Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording
Corresponding Author: Ning Hu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 132
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Highlights:
1 The factors affecting electrophysiological recordings from active micro-nano-collaborative bioelectronic devices were discussed in terms of principle and fabrication.
2 An overview of the applications of active micro-nano-collaborative bioelectronic devices in cardiomyocytes and neurons was further presented.
3 The challenges faced by active micro-nano-collaborative bioelectronic devices in intracellular electrophysiological studies and their prospective biomedical applications are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jia, H. Dechiruji, J. Selberg, P. Pansodtee, J. Mathews et al., Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Mater. 8, 091106 (2020). https://doi.org/10.1063/5.0013867
- P.R.F. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L.K.J. Vandamme et al., Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 6, 34843 (2016). https://doi.org/10.1038/srep34843
- J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, R. Arias, High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008). https://doi.org/10.1038/nrd2552
- R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017). https://doi.org/10.1021/acs.nanolett.6b04752
- S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5, 231–246 (2009). https://doi.org/10.1007/s12015-009-9080-2
- D.J. Blackiston, K.A. McLaughlin, M. Levin, Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536 (2009). https://doi.org/10.4161/cc.8.21.9888
- A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis et al., European society of cardiology: Cardiovascular disease statistics 2017. Oxford University Press, Oxford. (2018)
- Correction to: heart disease and stroke statistics-2023 update: a report from the American heart association. Circulation 148, e4 (2023). https://doi.org/10.1161/CIR.0000000000001167
- G. Vorobiof, C. Silverstein, Non-invasive cardiac imaging for evaluation of cardiotoxicity in cancer patients-early detection and follow-up. SA Heart (2017). https://doi.org/10.24170/9-4-1829
- Y. Yang, A. Liu, C.-T. Tsai, C. Liu, J.C. Wu et al., Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens. Bioelectron. 216, 114617 (2022). https://doi.org/10.1016/j.bios.2022.114617
- L. Xiao, Z. Hu, W. Zhang, C. Wu, H. Yu et al., Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens. Bioelectron. 26, 1493–1499 (2010). https://doi.org/10.1016/j.bios.2010.07.093
- A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939). https://doi.org/10.1038/144710a0
- L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009). https://doi.org/10.1039/B907394A
- C.-X. Lin, J.-L. Gu, J.-M. Cao, The acute toxic effects of platinum nanops on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 14, 5595–5609 (2019). https://doi.org/10.2147/IJN.S209135
- T. Meyer, K.-H. Boven, E. Günther, M. Fejtl, Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf. 27, 763–772 (2004). https://doi.org/10.2165/00002018-200427110-00002
- D. Xu, J. Mo, X. Xie, N. Hu, In-cell nanoelectronics: opening the door to intracellular electrophysiology. Nano-Micro Lett. 13, 127 (2021). https://doi.org/10.1007/s40820-021-00655-x
- J. Fang, S. Huang, F. Liu, G. He, X. Li et al., Semi-implantable bioelectronics. Nano-Micro Lett. 14, 125 (2022). https://doi.org/10.1007/s40820-022-00818-4
- D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel et al., Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743–1750 (2015). https://doi.org/10.1021/nl504438z
- B. Hille, Ion channels of excitable membranes sunderland. Sinauer Associates Inc. (2001)
- A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology; 2003)
- D. C. Sigg, P. A. Iaizzo, Y. F. Xiao, B. He. Electrophysiology of single cardiomyocytes: Patch clamp and other recording methods. (Chapter 16), 329–348 (2010). https://doi.org/10.1007/978-1-4419-6658-2_16
