375(9716), 743–751 (2010). https://doi.org/10.1016/S0140-6736(09)61998-X
- R. Hovorka, K. Kumareswaran, J. Harris, J.M. Allen, D. Elleri et al., Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ 342, d1855 (2011). https://doi.org/10.1136/bmj.d1855
- R. Mo, T. Jiang, J. Di, W. Tai, Z. Gu, Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43(10), 3595–3629 (2014). https://doi.org/10.1039/c3cs60436e
- H.M. Heise, U. Damm, M. Bodenlenz, V.R. Kondepati, G. Kohler et al., Bedside monitoring of subcutaneous interstitial glucose in healthy individuals using microdialysis and infrared spectrometry. J. Biomed. Opt. 12(2), 024004 (2007). https://doi.org/10.1117/1.2714907
- O. Rooyackers, C. Blixt, P. Mattsson, J. Wernerman, Continuous glucose monitoring by intravenous microdialysis: influence of membrane length and dialysis flow rate. Acta Anaesth. Scand. 57(2), 214–219 (2013). https://doi.org/10.1111/j.1399-6576.2012.02787.x
- C. Hage, L. Mellbin, L. Rydén, J. Wernerman, Glucose monitoring by means of an intravenous microdialysis catheter technique. Diabetes Technol. Ther. 12(4), 291–295 (2010). https://doi.org/10.1089/dia.2009.0150
- T. Laurell, A continuous glucose monitoring system based on microdialysis. J. Med. Eng. Technol. 16(5), 187–193 (1992). https://doi.org/10.3109/03091909209021982
- J. Bolincier, U. Ungerstedt, P. Arner, Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35(12), 1177–1180 (1992). https://doi.org/10.1007/bf00401374
- E. Csöregi, T. Laurell, I. Katakis, A. Heller, L. Gorton, On-line glucose monitoring by using microdialysis sampling and amperometric detection based on ‘wired’ glucose oxidase in carbon paste. Microchim. Acta 121(1), 31–40 (1995). https://doi.org/10.1007/bf01248238
- J.H. Leopold, R.T.M. Hooijdonk, M. Boshuizen, T. Winters, L.D. Bos et al., Point and trend accuracy of a continuous intravenous microdialysis-based glucose-monitoring device in critically ill patients: a prospective study. Ann. Intensive Care 6(1), 68 (2016). https://doi.org/10.1186/s13613-016-0171-3
- C. Blixt, O. Rooyackers, B. Isaksson, J. Wernerman, Continuous on-line glucose measurement by microdialysis in a central vein. A pilot study. Crit. Care 17(3), R87 (2013). https://doi.org/10.1186/cc12713
- F. Schierenbeck, A. Franco-Cereceda, J. Liska, Accuracy of 2 different continuous glucose monitoring systems in patients undergoing cardiac surgery: intravascular microdialysis versus subcutaneous tissue monitoring. J. Diabetes Sci. Technol. 11(1), 108–116 (2017). https://doi.org/10.1177/1932296816651632
- J.S. Krinsley, J.G. Chase, J. Gunst, J. Martensson, M.J. Schultz et al., Continuous glucose monitoring in the ICU: clinical considerations and consensus. Crit. Care 21(1), 197 (2017). https://doi.org/10.1186/s13054-017-1784-0
- J. Wernerman, T. Desaive, S. Finfer, L. Foubert, A. Furnary et al., Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit. Care 18(3), 226 (2014). https://doi.org/10.1186/cc13921
- N.S. Oliver, C. Toumazou, A.E.G. Cass, D.G. Johnston, Glucose sensors: a review of current and emerging technology. Diabetic Med. 26(3), 197–210 (2009). https://doi.org/10.1111/j.1464-5491.2008.02642.x
- X. Mou, M.R. Lennartz, D.J. Loegering, J.A. Stenken, Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials 31(16), 4530–4539 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.016
- P.K.T. Li, K.M. Chow, Infectious complications in dialysis—epidemiology and outcomes. Nat. Rev. Nephrol. 8(2), 77–88 (2012). https://doi.org/10.1038/nrneph.2011.194
- D. Müller, S.L. Goldstein, Hemodialysis in children with end-stage renal disease. Nat. Rev. Nephrol. 7(11), 650–658 (2011). https://doi.org/10.1038/nrneph.2011.124
- L.M. Yeh, S.Y.H. Chiu, P.C. Lai, The impact of vascular access types on hemodialysis patient long-term survival. Sci. Rep. 9(1), 10708 (2019). https://doi.org/10.1038/s41598-019-47065-z
- Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64(14), 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
- J. Yang, H. Zhang, T. Hu, C. Xu, L. Jiang et al., Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem. Eng. J. 426, 130561 (2021). https://doi.org/10.1016/j.cej.2021.130561
- S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe et al., Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat. Commun. 12(1), 658 (2021). https://doi.org/10.1038/s41467-021-20948-4
- X. Li, X. Huang, J. Mo, H. Wang, X. Xie et al., A fully integrated closed-loop system based on mesoporous microneedles ontophoresis for diabetes treatment. Adv. Sci. 8(16), 2100827 (2021). https://doi.org/10.1002/advs.202100827
- W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3(3), 220–229 (2019). https://doi.org/10.1038/s41551-018-0337-4
- W.G. Bae, H. Ko, J.Y. So, H. Yi, C.H. Lee et al., Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Sci. Transl. Med. 11(503), eaaw3329 (2019). https://doi.org/10.1126/scitranslmed.aaw3329
- J. Li, Y. Zhou, J. Yang, R. Ye, J. Gao et al., Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Mater. Sci. Eng. C 96, 576–582 (2019). https://doi.org/10.1016/j.msec.2018.11.074
- J. Yang, Z. Chen, R. Ye, J. Li, L. Jiang, Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv. 25(1), 1728–1739 (2018). https://doi.org/10.1080/10717544.2018.1507060
- Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018). https://doi.org/10.1016/j.actbio.2017.10.030
- Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
- M.A. Luzuriaga, D.R. Berry, J.C. Reagan, R.A. Smaldone, J.J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18(8), 1223–1230 (2018). https://doi.org/10.1039/C8LC00098K
- P. Cristiane, S.N. Economidou, G. Lall, C. Ziraud, J.S. Boateng et al., 3D printed microneedles for insulin skin delivery. Int. J. Pharmaceut. 65, 425–432 (2018). https://doi.org/10.1016/j.ijpharm.2018.03.031
- H. Derakhshandeh, F. Aghabaglou, A. Mccarthy, A. Mostafavi, A. Tamayol, A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv. Funct. Mater. 30(13), 1905544 (2020). https://doi.org/10.1002/adfm.201905544
- D. Han, R.S. Morde, S. Mariani, A.A.L. Mattina, E. Vignali et al., 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30(11), 1909197 (2020). https://doi.org/10.1002/adfm.201909197
- S.P. Sullivan, D.G. Koutsonanos, M.D.P. Martin, J.W. Lee, V. Zarnitsyn et al., Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16(8), 915–920 (2010). https://doi.org/10.1038/nm.2182
- J. Wang, B. Li, M.X. Wu, Effective and lesion-free cutaneous influenza vaccination. PNAS 112(16), 5005–5010 (2015). https://doi.org/10.1073/pnas.1500408112
- Y. Zhang, J. Yu, A.R. Kahkoska, J. Wang, J.B. Buse et al., Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 112(16), 5005–5010 (2018). https://doi.org/10.1016/j.addr.2018.12.006
- G. Chen, J. Yu, Z. Gu, Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sc. Technol. 13(1), 41–48 (2019). https://doi.org/10.1177/1932296818778607
- K.Y. Seong, M.S. Seo, D.Y. Hwang, E.D. O’Cearbhaill, S. Sreenan et al., A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J. Control. Release 265, 48–56 (2017). https://doi.org/10.1016/j.jconrel.2017.03.041
- W. Yu, G. Jiang, D. Liu, L. Li, H. Chen et al., Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater. Sci. Eng. C 71, 725–734 (2017). https://doi.org/10.1016/j.msec.2016.10.063
- W. Yu, G. Jiang, D. Liu, L. Li, Z. Tong et al., Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017). https://doi.org/10.1016/j.msec.2016.12.111
- X. Xie, C. Pascual, C. Lieu, S. Oh, J. Wang et al., Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 11(1), 395–406 (2017). https://doi.org/10.1021/acsnano.6b06104
- X. Lan, J. She, D. Lin, Y. Xu, X. Li et al., Microneedle-mediated delivery of lipid-coated cisplatin nanops for efficient and safe cancer therapy. ACS Appl. Mater. Interfaces 10(39), 33060–33069 (2018). https://doi.org/10.1021/acsami.8b12926
- Y. Li, F. Liu, C. Su, B. Yu, D. Liu et al., Biodegradable therapeutic microneedle patch for rapid antihypertensive treatment. ACS Appl. Mater. Interfaces 11(34), 30575–30584 (2019). https://doi.org/10.1021/acsami.9b09697
- Z. Wei, S. Zheng, R. Wang, X. Bu, H. Ma et al., A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and sirna delivery. Lab Chip 14(20), 4093–4102 (2014). https://doi.org/10.1039/C4LC00800F
- C.J. Chen, D.H. Chen, Preparation of LaB6 nanops as a novel and effective near-infrared photothermal conversion material. Chem. Eng. J. 180, 337–342 (2012). https://doi.org/10.1016/j.cej.2011.11.035
- M.C. Chen, K.W. Wang, D.H. Chen, M.H. Ling, C.Y. Liu, Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater. 13, 344–353 (2015). https://doi.org/10.1016/j.actbio.2014.11.040
- M.C. Chen, M.H. Ling, K.W. Wang, Z.W. Lin, B.H. Lai et al., Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromol 16(5), 1598–1607 (2015). https://doi.org/10.1021/acs.biomac.5b00185
- M.C. Chen, Z.W. Lin, M.H. Ling, Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10(1), 93–101 (2016). https://doi.org/10.1021/acsnano.5b05043
- J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 112(27), 8260–8265 (2015). https://doi.org/10.1073/pnas.1505405112
- J. Yu, J. Wang, Y. Zhang, G. Chen, W. Mao et al., Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020). https://doi.org/10.1038/s41551-019-0508-y
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
- H. Lee, C. Song, Y.S. Hong, M.S. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
- L. Ventrelli, L.M. Strambini, G. Barillaro, Microneedles for transdermal biosensing: current picture and future direction. Adv. Healthcare Mater. 4(17), 2606–2640 (2015). https://doi.org/10.1002/adhm.201500450
- J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37(4), 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
- G.S. Liu, Y. Kong, Y. Wang, Y. Luo, X. Fan et al., Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials 232, 119740 (2019). https://doi.org/10.1016/j.biomaterials.2019.119740
- M.A. Invernale, B.C. Tang, R.L. York, L. Le, D.Y. Hou et al., Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv. Healthcare Mater. 3(3), 338–342 (2014). https://doi.org/10.1002/adhm.201300142
- Y. Yoon, G.S. Lee, K. Yoo, J.B. Lee, Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13(12), 16672–16681 (2013). https://doi.org/10.3390/s131216672
- B. Chua, S.P. Desai, M.J. Tierney, J.A. Tamada, A.N. Jina, Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens. Actuator A Phys. 203, 373–381 (2013). https://doi.org/10.1016/j.sna.2013.09.026
- A. Jina, M.J. Tierney, J.A. Tamada, S. McGill, S. Desai et al., Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014). https://doi.org/10.1177/1932296814526191
- P. Miller, M. Moorman, R. Manginell, C. Ashlee, I. Brener et al., Towards an integrated microneedle total analysis chip for protein detection. Electroanalysis 28(6), 1305–1310 (2016). https://doi.org/10.1002/elan.201600063
- S.A. Ranamukhaarachchi, C. Padeste, M. Dübner, U.O. Häfeli, B. Stoeber et al., Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 6(1), 29075 (2016). https://doi.org/10.1038/srep29075
- C.G. Li, H.A. Joung, H. Noh, M.B. Song, M.G. Kim et al., One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(16), 3286–3292 (2015). https://doi.org/10.1039/C5LC00669D
- D.S. Lee, C.G. Li, C. Ihm, H. Jung, A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling. Sens. Actuator B Chem. 255, 384–390 (2018). https://doi.org/10.1016/j.snb.2017.08.030
- D. Nicholas, K.A. Logan, Y. Sheng, J. Gao, S. Farrell et al., Rapid paper based colorimetric detection of glucose using a hollow microneedle device. Int. J. Pharm. 547(1), 244–249 (2018). https://doi.org/10.1016/j.ijpharm.2018.06.002
- P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan et al., Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv. Healthcare Mater. 3(6), 876–881 (2014). https://doi.org/10.1002/adhm.201300541
- M. Parrilla, M. Cuartero, S.P. Sánchez, M. Rajabi, N. Roxhed et al., Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91(2), 1578–1586 (2019). https://doi.org/10.1021/acs.analchem.8b04877
- D.H. Keum, H.S. Jung, T. Wang, M.H. Shin, Y.E. Kim et al., Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv. Healthc. Mater. 4(8), 1153–1158 (2015). https://doi.org/10.1002/adhm.201500012
- A.M.V. Mohan, J.R. Windmiller, R.K. Mishra, J. Wang, Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017). https://doi.org/10.1016/j.bios.2017.01.016
- Q. Jin, H.J. Chen, X. Li, X. Huang, Q. Wu et al., Reduced graphene oxide nanohybrid–assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small 15(6), 1804298 (2019). https://doi.org/10.1002/smll.201804298
- F. Liu, Z. Lin, Q. Jin, Q. Wu, C. Yang et al., Protection of nano-structures-integrated microneedle biosensor using dissolvable polymer coating. ACS Appl. Mater. Interfaces 11(5), 4809–4819 (2019). https://doi.org/10.1021/acsami.8b18981
- E.M. Cahill, E.D. O’Cearbhaill, Toward biofunctional microneedles for stimulus responsive drug delivery. Bioconjugate Chem. 26(7), 1289–1296 (2015). https://doi.org/10.1021/acs.bioconjchem.5b00211
- H. Lee, C. Song, S. Baik, D. Kim, T. Hyeon et al., Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 127, 35–45 (2018). https://doi.org/10.1016/j.addr.2017.08.009
- G. Buzsáki, Rhythms of the Brain (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
- M. Häusser, B. Mel, Dendrites: bug or feature? Curr. Opin. Neurobiol. 13(3), 372–383 (2003). https://doi.org/10.1016/S0959-4388(03)00075-8
- M.F. Bear, B.W. Connors, M.A. Paradiso, Neuroscience: exploring the brain. J. Child Fam. Stud. 5, 377–379 (1996). https://doi.org/10.1007/BF02234670
- G.J. Stuart, H.U. Dodt, B. Sakmann, Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch. 423(5), 511–518 (1993). https://doi.org/10.1007/bf00374949
- J.T. Davie, M.H.P. Kole, J.J. Letzkus, E.A. Rancz, N. Spruston et al., Dendritic patch-clamp recording. Nat. Protoc. 1(3), 1235–1247 (2006). https://doi.org/10.1038/nprot.2006.164
- J. Bischofberger, D. Engel, L. Li, J.R.P. Geiger, P. Jonas, Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1(4), 2075–2081 (2006). https://doi.org/10.1038/nprot.2006.312
- A.L. Hodgkin, A.F. Huxley, B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of loligo. J. Physiol. 116(4), 424–448 (1952). https://doi.org/10.1113/jphysiol.1952.sp004716
- C.D. Harvey, C. Forrest, D.A. Dombeck, D.W. Tank, Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266), 941–946 (2009). https://doi.org/10.1038/nature08499
- K. Kitamura, B. Judkewitz, M. Kano, W. Denk, M. Häusser, Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5(1), 61–67 (2008). https://doi.org/10.1038/nmeth1150
- S.B. Kodandaramaiah, G.T. Franzesi, B.Y. Chow, E.S. Boyden, C.R. Forest, Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods 9(6), 585–587 (2012). https://doi.org/10.1038/nmeth.1993
- R.R. Harrison, I. Kolb, S.B. Kodandaramaiah, A.A. Chubykin, A. Yang et al., Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording. J. Neurophysiol. 113(4), 1275 (2015). https://doi.org/10.1152/jn.00629.2014
- T.W. Margrie, M. Brecht, B. Sakmann, In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444(4), 491–498 (2002). https://doi.org/10.1007/s00424-002-0831-z
- T.W. Margrie, A.H. Meyer, A. Caputi, H. Monyer, M.T. Hasan et al., Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6), 911–918 (2003). https://doi.org/10.1016/j.neuron.2003.08.012
- B. Jagadeesh, C. Gray, D. Ferster, Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257(5069), 552–554 (1992). https://doi.org/10.1126/science.1636094
- W.T. Tseng, C.T. Yen, M.L. Tsai, A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J. Neurosci. Meth. 201(2), 368–376 (2011). https://doi.org/10.1016/j.jneumeth.2011.08.028
- E. Fernández, B. Greger, P.A. House, I. Aranda, C. Botella et al., Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front. Neuroeng. 7(24), 24 (2014). https://doi.org/10.3389/fneng.2014.00024
- M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9), 1273–1283 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.022
- F.A. Gibbs, E.L. Gibbs, Atlas of Electroencephalography (1941).https://doi.org/10.1136/jnnp.53.5.452
- S. Vanneste, J.J. Song, D.D. Ridder, Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 9(1), 1103–1103 (2018). https://doi.org/10.1038/s41467-018-02820-0
- S.E. John, N.L. Opie, Y.T. Wong, G.S. Rind, S.M. Ronayne et al., Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Sci. Rep. 8(1), 8427 (2018). https://doi.org/10.1038/s41598-018-26457-7
- D.T. Bundy, E. Zellmer, C.M. Gaona, M. Sharma, N. Szrama et al., Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings. J. Neural Eng. 11(1), 016006 (2014). https://doi.org/10.1088/1741-2560/11/1/016006
- J.P. Seymour, W. Fan, K.D. Wise, E. Yoon, State-of-the-art mems and microsystem tools for brain research. Microsyst. Nanoeng. 3, 16066 (2017). https://doi.org/10.1038/micronano.2016.66
- D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky et al., Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015). https://doi.org/10.1038/nn.3905
- G. Buzsáki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446 (2004). https://doi.org/10.1038/nn1233
- C.M. Gray, P.E. Maldonado, M. Wilson, B. Mcnaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods. 63(1–2), 43–54 (1995). https://doi.org/10.1016/0165-0270(95)00085-2
- H.W. Steenland, B.L. McNaughton, Techniques for large-scale multiunit recording. Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Comput. Neurosci. 12, 3–39 (2015). https://doi.org/10.1007/978-1-4939-1969-7_1
- B.L. McNaughton, J. O’Keefe, C.A. Barnes, The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Meth. 8(4), 391–397 (1983). https://doi.org/10.1016/0165-0270(83)90097-3
- D.A. Schwarz, M.A. Lebedev, T.L. Hanson, D.F. Dimitrov, G. Lehew et al., Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014). https://doi.org/10.1038/nmeth.2936
- L. Cabrera, C. Sadle, E. Purcell, Neuroethical considerations of high-density electrode arrays. Nat. Biomed. Eng. 3(8), 586–589 (2019). https://doi.org/10.1038/s41551-019-0407-2
- Z. Qin, B. Zhang, K. Gao, L. Zhuang, N. Hu et al., A whole animal-based biosensor for fast detection of bitter compounds using extracellular potentials in rat gustatory cortex. Sens. Actuator B Chem. 239, 746–753 (2017). https://doi.org/10.1016/j.snb.2016.08.027
- Z. Qin, B. Zhang, L. Hu, L. Zhuang, N. Hu et al., A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain–machine interface. Biosens. Bioelectron. 78, 374–380 (2016). https://doi.org/10.1016/j.bios.2015.11.078
- M.A.L. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew et al., Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS 100(19), 11041–11046 (2003). https://doi.org/10.1073/pnas.1934665100
- P.J. Rousche, R.A. Normann, Chronic recording capability of the utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998). https://doi.org/10.1016/S0165-0270(98)00031-4