- R.L. Schrøder, M. Christensen, B. Anson, M. Sunesen, Exploring stem cell-derived cardiomyocytes with automated patch clamp techniques. Biophys. J. 102, 544a (2012). https://doi.org/10.1016/j.bpj.2011.11.2968
- B. Amuzescu, S. Frech, K. Lin, J. Eisfeld, J. Kudolo et al., Electrophysiology Characterization of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Using Automated Patch-clamp. (2015)
- A. Marques-Smith, J.P. Neto, G. Lopes, J. Nogueira, L. Calcaterra et al., Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRxiv (2018). https://doi.org/10.1101/370080
- V. Grenier, K.N. Martinez, B.R. Benlian, D.M. García-Almedina, B.K. Raliski et al., Molecular prosthetics for long-term functional imaging with fluorescent reporters. ACS Cent. Sci. 8, 118–121 (2022). https://doi.org/10.1021/acscentsci.1c01153
- A. Grinvald, R. Hildesheim, VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004). https://doi.org/10.1038/nrn1536
- L.N. Kahyaoglu, R. Madangopal, M. Stensberg, Rickus J.L, Light-directed functionalization methods for high-resolution optical fiber based biosensors. SPIE Sensing Technology + Applications. Proc SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII Baltimore, MD, USA 9486, 9–18 (2015). https://doi.org/10.1117/12.2177178
- A. Matiukas, B.G. Mitrea, M. Qin, A.M. Pertsov, A.G. Shvedko et al., Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4, 1441–1451 (2007). https://doi.org/10.1016/j.hrthm.2007.07.012
- M. Warren, K.W. Spitzer, B.W. Steadman, T.D. Rees, P. Venable et al., High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am. J. Physiol. Heart Circ. Physiol. 299, H1271–H1281 (2010). https://doi.org/10.1152/ajpheart.00248.2010
- M. Warren, K.W. Spitzer, B.W. Steadman, P. Venable, T. Taylor et al., Near infrared emitting dye di-4-ANBDQBS for recording action potentials in isolated cardiomyocytes. Biophys. J. 96, 293a (2009). https://doi.org/10.1016/j.bpj.2008.12.1453
- J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020). https://doi.org/10.1038/s41551-019-0455-7
- T. Banno, S. Tsuruhara, Y. Seikoba, R. Tonai, K. Yamashita et al., Nanoneedle-electrode devices for in vivo recording of extracellular action potentials. ACS Nano 16, 10692–10700 (2022). https://doi.org/10.1021/acsnano.2c02399
- A. Barbaglia, M. Dipalo, G. Melle, G. Iachetta, L. Deleye et al., Mirroring action potentials: label-free, accurate, and noninvasive electrophysiological recordings of human-derived cardiomyocytes. Adv. Mater. 33, e2004234 (2021). https://doi.org/10.1002/adma.202004234
- B.X.E. Desbiolles, E. de Coulon, A. Bertsch, S. Rohr, P. Renaud, Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019). https://doi.org/10.1021/acs.nanolett.9b02209
- J. Fang, D. Xu, H. Wang, J. Wu, Y. Li et al., Scalable and robust hollow nanopillar electrode for enhanced intracellular action potential recording. Nano Lett. 23, 243–251 (2023). https://doi.org/10.1021/acs.nanolett.2c04222
- Z. Jahed, Y. Yang, C.-T. Tsai, E.P. Foster, A.F. McGuire et al., Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022). https://doi.org/10.1038/s41467-022-29726-2
- J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012). https://doi.org/10.1038/nnano.2011.249
- M. Abarkan, A. Pirog, D. Mafilaza, G. Pathak, G. N’Kaoua et al., Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals. Adv. Sci. 9, e2105211 (2022). https://doi.org/10.1002/advs.202105211
- B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010). https://doi.org/10.1126/science.1192033
- T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010). https://doi.org/10.1021/nl1002608
- X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
- Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
- S. Asgarifar, H. Gomes, A. Mestre, P.M. C. Inácio, J. Bragança et al., in Electrochemically Gated Graphene Field-effect Transistor for Extracellular Cell Signal Recording. ed. by (2016), pp. 558–564.