- E.M. Maynard, N.G. Hatsopoulos, C.L. Ojakangas, B.D. Acuna, J.N. Sanes et al., Neuronal interactions improve cortical population coding of movement direction. J. Neurosci. 19(18), 8083–8093 (1999). https://doi.org/10.1523/JNEUROSCI.19-18-08083.1999
- N.G. Hatsopoulos, C.L. Ojakangas, L. Paninski, J.P. Donoghue, Information about movement direction obtained from synchronous activity of motor cortical neurons. PNAS 95(26), 15706–15711 (1998). https://doi.org/10.1073/pnas.95.26.15706
- K.E. Jones, P.K. Campbell, R.A. Normann, A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992). https://doi.org/10.1007/BF02368134
- C.T. Nordhausen, P.J. Rousche, R.A. Normann, Optimizing recording capabilities of the utah intracortical electrode array. Brain Res. 637(1–2), 27–36 (1994). https://doi.org/10.1016/0006-8993(94)91213-0
- J.C. Barrese, N. Rao, K. Paroo, C. Triebwasser, C. Vargasirwin et al., Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10(6), 066014 (2013). https://doi.org/10.1088/1741-2560/10/6/066014
- W. Truccolo, L.R. Hochberg, J.P. Donoghue, Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13(1), 105–111 (2010). https://doi.org/10.1038/nn.2455
- L.R. Hochberg, B. Daniel, J. Beata, N.Y. Masse, J.D. Simeral et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2013). https://doi.org/10.1038/nature11076
- E.K. Chadwick, D. Blana, J.D. Simeral, J. Lambrecht, S.P. Kim et al., Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. J. Neural Eng. 8(3), 034003 (2011). https://doi.org/10.1088/1741-2560/8/3/034003
- A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, F. Solzbacher, Long term in vitro stability of fully integrated wireless neural interfaces based on utah slant electrode array. Appl. Phys. Lett. 96(7), 164 (2010). https://doi.org/10.1063/1.3318251
- A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann et al., Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel utah slant electrode array (USEA): implications for long term functionality. Sens. Actuator A Phys. 188(8), 167–172 (2012). https://doi.org/10.1016/j.sna.2011.11.015
- P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U.G. Hofmann, A 32-site neural recording probe fabricated by drie of soi substrates. J. Micromech. Microeng. 12(12), 414–419 (2002). https://doi.org/10.1088/0960-1317/12/4/312
- K.C. Cheung, K. Djupsund, Y. Dan, L.P. Lee, Implantable multichannel electrode array based on soi technology. J. Microelectromech. Syst. 12(2), 179–184 (2003). https://doi.org/10.1109/JMEMS.2003.809962
- D.R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J.M. Henderson et al., Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008). https://doi.org/10.1523/jneurosci.3879-08.2008
- D.R. Kipke, S. William, G. Buzsáki, E. Fetz, J.M. Henderson et al., Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical oppo
References
D. Casares, P.V. Escribá, C.A. Rosselló, Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20(9), 2167 (2019). https://doi.org/10.3390/ijms20092167
V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005). https://doi.org/10.1038/nrd1632
F. Wang, J. Xiao, S. Chen, H. Sun, B. Yang et al., Polymer vesicles: modular platforms for cancer theranostics. Adv. Mater. 30(17), 1705674 (2018). https://doi.org/10.1002/adma.201705674
Y. Ma, R.J.M. Nolte, J.L.M. Cornelissen, Virus-based nanocarriers for drug delivery. Adv. Drug Deliv. Rev. 64(9), 811–825 (2012). https://doi.org/10.1016/j.addr.2012.01.005
P. Vader, E.A. Mol, G. Pasterkamp, R.M. Schiffelers, Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 106, 148–156 (2016). https://doi.org/10.1016/j.addr.2016.02.006
L.Y.T. Chou, K. Ming, W.C.W. Chan, Strategies for the intracellular delivery of nanops. Chem. Soc. Rev. 40(1), 233–245 (2011). https://doi.org/10.1039/C0CS00003E
X. Qin, C. Yu, J. Wei, L. Li, C. Zhang et al., Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 31(46), 1902791 (2019). https://doi.org/10.1002/adma.201902791
D.J. Stephens, R. Pepperkok, The many ways to cross the plasma membrane. PNAS 98(8), 4295 (2001). https://doi.org/10.1073/pnas.081065198
N.J. Yang, M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266, 29–53 (2015). https://doi.org/10.1007/978-1-4939-2272-7_3
W. Kang, R.L. McNaughton, H.D. Espinosa, Micro-and nanoscale technologies for delivery into adherent cells. Trends Biotechnol. 34(8), 665–678 (2016). https://doi.org/10.1016/j.tibtech.2016.05.003
M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer et al., In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624), 183–192 (2016). https://doi.org/10.1038/nature19764
P. Tiefenboeck, J.A. Kim, J.C. Leroux, Intracellular delivery of colloids: past and future contributions from microinjection. Adv. Drug Deliv. Rev. 132, 3–15 (2018). https://doi.org/10.1016/j.addr.2018.06.013
B. Sakmann, E. Neher, Patch clamp techniques for studying ionic channels in excitable membranes. Ann. Rev. Physiol. 46, 455–472 (1984). https://doi.org/10.1146/annurev.ph.46.030184.002323
J. Shi, Y. Ma, J. Zhu, Y. Chen, Y. Sun et al., A review on electroporation-based intracellular delivery. Molecules 23(11), 3044 (2018). https://doi.org/10.3390/molecules23113044
D. Xu, J. Mo, X. Xie, N. Hu, In-cell nanoelectronics: opening the door to intracellular electrophysiology. Nano-Micro Lett. 13, 127 (2021). https://doi.org/10.1007/s40820-021-00655-x
G. He, N. Hu, A.M. Xu, X. Li, Y. Zhao et al., Nanoneedle platforms: the many ways to pierce the cell membrane. Adv. Funct. Mater. 30(21), 1909890 (2020). https://doi.org/10.1002/adfm.201909890
D. Xu, J. Fang, M. Zhang, H. Wang, T. Zhang et al., Synchronized intracellular and extracellular recording of action potentials by three-dimensional nanoroded electroporation. Biosens. Bioelectron. 192, 113501 (2021). https://doi.org/10.1016/j.bios.2021.113501
A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. PNAS 107(5), 1870–1875 (2010). https://doi.org/10.1073/pnas.0909350107
C. Chiappini, J.O. Martinez, E.D. Rosa, C.S. Almeida, E. Tasciotti et al., Biodegradable nanoneedles for localized delivery of nanops in vivo: exploring the biointerface. ACS Nano 9(5), 5500–5509 (2015). https://doi.org/10.1021/acsnano.5b01490
C. Chiappini, E.D. Rosa, J. Martinez, X. Liu, J. Steele et al., Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14(5), 532–539 (2015). https://doi.org/10.1038/nmat4249
E. Peer, A. Artzy-Schnirman, L. Gepstein, U. Sivan, Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano 6(6), 4940–4946 (2012). https://doi.org/10.1021/nn300443h
J.H. Lee, A. Zhang, S.S. You, C.M. Lieber, Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Lett. 16(2), 1509–1513 (2016). https://doi.org/10.1021/acs.nanolett.6b00020
B.D. Almquist, N.A. Melosh, Fusion of biomimetic stealth probes into lipid bilayer cores. PNAS 107(13), 5815–5820 (2010). https://doi.org/10.1073/pnas.0909250107
V. Caprettini, A. Cerea, G. Melle, L. Lovato, R. Capozza et al., Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci. Rep. 7(1), 8524 (2017). https://doi.org/10.1038/s41598-017-08886-y
G. He, H.J. Chen, D. Liu, Y. Feng, C. Yang et al., Fabrication of various structures of nanostraw arrays and their applications in gene delivery. Adv. Mater. Interfaces 5(10), 1701535 (2018). https://doi.org/10.1002/admi.201701535
C. Yang, G. Yang, Q. Ouyang, S. Kuang, P. Song et al., Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator. Nano Energy 64, 103901 (2019). https://doi.org/10.1016/j.nanoen.2019.103901
S. Bae, S. Park, J. Kim, J.S. Choi, K.H. Kim et al., Exogenous gene integration for microalgal cell transformation using a nanowire-incorporated microdevice. ACS Appl. Mater. Interfaces 7(49), 27554–27561 (2015). https://doi.org/10.1021/acsami.5b09964
D. Matsumoto, R.R. Sathuluri, Y. Kato, Y.R. Silberberg, R. Kawamura et al., Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep. 5, 15325 (2015). https://doi.org/10.1038/srep15325
G.C. Messina, M. Dipalo, R.L. Rocca, P. Zilio, V. Caprettini et al., Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv. Mater. 27(44), 7145–7149 (2015). https://doi.org/10.1002/adma.201503252
M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17(6), 3932–3939 (2017). https://doi.org/10.1021/acs.nanolett.7b01523
B. Tian, C.M. Lieber, Nanowired bioelectric interfaces. Chem. Rev. 119(15), 9136–9152 (2019). https://doi.org/10.1021/acs.chemrev.8b00795
J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4(2), 232–241 (2020). https://doi.org/10.1038/s41551-019-0455-7
C. Chiappini, Nanoneedle-based sensing in biological systems. ACS Sens. 2(8), 1086–1102 (2017). https://doi.org/10.1021/acssensors.7b00350
P. Paulitschke, F. Keber, A. Lebedev, J. Stephan, H. Lorenz et al., Ultraflexible nanowire array for label-and distortion-free cellular force tracking. Nano Lett. 19(4), 2207–2214 (2018). https://doi.org/10.1021/acs.nanolett.8b02568
S. Mieda, Y. Amemiya, T. Kihara, T. Okada, T. Sato et al., Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosen. Bioelectron. 31(1), 323–329 (2012). https://doi.org/10.1016/j.bios.2011.10.039
A. Tay, N. Melosh, Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52(9), 2462–2471 (2019). https://doi.org/10.1021/acs.accounts.9b00272
R. Elnathan, B. Delalat, D. Brodoceanu, H. Alhmoud, F.J. Harding et al., Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 25(46), 7215–7225 (2015). https://doi.org/10.1002/adfm.201503465
Y. Qu, Y. Zheng, L. Yu, Y. Zhou, Y. Wang et al., A universal platform for high-efficiency “engineering” living cells: integration of cell capture, intracellular delivery of biomolecules, and cell harvesting functions. Adv. Funct. Mater. 30(3), 1906362 (2019). https://doi.org/10.1002/adfm.201906362
C.M. Girardin, C. Huot, M. Gonthier, E. Delvin, Continuous glucose monitoring: a review of biochemical perspectives and clinical use in type 1 diabetes. Clin. Biochem. 42(3), 136–142 (2009). https://doi.org/10.1016/j.clinbiochem.2008.09.112
R. Gifford, Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 14(10), 2032–2044 (2013). https://doi.org/10.1002/cphc.201300172
S.P. Nichols, A. Koh, W.L. Storm, J.H. Shin, M.H. Schoenfisch, Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113(4), 2528–2549 (2013). https://doi.org/10.1021/cr300387j
N. Sheehy, Electroencephalography: basic principles, clinical applications and related fields. J. Neurol. Neurosurg. Psychiatry 47(6), 654 (1984). https://doi.org/10.1136/jnnp.47.6.654-a
M. Mahmood, D. Mzurikwao, Y.S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
L.J. Gabard-Durnam, C. Wilkinson, K. Kapur, H. Tager-Flusberg, A.R. Levin et al., Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat. Commun. 10(1), 4188 (2019). https://doi.org/10.1038/s41467-019-12202-9
W.H. Zhang, M.K. Herde, J.A. Mitchell, J.H. Whitfield, A.B. Wulff et al., Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14(9), 861–869 (2018). https://doi.org/10.1038/s41589-018-0108-2
J. Wang, F. Wagner, D.A. Borton, J. Zhang, I. Ozden et al., Integrated device for combined optical neuromodulation and electrical recording for chronicin vivoapplications. J. Neural Eng. 9(1), 016001 (2011). https://doi.org/10.1088/1741-2560/9/1/016001
H. Shin, H.J. Lee, U. Chae, H. Kim, J. Kim et al., Neural probes with multi-drug delivery capability. Lab Chip 15(18), 3730–3737 (2015). https://doi.org/10.1039/C5LC00582E
S.R. Husain, J. Han, P. Au, K. Shannon, R.K. Puri, Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 22, 554–563 (2015). https://doi.org/10.1038/cgt.2015.58
J. Liu, T. Gaj, Y. Yang, N. Wang, S. Shui et al., Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015). https://doi.org/10.1038/nprot.2015.117
D. Wilbie, J. Walther, E. Mastrobattista, Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc. Chem. Res. 52(6), 1555–1564 (2019). https://doi.org/10.1021/acs.accounts.9b00106
L. Yan, J. Zhang, C.S. Lee, X. Chen, Micro-and nanotechnologies for intracellular delivery. Small 10(22), 4487–4504 (2014). https://doi.org/10.1002/smll.201401532
M.Y. Rotenberg, B. Tian, Talking to cells: semiconductor nanomaterials at the cellular interface. Adv. Biosys. 2(4), 1700242 (2018). https://doi.org/10.1002/adbi.201700242
L. Chang, Y.C. Wang, F. Ershad, R. Yang, C. Yu et al., Wearable devices for single-cell sensing and transfection. Trends Biotechnol. 37(11), 1175–1188 (2019). https://doi.org/10.1016/j.tibtech.2019.04.001
A.K. Fajrial, X. Ding, Advanced nanostructures for cell membrane poration. Nanotechnology 30(26), 264002 (2019). https://doi.org/10.1088/1361-6528/ab096b
K. Yum, N. Wang, M.F. Yu, Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2(3), 363–372 (2010). https://doi.org/10.1039/B9NR00231F
R. Elnathan, M. Kwiat, F. Patolsky, N. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9(2), 172–196 (2014). https://doi.org/10.1016/j.nantod.2014.04.001
K. Lee, N. Lingampalli, A.P. Pisano, N. Murthy, H. So, Physical delivery of macromolecules using high-aspect ratio nanostructured materials. ACS Appl. Mater. Interfaces 7(42), 23387–23397 (2015). https://doi.org/10.1021/acsami.5b05520
E. Lestrell, F. Patolsky, N.H. Voelcker, R. Elnathan, Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts. Mater. Today 33, 87–104 (2019). https://doi.org/10.1016/j.mattod.2019.08.012
R. Singhal, Z. Orynbayeva, R.V.K. Sundaram, J.J. Niu, S. Bhattacharyya et al., Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotech. 6(1), 57–64 (2011). https://doi.org/10.1038/nnano.2010.241
N. Fan, H. Jiang, Z. Ye, G. Wu, Y. Kang et al., The insertion mechanism of a living cell determined by the stress segmentation effect of the cell membrane during the tip–cell interaction. Small 14(22), 1703868 (2018). https://doi.org/10.1002/smll.201703868
X. Chen, A. Kis, A. Zettl, C.R. Bertozzi, A cell nanoinjector based on carbon nanotubes. PNAS 104(20), 8218 (2007). https://doi.org/10.1073/pnas.0700567104
X.T. Zheng, C.M. Li, Single cell analysis at the nanoscale. Chem. Soc. Rev. 41(6), 2061–2071 (2012). https://doi.org/10.1039/C1CS15265C
M. Kwak, L. Han, J.J. Chen, R. Fan, Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11(42), 5600–5610 (2015). https://doi.org/10.1002/smll.201501236
L. Yan, Y. Yang, W. Zhang, X. Chen, Advanced materials and nanotechnology for drug delivery. Adv. Mater. 26(31), 5533–5540 (2014). https://doi.org/10.1002/adma.201305683
X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma et al., Mechanical model of vertical nanowire cell penetration. Nano Lett. 13(12), 6002–6008 (2013). https://doi.org/10.1021/nl403201a
X. Xie, A. Aalipour, S.V. Gupta, N.A. Melosh, Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9(12), 11667–11677 (2015). https://doi.org/10.1021/acsnano.5b05498
Y. Cao, H. Chen, R. Qiu, M. Hanna, E. Ma et al., Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4(10), aat8131 (2018). https://doi.org/10.1126/sciadv.aat8131
C.J. Bettinger, R. Langer, J.T. Borenstein, Engineering substrate topography at the micro-and nanoscale to control cell function. Angew. Chem. Int. Ed. 48(30), 5406–5415 (2009). https://doi.org/10.1002/anie.200805179
S. Bonde, N. Buch-Månson, K.R. Rostgaard, T.K. Andersen, T. Berthing et al., Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25(36), 362001 (2014). https://doi.org/10.1088/0957-4484/25/36/362001
B.S. Gomes, B. Simões, P.M. Mendes, The increasing dynamic, functional complexity of bio-interface materials. Nat. Rev. Chem. 2(3), 0120 (2018). https://doi.org/10.1038/s41570-018-0120
D. Nawarathna, T. Turan, H.K. Wickramasinghe, Selective probing of mRNA expression levels within a living cell. Appl. Phys. Lett. 95(8), 83117 (2009). https://doi.org/10.1063/1.3213343
Y. Tao, H.K. Wickramasinghe, Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions. Appl. Phys. Lett. 110(7), 073701 (2017). https://doi.org/10.1063/1.4974939
X. Li, Y. Tao, D.H. Lee, H.K. Wickramasinghe, A.P. Lee, In situ mrna isolation from a microfluidic single-cell array using an external afm nanoprobe. Lab Chip 17(9), 1635–1644 (2017). https://doi.org/10.1039/c7lc00133a
B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010). https://doi.org/10.1126/science.1192033
X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotech. 7(3), 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
Z. Li, J. Song, G. Mantini, M.Y. Lu, H. Fang et al., Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett. 9(10), 3575–3580 (2009). https://doi.org/10.1021/nl901774m
R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17(5), 2757–2764 (2017). https://doi.org/10.1021/acs.nanolett.6b04752
H. Alhmoud, B. Delalat, R. Elnathan, A. Cifuentes-Rius, A. Chaix et al., Porous silicon nanodiscs for targeted drug delivery. Adv. Funct. Mater. 25(7), 1137–1145 (2015). https://doi.org/10.1002/adfm.201403414
W. Hällström, M. Lexholm, D.B. Suyatin, G. Hammarin, D. Hessman et al., Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 10(3), 782–787 (2010). https://doi.org/10.1021/nl902675h
S. Bonde, T. Berthing, M.H. Madsen, T.K. Andersen, N. Buch-Månson et al., Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5(21), 10510–10519 (2013). https://doi.org/10.1021/am402070k
C. Xie, L. Hanson, Y. Cui, B. Cui, Vertical nanopillars for highly localized fluorescence imaging. PNAS 108(10), 3894–3899 (2011). https://doi.org/10.1073/pnas.1015589108
J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotech. 12(5), 460–466 (2017). https://doi.org/10.1038/nnano.2017.3
X. Xie, A.M. Xu, S. Leal-Ortiz, Y. Cao, C.C. Garner et al., Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7(5), 4351–4358 (2013). https://doi.org/10.1021/nn400874a
G. He, J. Feng, A. Zhang, L. Zhou, R. Wen et al., Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Lett. 19(10), 7201–7209 (2019). https://doi.org/10.1021/acs.nanolett.9b02790
R. Yan, J.H. Park, Y. Choi, C.J. Heo, S.M. Yang et al., Nanowire-based single-cell endoscopy. Nat. Nanotech. 7(3), 191–196 (2012). https://doi.org/10.1038/nnano.2011.226
M. Galic, S. Jeong, F.C. Tsai, L.M. Joubert, Y.I. Wu et al., External push and internal pull forces recruit curvature-sensing n-bar domain proteins to the plasma membrane. Nat. Cell Biol. 14(8), 874–881 (2012). https://doi.org/10.1038/ncb2533
T.E. McKnight, A.V. Melechko, G.D. Griffin, M.A. Guillorn, V.I. Merkulov et al., Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14(5), 551–556 (2003). https://doi.org/10.1088/0957-4484/14/5/313
Y. Wang, Y. Yang, L. Yan, S.Y. Kwok, W. Li et al., Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014). https://doi.org/10.1038/ncomms5466
R. Wen, A.H. Zhang, D. Liu, J. Feng, J. Yang et al., Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl. Mater. Interfaces 11(47), 43936–43948 (2019). https://doi.org/10.1021/acsami.9b15619
C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotech. 7(3), 185–190 (2012). https://doi.org/10.1038/nnano.2012.8