- Y. Gu, C. Wang, N. Kim, J. Zhang, T.M. Wang et al., Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022). https://doi.org/10.1038/s41565-021-01040-w
- A. Kyndiah, F. Leonardi, C. Tarantino, T. Cramer, R. Millan-Solsona et al., Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron. 150, 111844 (2020). https://doi.org/10.1016/j.bios.2019.111844
- H. Gao, F. Yang, K. Sattari, X. Du, T. Fu et al., Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. Sci. Adv. 8, eabn2485 (2022). https://doi.org/10.1126/sciadv.abn2485
- P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An Extracellular microelectrode Array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5, 223–234 (1990). https://doi.org/10.1016/0956-5663(90)80011-2
- T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005). https://doi.org/10.1152/jn.01023.2004
- P.J. Koester, C. Tautorat, H. Beikirch, J. Gimsa, W. Baumann, Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectron. 26, 1731–1735 (2010). https://doi.org/10.1016/j.bios.2010.08.003
- M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013). https://doi.org/10.1038/nnano.2012.265
- V. Zlochiver, S.L. Kroboth, C.R. Beal, J.A. Cook, R. Joshi-Mukherjee, Human iPSC-derived cardiomyocyte networks on multiwell micro-electrode arrays for recurrent action potential recordings. J. Vis. Exp. 149, e59906 (2019). https://doi.org/10.3791/59906
- X. Wei, C. Qin, C. Gu, C. He, Q. Yuan et al., A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 145, 111673 (2019). https://doi.org/10.1016/j.bios.2019.111673
- A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
- I. Zadorozhnyi, H. Hlukhova, Y. Kutovyi, V. Handziuk, N. Naumova et al., Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosens. Bioelectron. 137, 229–235 (2019). https://doi.org/10.1016/j.bios.2019.04.038
- G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov et al., Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanops for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 88, 283–289 (2017). https://doi.org/10.1016/j.bios.2016.08.054
- J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). https://doi.org/10.1038/nnano.2017.3
- J.S. Park, S.I. Grijalva, D. Jung, S. Li, G.V. Junek et al., Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens. Bioelectron. 144, 111626 (2019). https://doi.org/10.1016/j.bios.2019.111626
- J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic et al., High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015). https://doi.org/10.1039/C5LC00133A
- C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36, 1052–1063 (2011). https://doi.org/10.1557/mrs.2011.269
- B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, C.M. Lieber, Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010). https://doi.org/10.1109/TNANO.2009.2031807
- P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015). https://doi.org/10.1016/j.neuron.2015.01.004
- Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng et al., Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 6, 1–19 (2014). https://doi.org/10.1007/BF03353763
- M. Liu, Z. Wu, W.M. Lau, J. Yang, Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett. 4, 142–153 (2012). https://doi.org/10.1007/BF03353705
- Y. Fang, Y. Jiang, H. Acaron Ledesma, J. Yi, X. Gao et al., Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487–4492 (2018). https://doi.org/10.1021/acs.nanolett.8b01626
- P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan et al., Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8, 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
- J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- D. Jäckel, D.J. Bakkum, T.L. Russell, J. Müller, M. Radivojevic et al., Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 7, 978 (2017). https://doi.org/10.1038/s41598-017-00981-4
- Y. Zhang, Y. Tang, Y. Wang, L. Zhang, Nanomaterials for cardiac tissue engineering application. Nano-Micro Lett. 3, 270–277 (2011). https://doi.org/10.1007/BF03353683
- J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13, 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
- Y. Jin, H. Wang, K. Yi, S. Lv, H. Hu et al., Applications of nanobiomaterials in the therapy and imaging of acute liver failure. Nano-Micro Lett. 13, 25 (2020). https://doi.org/10.1007/s40820-020-00550-x
- S. Kim, J. Seo, J. Choi, H. Yoo, Vertically integrated electronics: new opportunities from emerging materials and devices. Nano-Micro Lett. 14, 201 (2022). https://doi.org/10.1007/s40820-022-00942-1
- X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016). https://doi.org/10.1038/nnano.2016.96
- C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou et al., Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015). https://doi.org/10.1038/nmat4427
- S.K. Krishnan, N. Nataraj, M. Meyyappan, U. Pal, Graphene-based field-effect transistors in biosensing and neural interfacing applications: recent advances and prospects. Anal. Chem. 95, 2590–2622 (2023). https://doi.org/10.1021/acs.analchem.2c03399