A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119(15), 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
L.N. Quan, J. Kang, C.Z. Ning, P. Yang, Nanowires for photonics. Chem. Rev. 119(15), 9153–9169 (2019). https://doi.org/10.1021/acs.chemrev.9b00240
L. Xu, Y. Zhao, K.A. Owusu, Z. Zhuang, Q. Liu et al., Recent advances in nanowire-biosystem interfaces: from chemical conversion, energy production to electrophysiology. Chemistry 4(7), 1538–1559 (2018). https://doi.org/10.1016/j.chempr.2018.04.004
J. Kammhuber, M.C. Cassidy, H. Zhang, Ö. Gül, F. Pei et al., Conductance quantization at zero magnetic field in InSb nanowires. Nano Lett. 16(6), 3482–3486 (2016). https://doi.org/10.1021/acs.nanolett.6b00051
M.S. Chan, P.K. Lo, Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10(7), 1255–1260 (2014). https://doi.org/10.1002/smll.201302993
B.G. Nair, K. Hagiwara, M. Ueda, H.H. Yu, H.R. Tseng et al., High density of aligned nanowire treated with polydopamine for efficient gene silencing by sirna according to cell membrane perturbation. ACS Appl. Mater. Interfaces 8(29), 18693–18700 (2016). https://doi.org/10.1021/acsami.6b04913
Z. Liu, J. Nie, B. Miao, J. Li, Y. Cui et al., Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 31(12), 1807795 (2019). https://doi.org/10.1002/adma.201807795
J.J. VanDersarl, A.M. Xu, N.A. Melosh, Nanostraws for direct fluidic intracellular access. Nano Lett. 12(8), 3881–3886 (2011). https://doi.org/10.1021/nl204051v
G. He, C. Yang, T. Hang, D. Liu, H.J. Chen et al., Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively. ACS Sens. 3(9), 1675–1682 (2018). https://doi.org/10.1021/acssensors.8b00367
J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotech. 7(3), 180–184 (2012). https://doi.org/10.1038/nnano.2011.249
X. Zhu, M.F. Yuen, L. Yan, Z. Zhang, F. Ai et al., Diamond-nanoneedle-array-facilitated intracellular delivery and the potential influence on cell physiology. Adv. Health Mater. 5(10), 1157–1168 (2016). https://doi.org/10.1002/adhm.201500990
T.M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. PNAS 111(4), 1259–1264 (2014). https://doi.org/10.1073/pnas.1323389111
R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12(6), 3329–3333 (2012). https://doi.org/10.1021/nl301623p
Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotech. 9(2), 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotech. 14, 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007). https://doi.org/10.1021/ja071456k
T. Berthing, S. Bonde, C.B. Sørensen, P. Utko, J. Nygård et al., Intact mammalian cell function on semiconductor nanowire arrays: new perspectives for cell-based biosensing. Small 7(5), 640–647 (2011). https://doi.org/10.1002/smll.201001642
J.J. VanDersarl, A.M. Xu, N.A. Melosh, Nanostraws for direct fluidic intracellular access. Nano Lett. 12(8), 3881–3886 (2012). https://doi.org/10.1021/nl204051v
S. Qi, C. Yi, S. Ji, C.C. Fong, M. Yang, Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1(1), 30–34 (2009). https://doi.org/10.1021/am800027d
C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui et al., Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10(10), 4020–4024 (2010). https://doi.org/10.1021/nl101950x
H. Persson, C. Købler, K. Mølhave, L. Samuelson, J.O. Tegenfeldt et al., Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9(23), 4006–4016 (2013). https://doi.org/10.1002/smll.201300644
A. Tay, N. Melosh, Transfection with nanostructure electro-injection is minimally perturbative. Adv. Therap. 2(12), 1900133 (2019). https://doi.org/10.1002/adtp.201900133
M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118(16), 7409–7531 (2018). https://doi.org/10.1021/acs.chemrev.7b00678
W. Kang, F. Yavari, M. Minary-Jolandan, J.P. Giraldo-Vela, A. Safi et al., Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett. 13(6), 2448–2457 (2013). https://doi.org/10.1021/nl400423c
R. Yang, V. Lemaître, C. Huang, A. Haddadi, R. McNaughton et al., Monoclonal cell line generation and CRISPR/Cas9 manipulation via single-cell electroporation. Small 14(12), 1702495 (2018). https://doi.org/10.1002/smll.201702495
P.E. Boukany, A. Morss, W.C. Liao, B. Henslee, H. Jung et al., Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotech. 6(11), 747–754 (2011). https://doi.org/10.1038/nnano.2011.164
X. Ding, M.P. Stewart, A. Sharei, J.C. Weaver, R.S. Langer et al., High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1(3), 0039 (2017). https://doi.org/10.1038/s41551-017-0039
P. Mukherjee, S.S.P. Nathamgari, J.A. Kessler, H.D. Espinosa, Combined numerical and experimental investigation of localized electroporation-based cell transfection and sampling. ACS Nano 12(12), 12118–12128 (2018). https://doi.org/10.1021/acsnano.8b05473
Y. Cao, E. Ma, S. Cestellos-Blanco, B. Zhang, R. Qiu et al., Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. PNAS 116(16), 7899–7904 (2019). https://doi.org/10.1073/pnas.1818553116
L. Chang, L. Li, J. Shi, Y. Sheng, W. Lu et al., Micro-/nanoscale electroporation. Lab Chip 16(21), 4047–4062 (2016). https://doi.org/10.1039/C6LC00840B
S. Okumoto, A. Jones, W.B. Frommer, Quantitative imaging with fluorescent biosensors. Ann. Rev. Plant Biol. 63(1), 663–706 (2012). https://doi.org/10.1146/annurev-arplant-042110-103745
M. Hu, L. Li, H. Wu, Y. Su, P.Y. Yang et al., Multicolor, one- and two-photon imaging of enzymatic activities in live cells with fluorescently quenched activity-based probes (qABPs). J. Am. Chem. Soc. 133(31), 12009–12020 (2011). https://doi.org/10.1021/ja200808y
K.D. Greis, Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26(3), 324–339 (2007). https://doi.org/10.1002/mas.20127
A. Liesener, U. Karst, Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal. Bioanal. Chem. 382(7), 1451–1464 (2005). https://doi.org/10.1007/s00216-005-3305-2
P. Actis, M.M. Maalouf, H.J. Kim, A. Lohith, B. Vilozny et al., Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8(1), 546–553 (2014). https://doi.org/10.1021/nn405097u
Y. Nashimoto, Y. Takahashi, Y. Zhou, H. Ito, H. Ida et al., Evaluation of mRNA localization using double barrel scanning ion conductance microscopy. ACS Nano 10(7), 6915–6922 (2016). https://doi.org/10.1021/acsnano.6b02753
X. Li, S. Majdi, J. Dunevall, H. Fathali, A.G. Ewing, Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54(41), 11978–11982 (2015). https://doi.org/10.1002/anie.201504839
B.P. Nadappuram, P. Cadinu, A. Barik, A.J. Ainscough, M.J. Devine et al., Nanoscale tweezers for single-cell biopsies. Nat. Nanotech. 14(1), 80–88 (2019). https://doi.org/10.1038/s41565-018-0315-8
Y. Cao, M. Hjort, H. Chen, F. Birey, S.A. Leal-Ortiz et al., Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. PNAS 114(10), E1866–E1874 (2017). https://doi.org/10.1073/pnas.1615375114
J. Abbott, T. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51(3), 600–608 (2018). https://doi.org/10.1021/acs.accounts.7b00519
G. Hong, C.M. Lieber, Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019). https://doi.org/10.1038/s41583-019-0140-6
S.R. Patel, C.M. Lieber, Precision electronic medicine in the brain. Nat. Biotechnol. 37(9), 1007–1012 (2019). https://doi.org/10.1038/s41587-019-0234-8
M.D. Ferro, N.A. Melosh, Electronic and ionic materials for neurointerfaces. Adv. Funct. Mater. 28(12), 1704335 (2018). https://doi.org/10.1002/adfm.201704335
M.G. Schrlau, N.J. Dun, H.H. Bau, Cell electrophysiology with carbon nanopipettes. ACS Nano 3(3), 563–568 (2009). https://doi.org/10.1021/nn800851d
J.J. Mastrototaro, The minimed continuous glucose monitoring system. Diabetes Technol. Ther. 2, 13–18 (2004). https://doi.org/10.1089/15209150050214078
S.J. Updike, G.P. Hicks, The enzyme electrode. Nature 214(5092), 986–988 (1967). https://doi.org/10.1038/214986a0
G.G. Guilbault, G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 64(3), 439–455 (1973). https://doi.org/10.1016/S0003-2670(01)82476-4
J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008). https://doi.org/10.1021/cr068123a
S. Vaddiraju, D.J. Burgess, I. Tomazos, F.C. Jain, F. Papadimitrakopoulos, Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. 4(6), 1540–1562 (2010). https://doi.org/10.1177/193229681000400632
A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008). https://doi.org/10.1021/cr068069y
J. Wang, In vivo glucose monitoring: towards ‘sense and act’ feedback-loop individualized medical systems. Talanta 75(3), 636–641 (2008). https://doi.org/10.1016/j.talanta.2007.10.023
G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005). https://doi.org/10.1016/j.bios.2004.12.003
I. Galeska, D. Chattopadhyay, F. Moussy, F. Papadimitrakopoulos, Calcification-resistant nafion/Fe3+ assemblies for implantable biosensors. Biomacromol 1(2), 202–207 (2000). https://doi.org/10.1021/bm0002813
T.F. Tseng, Y.L. Yang, Y.J. Lin, S.L. Lou, Effects of electric potential treatment of a chromium hexacyanoferrate modified biosensor based on PQQ-dependent glucose dehydrogenase. Sensors 10(7), 6347–6360 (2010). https://doi.org/10.3390/s100706347
H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7(8), 1701150 (2018). https://doi.org/10.1002/adhm.201701150
S. Abdellaoui, R.D. Milton, T. Quah, S.D. Minteer, NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD. Chem. Commun. 52(6), 1147–1150 (2016). https://doi.org/10.1039/C5CC09161F
T.G. Schleis, Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 27(9), 1313–1321 (2007). https://doi.org/10.1592/phco.27.9.1313
S. Igarashi, T. Hirokawa, K. Sode, Engineering PQQ glucose dehydrogenase with improved substrate specificity: site-directed mutagenesis studies on the active center of PQQ glucose dehydrogenase. Biomol. Eng. 21(2), 81–89 (2004). https://doi.org/10.1016/j.bioeng.2003.12.001
H. Yamaoka, Y. Yamashita, S. Ferri, K. Sode, Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of burkholderia cepacia. Biotechnol. Lett. 30(11), 1967–1972 (2008). https://doi.org/10.1007/s10529-008-9777-3
N. Hamamatsu, A. Suzumura, Y. Nomiya, M. Sato, T. Aita et al., Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Appl. Microbiol. Biotech. 73(3), 607–617 (2006). https://doi.org/10.1007/s00253-006-0521-4
S.R. Corrie, J.W. Coffey, J. Islam, K.A. Markey, M.A.F. Kendall, Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 140(13), 4350–4364 (2015). https://doi.org/10.1039/C5AN00464K
G. McGarraugh, The chemistry of commercial continuous glucose monitors. Diabetes Technol. Ther. 11(S1), S17–S24 (2009). https://doi.org/10.1089/dia.2008.0133
B.W.B.T.M. Gross, D. Einhorn, D.M. Kayne, J.H. Reed, N.H. White et al., Performance evaluation of the minimed® continuous glucose monitoring system during patient home use. Diabetes Technol. Ther. 2(1), 49–56 (2000). https://doi.org/10.1089/152091500316737
F. Lucarelli, F. Ricci, F. Caprio, F. Valgimigli, C. Scuffi et al., Glucomen day continuous glucose monitoring system: a screening for enzymatic and electrochemical interferents. J. Diabetes Sci. Technol. 6(5), 1172–1181 (2012). https://doi.org/10.1177/193229681200600522
M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, H. Abe, Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 320(8308), 1129–1131 (1982). https://doi.org/10.1016/S0140-6736(82)92788-X
J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13(12), 983–988 (2001). https://doi.org/10.1002/1616-8984(200201)10:1%3c107::AID-SEUP107%3e3.0.CO;2-Q
I.B. Hirsch, Realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. JCEM 94(7), 2232–2238 (2009). https://doi.org/10.1210/jc.2008-2625
T. Battelino, M. Phillip, N. Bratina, R. Nimri, P. Oskarsson et al., Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34(4), 795–800 (2011). https://doi.org/10.2337/dc10-1989
W.V. Tamborlane, R.W. Beck, Continuous glucose monitoring in type 1 diabetes mellitus. Lancet 373(9677), 1744–1746 (2009). https://doi.org/10.1016/S0140-6736(09)60962-4
M. Tauschmann, R. Hovorka, Technology in the management of type 1 diabetes mellitus—current status and future prospects. Nat. Rev. Endocrinol. 14(8), 464–475 (2018). https://doi.org/10.1038/s41574-018-0044-y
L. Ringholm, P. Damm, E.R. Mathiesen, Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nat. Rev. Endocrinol. 15(7), 406–416 (2019). https://doi.org/10.1038/s41574-019-0197-3
B.P. Kovatchev, Metrics for glycaemic control—from hba1c to continuous glucose monitoring. Nat. Rev. Endocrinol. 13, 425–436 (2017). https://doi.org/10.1038/nrendo.2017.3
F. Waldron-Lynch, K.C. Herold, Continuous glucose monitoring: long live the revolution! Nat. Clin. Practice Endocrinol. 5(2), 82–83 (2009). https://doi.org/10.1038/ncpendmet1044
D. Rodbard, Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18(S2), S2-3-S2-13 (2016). https://doi.org/10.1089/dia.2015.0417
C. N. Kotanen, F. G. Moussy, S. Carrara, A. Guiseppi-Elie. Implantable enzyme amperometric biosensors. Biosens Bioelectron. 35(1), 14–26 (2012). https://doi.org/10.1016/j.bios.2012.03.016
M. Gerritsen, Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2), 143–145 (2000). https://doi.org/10.2337/diacare.23.2.143
T. Danne, R. Nimri, T. Battelino, R. M. Bergenstal, K. L. Close, J. H. DeVries, S. Garg, L. Heinemann, I. Hirsch, S. A. Amiel, R. Beck, E. Bosi, B. Buckingham, C. Cobelli, E. Dassau, F. J. Doyle, 3rd, S. Heller, R. Hovorka, W. Jia, T. Jones, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, D. Maahs, H. R. Murphy, K. Norgaard, C. G. Parkin, E. Renard, B. Saboo, M. Scharf, W. V. Tamborlane, S. A. Weinzimer, M. Phillip. International consensus on use of continuous glucose monitoring. Diabetes Care. 40(12), 1631–1640 (2017). https://doi.org/10.2337/dc17-1600
M. Gerritsen, J.A. Jansen, J.A. Lutterman, Performance of subcutaneously implanted glucose sensors for continuous monitoring. Neth. J. Med. 54(4), 167–179 (1999). https://doi.org/10.1016/S0300-2977(99)00006-6
M.T. Novak, F. Yuan, W.M. Reichert, Predicting glucose sensor behavior in blood using transport modeling: relative impacts of protein biofouling and cellular metabolic effects. J. Diabetes Sci. Technol. 7(6), 1547–1560 (2013). https://doi.org/10.1177/193229681300700615
T. Jadviscokova, Z. Fajkusova, M. Pallayova, J. Luza, G. Kuzmina et al., Occurence of adverse events due to continuous glucose monitoring. Pap. Med. Fac. Univ. Palacky Olomouc Czech. 151(2), 263–266 (2007). https://doi.org/10.5507/bp.2007.044
M.S. Boyne, D.M. Silver, J. Kaplan, C.D. Saudek, Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52(11), 2790–2794 (2003). https://doi.org/10.2337/diabetes.52.11.2790
J.M. Ellison, J.M. Stegmann, S.L. Colner, R.H. Michael, M.K. Sharma et al., Rapid changes in postprandial blood glucose produce concentration differences at finger, forearm, and thigh sampling sites. Diabetes Care 25(6), 961–964 (2002). https://doi.org/10.2337/diacare.25.6.961
H.F. Sylvain, M.E. Pokorny, S.M. English, N.H. Benson, T.W. Whitley et al., Accuracy of fingerstick glucose values in shock patients. Am. J. Crit. Care 4(1), 44–48 (1995). https://doi.org/10.4037/ajcc1995.4.1.44
Y. Hu, B. Liang, L. Fang, G. Ma, G. Yang et al., Antifouling zwitterionic coating via electrochemically mediated atom transfer radical polymerization on enzyme-based glucose sensors for long-time stability in 37 ℃ serum. Langmuir 32(45), 11763–11770 (2016). https://doi.org/10.1021/acs.langmuir.6b03016
H. Wu, C.J. Lee, H. Wang, Y. Hu, M. Young et al., Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chem. Sci. 9(9), 2540–2546 (2018). https://doi.org/10.1039/C7SC05104B
X. Xie, J.C. Doloff, V. Yesilyurt, A. Sadraei, J.J. McGarrigle et al., Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2(12), 894–906 (2018). https://doi.org/10.1038/s41551-018-0273-3
R. Hovorka, Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7(7), 385–395 (2011). https://doi.org/10.1038/nrendo.2011.32
G.M. Steil, A.E. Panteleon, K. Rebrin, Closed-loop insulin delivery—the path to physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004). https://doi.org/10.1016/j.addr.2003.08.011
S.A. Weinzimer, G.M. Steil, K.L. Swan, J. Dziura, N. Kurtz et al., Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008). https://doi.org/10.2337/dc07-1967
R. Hovorka, J.M. Allen, D. Elleri, L.J. Chassin, J. Harris et al., Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375(9716), 743–751 (2010). https://doi.org/10.1016/S0140-6736(09)61998-X
R. Hovorka, K. Kumareswaran, J. Harris, J.M. Allen, D. Elleri et al., Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ 342, d1855 (2011). https://doi.org/10.1136/bmj.d1855
R. Mo, T. Jiang, J. Di, W. Tai, Z. Gu, Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43(10), 3595–3629 (2014). https://doi.org/10.1039/c3cs60436e
H.M. Heise, U. Damm, M. Bodenlenz, V.R. Kondepati, G. Kohler et al., Bedside monitoring of subcutaneous interstitial glucose in healthy individuals using microdialysis and infrared spectrometry. J. Biomed. Opt. 12(2), 024004 (2007). https://doi.org/10.1117/1.2714907
O. Rooyackers, C. Blixt, P. Mattsson, J. Wernerman, Continuous glucose monitoring by intravenous microdialysis: influence of membrane length and dialysis flow rate. Acta Anaesth. Scand. 57(2), 214–219 (2013). https://doi.org/10.1111/j.1399-6576.2012.02787.x
C. Hage, L. Mellbin, L. Rydén, J. Wernerman, Glucose monitoring by means of an intravenous microdialysis catheter technique. Diabetes Technol. Ther. 12(4), 291–295 (2010). https://doi.org/10.1089/dia.2009.0150
T. Laurell, A continuous glucose monitoring system based on microdialysis. J. Med. Eng. Technol. 16(5), 187–193 (1992). https://doi.org/10.3109/03091909209021982
J. Bolincier, U. Ungerstedt, P. Arner, Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35(12), 1177–1180 (1992). https://doi.org/10.1007/bf00401374
E. Csöregi, T. Laurell, I. Katakis, A. Heller, L. Gorton, On-line glucose monitoring by using microdialysis sampling and amperometric detection based on ‘wired’ glucose oxidase in carbon paste. Microchim. Acta 121(1), 31–40 (1995). https://doi.org/10.1007/bf01248238
J.H. Leopold, R.T.M. Hooijdonk, M. Boshuizen, T. Winters, L.D. Bos et al., Point and trend accuracy of a continuous intravenous microdialysis-based glucose-monitoring device in critically ill patients: a prospective study. Ann. Intensive Care 6(1), 68 (2016). https://doi.org/10.1186/s13613-016-0171-3
C. Blixt, O. Rooyackers, B. Isaksson, J. Wernerman, Continuous on-line glucose measurement by microdialysis in a central vein. A pilot study. Crit. Care 17(3), R87 (2013). https://doi.org/10.1186/cc12713
F. Schierenbeck, A. Franco-Cereceda, J. Liska, Accuracy of 2 different continuous glucose monitoring systems in patients undergoing cardiac surgery: intravascular microdialysis versus subcutaneous tissue monitoring. J. Diabetes Sci. Technol. 11(1), 108–116 (2017). https://doi.org/10.1177/1932296816651632
J.S. Krinsley, J.G. Chase, J. Gunst, J. Martensson, M.J. Schultz et al., Continuous glucose monitoring in the ICU: clinical considerations and consensus. Crit. Care 21(1), 197 (2017). https://doi.org/10.1186/s13054-017-1784-0