- S. Wang, M.Z. Hossain, K. Shinozuka, N. Shimizu, S. Kitada et al., Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 165, 112363 (2020). https://doi.org/10.1016/j.bios.2020.112363
- L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14, 3602–3607 (2014). https://doi.org/10.1021/nl5012855
- C. Yao, Q. Li, J. Guo, F. Yan, I.-M. Hsing, Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528–533 (2015). https://doi.org/10.1002/adhm.201400406
- S.J. Luck, An introduction to the event-related potential technique. Sveučilište u Rijeci. (2005)
- S. Cabrini, Sub-10-nm three-dimensional plasmonic probes and sensors. 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai, China. IEEE, (2016). p 836
- R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012). https://doi.org/10.1021/nl301623p
- T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018). https://doi.org/10.1007/s40820-018-0206-4
- S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600nm thickness with high carrier mobility. Nano-Micro Lett. 15, 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
- L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009). https://doi.org/10.1002/adfm.200900377
- W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334–7341 (2011). https://doi.org/10.1021/nn202190c
- M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017). https://doi.org/10.1016/j.bios.2017.07.010
- W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017). https://doi.org/10.1002/adma.201603610
- R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Anal. Chem. 85, 509–521 (2013). https://doi.org/10.1021/ac303190w
- T. Feuk, On the transparency of the stroma in the mammalian Cornea. IEEE Trans. Biomed. Eng. BME-17, 186–190 (1970). https://doi.org/10.1109/tbme.1970.4502732
- S.-A. Peng, Z. Jin, P. Ma, D.-Y. Zhang, J.-Y. Shi et al., The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 82, 500–505 (2015). https://doi.org/10.1016/j.carbon.2014.11.001
- W. Fu, C. Nef, A. Tarasov, M. Wipf, R. Stoop et al., High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013). https://doi.org/10.1039/C3NR03940D
- L.H. Hess, M. Seifert, J.A. Garrido, Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013). https://doi.org/10.1109/JPROC.2013.2261031
- F. Veliev, Z. Han, D. Kalita, A. Briançon-Marjollet, V. Bouchiat et al., Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci. 11, 466 (2017). https://doi.org/10.3389/fnins.2017.00466
- L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746–751 (2013). https://doi.org/10.1021/nl304435z
- Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711–1716 (2012). https://doi.org/10.1021/nl300256r
- T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 111, 1259–1264 (2014). https://doi.org/10.1073/pnas.1323389111
- T. Cohen-Karni, D. anova, J.F. Cahoon, Q. Qing, D.C. Bell et al., Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12, 2639–2644 (2012). https://doi.org/10.1021/nl3011337
- R. Elnathan, M. Kwiat, F. Patolsky, N.H. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196 (2014). https://doi.org/10.1016/j.nantod.2014.04.001
- J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 554–557 (1997). https://doi.org/10.1116/1.589291
- Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li et al., Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016). https://doi.org/10.1021/acs.nanolett.6b01461
- S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010). https://doi.org/10.1016/j.pmatsci.2010.02.001
- J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). https://doi.org/10.1021/ar9700365
- A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.-R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. U.S.A. 107, 1870–1875 (2010). https://doi.org/10.1073/pnas.0909350107
- Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012). https://doi.org/10.1021/nn300679d
- Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
- Z. Huang, H. Fang, J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 19, 744–748 (2007). https://doi.org/10.1002/adma.200600892
- Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt et al., Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 1520–1526 (2009). https://doi.org/10.1116/1.3065991
- R. Juhasz, N. Elfström, J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett. 5, 275–280 (2005). https://doi.org/10.1021/nl0481573
- Y. Zhang, J. Clausmeyer, B. Babakinejad, A.L. Córdoba, T. Ali et al., Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10, 3214–3221 (2016). https://doi.org/10.1021/acsnano.5b05211
- F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
- D. Kireev, M. Brambach, S. Seyock, V. Maybeck, W. Fu et al., Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 (2017). https://doi.org/10.1038/s41598-017-06906-5
- L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A.M. Ionescu, Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: fabrication, Experiments and Unified Analog Predictive Modeling. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020), 35.2.1–35.2.4.