J. Wernerman, T. Desaive, S. Finfer, L. Foubert, A. Furnary et al., Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit. Care 18(3), 226 (2014). https://doi.org/10.1186/cc13921
N.S. Oliver, C. Toumazou, A.E.G. Cass, D.G. Johnston, Glucose sensors: a review of current and emerging technology. Diabetic Med. 26(3), 197–210 (2009). https://doi.org/10.1111/j.1464-5491.2008.02642.x
X. Mou, M.R. Lennartz, D.J. Loegering, J.A. Stenken, Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials 31(16), 4530–4539 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.016
P.K.T. Li, K.M. Chow, Infectious complications in dialysis—epidemiology and outcomes. Nat. Rev. Nephrol. 8(2), 77–88 (2012). https://doi.org/10.1038/nrneph.2011.194
D. Müller, S.L. Goldstein, Hemodialysis in children with end-stage renal disease. Nat. Rev. Nephrol. 7(11), 650–658 (2011). https://doi.org/10.1038/nrneph.2011.124
L.M. Yeh, S.Y.H. Chiu, P.C. Lai, The impact of vascular access types on hemodialysis patient long-term survival. Sci. Rep. 9(1), 10708 (2019). https://doi.org/10.1038/s41598-019-47065-z
Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64(14), 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
J. Yang, H. Zhang, T. Hu, C. Xu, L. Jiang et al., Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem. Eng. J. 426, 130561 (2021). https://doi.org/10.1016/j.cej.2021.130561
S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe et al., Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat. Commun. 12(1), 658 (2021). https://doi.org/10.1038/s41467-021-20948-4
X. Li, X. Huang, J. Mo, H. Wang, X. Xie et al., A fully integrated closed-loop system based on mesoporous microneedles ontophoresis for diabetes treatment. Adv. Sci. 8(16), 2100827 (2021). https://doi.org/10.1002/advs.202100827
W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3(3), 220–229 (2019). https://doi.org/10.1038/s41551-018-0337-4
W.G. Bae, H. Ko, J.Y. So, H. Yi, C.H. Lee et al., Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Sci. Transl. Med. 11(503), eaaw3329 (2019). https://doi.org/10.1126/scitranslmed.aaw3329
J. Li, Y. Zhou, J. Yang, R. Ye, J. Gao et al., Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Mater. Sci. Eng. C 96, 576–582 (2019). https://doi.org/10.1016/j.msec.2018.11.074
J. Yang, Z. Chen, R. Ye, J. Li, L. Jiang, Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv. 25(1), 1728–1739 (2018). https://doi.org/10.1080/10717544.2018.1507060
Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018). https://doi.org/10.1016/j.actbio.2017.10.030
Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
M.A. Luzuriaga, D.R. Berry, J.C. Reagan, R.A. Smaldone, J.J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18(8), 1223–1230 (2018). https://doi.org/10.1039/C8LC00098K
P. Cristiane, S.N. Economidou, G. Lall, C. Ziraud, J.S. Boateng et al., 3D printed microneedles for insulin skin delivery. Int. J. Pharmaceut. 65, 425–432 (2018). https://doi.org/10.1016/j.ijpharm.2018.03.031
H. Derakhshandeh, F. Aghabaglou, A. Mccarthy, A. Mostafavi, A. Tamayol, A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv. Funct. Mater. 30(13), 1905544 (2020). https://doi.org/10.1002/adfm.201905544
D. Han, R.S. Morde, S. Mariani, A.A.L. Mattina, E. Vignali et al., 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30(11), 1909197 (2020). https://doi.org/10.1002/adfm.201909197
S.P. Sullivan, D.G. Koutsonanos, M.D.P. Martin, J.W. Lee, V. Zarnitsyn et al., Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16(8), 915–920 (2010). https://doi.org/10.1038/nm.2182
J. Wang, B. Li, M.X. Wu, Effective and lesion-free cutaneous influenza vaccination. PNAS 112(16), 5005–5010 (2015). https://doi.org/10.1073/pnas.1500408112
Y. Zhang, J. Yu, A.R. Kahkoska, J. Wang, J.B. Buse et al., Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 112(16), 5005–5010 (2018). https://doi.org/10.1016/j.addr.2018.12.006
G. Chen, J. Yu, Z. Gu, Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sc. Technol. 13(1), 41–48 (2019). https://doi.org/10.1177/1932296818778607
K.Y. Seong, M.S. Seo, D.Y. Hwang, E.D. O’Cearbhaill, S. Sreenan et al., A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J. Control. Release 265, 48–56 (2017). https://doi.org/10.1016/j.jconrel.2017.03.041
W. Yu, G. Jiang, D. Liu, L. Li, H. Chen et al., Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater. Sci. Eng. C 71, 725–734 (2017). https://doi.org/10.1016/j.msec.2016.10.063
W. Yu, G. Jiang, D. Liu, L. Li, Z. Tong et al., Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017). https://doi.org/10.1016/j.msec.2016.12.111
X. Xie, C. Pascual, C. Lieu, S. Oh, J. Wang et al., Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 11(1), 395–406 (2017). https://doi.org/10.1021/acsnano.6b06104
X. Lan, J. She, D. Lin, Y. Xu, X. Li et al., Microneedle-mediated delivery of lipid-coated cisplatin nanops for efficient and safe cancer therapy. ACS Appl. Mater. Interfaces 10(39), 33060–33069 (2018). https://doi.org/10.1021/acsami.8b12926
Y. Li, F. Liu, C. Su, B. Yu, D. Liu et al., Biodegradable therapeutic microneedle patch for rapid antihypertensive treatment. ACS Appl. Mater. Interfaces 11(34), 30575–30584 (2019). https://doi.org/10.1021/acsami.9b09697
Z. Wei, S. Zheng, R. Wang, X. Bu, H. Ma et al., A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and sirna delivery. Lab Chip 14(20), 4093–4102 (2014). https://doi.org/10.1039/C4LC00800F
C.J. Chen, D.H. Chen, Preparation of LaB6 nanops as a novel and effective near-infrared photothermal conversion material. Chem. Eng. J. 180, 337–342 (2012). https://doi.org/10.1016/j.cej.2011.11.035
M.C. Chen, K.W. Wang, D.H. Chen, M.H. Ling, C.Y. Liu, Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater. 13, 344–353 (2015). https://doi.org/10.1016/j.actbio.2014.11.040
M.C. Chen, M.H. Ling, K.W. Wang, Z.W. Lin, B.H. Lai et al., Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromol 16(5), 1598–1607 (2015). https://doi.org/10.1021/acs.biomac.5b00185
M.C. Chen, Z.W. Lin, M.H. Ling, Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10(1), 93–101 (2016). https://doi.org/10.1021/acsnano.5b05043
J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 112(27), 8260–8265 (2015). https://doi.org/10.1073/pnas.1505405112
J. Yu, J. Wang, Y. Zhang, G. Chen, W. Mao et al., Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020). https://doi.org/10.1038/s41551-019-0508-y
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
H. Lee, C. Song, Y.S. Hong, M.S. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
L. Ventrelli, L.M. Strambini, G. Barillaro, Microneedles for transdermal biosensing: current picture and future direction. Adv. Healthcare Mater. 4(17), 2606–2640 (2015). https://doi.org/10.1002/adhm.201500450
J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37(4), 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
G.S. Liu, Y. Kong, Y. Wang, Y. Luo, X. Fan et al., Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials 232, 119740 (2019). https://doi.org/10.1016/j.biomaterials.2019.119740
M.A. Invernale, B.C. Tang, R.L. York, L. Le, D.Y. Hou et al., Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv. Healthcare Mater. 3(3), 338–342 (2014). https://doi.org/10.1002/adhm.201300142
Y. Yoon, G.S. Lee, K. Yoo, J.B. Lee, Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13(12), 16672–16681 (2013). https://doi.org/10.3390/s131216672
B. Chua, S.P. Desai, M.J. Tierney, J.A. Tamada, A.N. Jina, Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens. Actuator A Phys. 203, 373–381 (2013). https://doi.org/10.1016/j.sna.2013.09.026
A. Jina, M.J. Tierney, J.A. Tamada, S. McGill, S. Desai et al., Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014). https://doi.org/10.1177/1932296814526191
P. Miller, M. Moorman, R. Manginell, C. Ashlee, I. Brener et al., Towards an integrated microneedle total analysis chip for protein detection. Electroanalysis 28(6), 1305–1310 (2016). https://doi.org/10.1002/elan.201600063
S.A. Ranamukhaarachchi, C. Padeste, M. Dübner, U.O. Häfeli, B. Stoeber et al., Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 6(1), 29075 (2016). https://doi.org/10.1038/srep29075
C.G. Li, H.A. Joung, H. Noh, M.B. Song, M.G. Kim et al., One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(16), 3286–3292 (2015). https://doi.org/10.1039/C5LC00669D
D.S. Lee, C.G. Li, C. Ihm, H. Jung, A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling. Sens. Actuator B Chem. 255, 384–390 (2018). https://doi.org/10.1016/j.snb.2017.08.030
D. Nicholas, K.A. Logan, Y. Sheng, J. Gao, S. Farrell et al., Rapid paper based colorimetric detection of glucose using a hollow microneedle device. Int. J. Pharm. 547(1), 244–249 (2018). https://doi.org/10.1016/j.ijpharm.2018.06.002
P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan et al., Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv. Healthcare Mater. 3(6), 876–881 (2014). https://doi.org/10.1002/adhm.201300541
M. Parrilla, M. Cuartero, S.P. Sánchez, M. Rajabi, N. Roxhed et al., Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91(2), 1578–1586 (2019). https://doi.org/10.1021/acs.analchem.8b04877
D.H. Keum, H.S. Jung, T. Wang, M.H. Shin, Y.E. Kim et al., Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv. Healthc. Mater. 4(8), 1153–1158 (2015). https://doi.org/10.1002/adhm.201500012
A.M.V. Mohan, J.R. Windmiller, R.K. Mishra, J. Wang, Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017). https://doi.org/10.1016/j.bios.2017.01.016
Q. Jin, H.J. Chen, X. Li, X. Huang, Q. Wu et al., Reduced graphene oxide nanohybrid–assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small 15(6), 1804298 (2019). https://doi.org/10.1002/smll.201804298
F. Liu, Z. Lin, Q. Jin, Q. Wu, C. Yang et al., Protection of nano-structures-integrated microneedle biosensor using dissolvable polymer coating. ACS Appl. Mater. Interfaces 11(5), 4809–4819 (2019). https://doi.org/10.1021/acsami.8b18981
E.M. Cahill, E.D. O’Cearbhaill, Toward biofunctional microneedles for stimulus responsive drug delivery. Bioconjugate Chem. 26(7), 1289–1296 (2015). https://doi.org/10.1021/acs.bioconjchem.5b00211
H. Lee, C. Song, S. Baik, D. Kim, T. Hyeon et al., Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 127, 35–45 (2018). https://doi.org/10.1016/j.addr.2017.08.009
G. Buzsáki, Rhythms of the Brain (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
M. Häusser, B. Mel, Dendrites: bug or feature? Curr. Opin. Neurobiol. 13(3), 372–383 (2003). https://doi.org/10.1016/S0959-4388(03)00075-8
M.F. Bear, B.W. Connors, M.A. Paradiso, Neuroscience: exploring the brain. J. Child Fam. Stud. 5, 377–379 (1996). https://doi.org/10.1007/BF02234670
G.J. Stuart, H.U. Dodt, B. Sakmann, Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch. 423(5), 511–518 (1993). https://doi.org/10.1007/bf00374949
J.T. Davie, M.H.P. Kole, J.J. Letzkus, E.A. Rancz, N. Spruston et al., Dendritic patch-clamp recording. Nat. Protoc. 1(3), 1235–1247 (2006). https://doi.org/10.1038/nprot.2006.164
J. Bischofberger, D. Engel, L. Li, J.R.P. Geiger, P. Jonas, Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1(4), 2075–2081 (2006). https://doi.org/10.1038/nprot.2006.312
A.L. Hodgkin, A.F. Huxley, B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of loligo. J. Physiol. 116(4), 424–448 (1952). https://doi.org/10.1113/jphysiol.1952.sp004716
C.D. Harvey, C. Forrest, D.A. Dombeck, D.W. Tank, Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266), 941–946 (2009). https://doi.org/10.1038/nature08499
K. Kitamura, B. Judkewitz, M. Kano, W. Denk, M. Häusser, Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5(1), 61–67 (2008). https://doi.org/10.1038/nmeth1150
S.B. Kodandaramaiah, G.T. Franzesi, B.Y. Chow, E.S. Boyden, C.R. Forest, Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods 9(6), 585–587 (2012). https://doi.org/10.1038/nmeth.1993
R.R. Harrison, I. Kolb, S.B. Kodandaramaiah, A.A. Chubykin, A. Yang et al., Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording. J. Neurophysiol. 113(4), 1275 (2015). https://doi.org/10.1152/jn.00629.2014
T.W. Margrie, M. Brecht, B. Sakmann, In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444(4), 491–498 (2002). https://doi.org/10.1007/s00424-002-0831-z
T.W. Margrie, A.H. Meyer, A. Caputi, H. Monyer, M.T. Hasan et al., Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6), 911–918 (2003). https://doi.org/10.1016/j.neuron.2003.08.012
B. Jagadeesh, C. Gray, D. Ferster, Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257(5069), 552–554 (1992). https://doi.org/10.1126/science.1636094
W.T. Tseng, C.T. Yen, M.L. Tsai, A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J. Neurosci. Meth. 201(2), 368–376 (2011). https://doi.org/10.1016/j.jneumeth.2011.08.028
E. Fernández, B. Greger, P.A. House, I. Aranda, C. Botella et al., Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front. Neuroeng. 7(24), 24 (2014). https://doi.org/10.3389/fneng.2014.00024
M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9), 1273–1283 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.022
F.A. Gibbs, E.L. Gibbs, Atlas of Electroencephalography (1941).https://doi.org/10.1136/jnnp.53.5.452
S. Vanneste, J.J. Song, D.D. Ridder, Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 9(1), 1103–1103 (2018). https://doi.org/10.1038/s41467-018-02820-0
S.E. John, N.L. Opie, Y.T. Wong, G.S. Rind, S.M. Ronayne et al., Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Sci. Rep. 8(1), 8427 (2018). https://doi.org/10.1038/s41598-018-26457-7
D.T. Bundy, E. Zellmer, C.M. Gaona, M. Sharma, N. Szrama et al., Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings. J. Neural Eng. 11(1), 016006 (2014). https://doi.org/10.1088/1741-2560/11/1/016006
J.P. Seymour, W. Fan, K.D. Wise, E. Yoon, State-of-the-art mems and microsystem tools for brain research. Microsyst. Nanoeng. 3, 16066 (2017). https://doi.org/10.1038/micronano.2016.66
D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky et al., Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015). https://doi.org/10.1038/nn.3905
G. Buzsáki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446 (2004). https://doi.org/10.1038/nn1233
C.M. Gray, P.E. Maldonado, M. Wilson, B. Mcnaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods. 63(1–2), 43–54 (1995). https://doi.org/10.1016/0165-0270(95)00085-2
H.W. Steenland, B.L. McNaughton, Techniques for large-scale multiunit recording. Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Comput. Neurosci. 12, 3–39 (2015). https://doi.org/10.1007/978-1-4939-1969-7_1
B.L. McNaughton, J. O’Keefe, C.A. Barnes, The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Meth. 8(4), 391–397 (1983). https://doi.org/10.1016/0165-0270(83)90097-3
D.A. Schwarz, M.A. Lebedev, T.L. Hanson, D.F. Dimitrov, G. Lehew et al., Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014). https://doi.org/10.1038/nmeth.2936
L. Cabrera, C. Sadle, E. Purcell, Neuroethical considerations of high-density electrode arrays. Nat. Biomed. Eng. 3(8), 586–589 (2019). https://doi.org/10.1038/s41551-019-0407-2
Z. Qin, B. Zhang, K. Gao, L. Zhuang, N. Hu et al., A whole animal-based biosensor for fast detection of bitter compounds using extracellular potentials in rat gustatory cortex. Sens. Actuator B Chem. 239, 746–753 (2017). https://doi.org/10.1016/j.snb.2016.08.027
Z. Qin, B. Zhang, L. Hu, L. Zhuang, N. Hu et al., A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain–machine interface. Biosens. Bioelectron. 78, 374–380 (2016). https://doi.org/10.1016/j.bios.2015.11.078
M.A.L. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew et al., Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS 100(19), 11041–11046 (2003). https://doi.org/10.1073/pnas.1934665100
P.J. Rousche, R.A. Normann, Chronic recording capability of the utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998). https://doi.org/10.1016/S0165-0270(98)00031-4
E.M. Maynard, N.G. Hatsopoulos, C.L. Ojakangas, B.D. Acuna, J.N. Sanes et al., Neuronal interactions improve cortical population coding of movement direction. J. Neurosci. 19(18), 8083–8093 (1999). https://doi.org/10.1523/JNEUROSCI.19-18-08083.1999
N.G. Hatsopoulos, C.L. Ojakangas, L. Paninski, J.P. Donoghue, Information about movement direction obtained from synchronous activity of motor cortical neurons. PNAS 95(26), 15706–15711 (1998). https://doi.org/10.1073/pnas.95.26.15706
K.E. Jones, P.K. Campbell, R.A. Normann, A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992). https://doi.org/10.1007/BF02368134
C.T. Nordhausen, P.J. Rousche, R.A. Normann, Optimizing recording capabilities of the utah intracortical electrode array. Brain Res. 637(1–2), 27–36 (1994). https://doi.org/10.1016/0006-8993(94)91213-0
J.C. Barrese, N. Rao, K. Paroo, C. Triebwasser, C. Vargasirwin et al., Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10(6), 066014 (2013). https://doi.org/10.1088/1741-2560/10/6/066014
W. Truccolo, L.R. Hochberg, J.P. Donoghue, Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13(1), 105–111 (2010). https://doi.org/10.1038/nn.2455
L.R. Hochberg, B. Daniel, J. Beata, N.Y. Masse, J.D. Simeral et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2013). https://doi.org/10.1038/nature11076
E.K. Chadwick, D. Blana, J.D. Simeral, J. Lambrecht, S.P. Kim et al., Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. J. Neural Eng. 8(3), 034003 (2011). https://doi.org/10.1088/1741-2560/8/3/034003
A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, F. Solzbacher, Long term in vitro stability of fully integrated wireless neural interfaces based on utah slant electrode array. Appl. Phys. Lett. 96(7), 164 (2010). https://doi.org/10.1063/1.3318251
A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann et al., Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel utah slant electrode array (USEA): implications for long term functionality. Sens. Actuator A Phys. 188(8), 167–172 (2012). https://doi.org/10.1016/j.sna.2011.11.015
P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U.G. Hofmann, A 32-site neural recording probe fabricated by drie of soi substrates. J. Micromech. Microeng. 12(12), 414–419 (2002). https://doi.org/10.1088/0960-1317/12/4/312
K.C. Cheung, K. Djupsund, Y. Dan, L.P. Lee, Implantable multichannel electrode array based on soi technology. J. Microelectromech. Syst. 12(2), 179–184 (2003). https://doi.org/10.1109/JMEMS.2003.809962
D.R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J.M. Henderson et al., Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008). https://doi.org/10.1523/jneurosci.3879-08.2008
D.R. Kipke, S. William, G. Buzsáki, E. Fetz, J.M. Henderson et al., Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical oppo