- S.J. Park, S.E. Seo, K.H. Kim, S.H. Lee, J. Kim et al., Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosens. Bioelectron. 174, 112804 (2021). https://doi.org/10.1016/j.bios.2020.112804
- A.K. Geim, D. Jiang, E.H. Hill, F. Schedin, K.S. Novoselov et al., Detection of individual gas molecules absorbed on graphene. arXiv e-prints. (2006)
- J. Ristein, W. Zhang, F. Speck, M. Ostler, L. Ley et al., Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. J. Phys. D Appl. Phys. 43, 345303 (2010). https://doi.org/10.1088/0022-3727/43/34/345303
- Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein orption. Nano Lett. 9, 3318–3322 (2009). https://doi.org/10.1021/nl901596m
- C. Homma, M. Tsukiiwa, H. Noguchi, M. Tanaka, M. Okochi et al., Designable peptides on graphene field-effect transistors for selective detection of odor molecules. Biosens. Bioelectron. 224, 115047 (2023). https://doi.org/10.1016/j.bios.2022.115047
- R. Negishi, H. Hirano, Y. Ohno, K. Maehashi, K. Matsumoto et al., Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 519, 6447–6452 (2011). https://doi.org/10.1016/j.tsf.2011.04.229
- B.M. Blaschke, M. Lottner, S. Drieschner, A.B. Calia, K. Stoiber et al., Flexible graphene transistors for recording cell action potentials. 2D Mater. 3, 025007 (2016). https://doi.org/10.1088/2053-1583/3/2/025007
- L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert et al., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049, 4968 (2011). https://doi.org/10.1002/adma.201102990
- C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). https://doi.org/10.1038/nnano.2012.8
- J. Abbott, T. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018). https://doi.org/10.1021/acs.accounts.7b00519
- M. Dipalo, G. Melle, L. Lovato, A. Jasi, F. Santoro et al., Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018). https://doi.org/10.1038/s41565-018-0222-z
- M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017). https://doi.org/10.1021/acs.nanolett.7b01523
- M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva et al., 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7, 3703–3711 (2015). https://doi.org/10.1039/c4nr05578k
- E.A. Woodcock, S.J. Matkovich, Cardiomyocytes structure, function and associated pathologies. Int. J. Biochem. Cell Biol. 37, 1746–1751 (2005). https://doi.org/10.1016/j.biocel.2005.04.011
- D.M. Bers, S. Despa, Cardiac excitation–contraction coupling. Encyclopedia of Biological Chemistry. Amsterdam: Elsevier, (2013), 379–383. https://doi.org/10.1016/b978-0-12-378630-2.00221-8
- T. Kuo, Peter, Cardiac electrophysiology: From cell to bedside. JAMA 274(6), 507 (1991). https://doi.org/10.1001/jama.1995.03530060083043
- D. Später, E.M. Hansson, L. Zangi, K.R. Chien, How to make a cardiomyocyte. Development 141, 4418–4431 (2014). https://doi.org/10.1242/dev.091538
- A. Leri, M. Rota, F.S. Pasqualini, P. Goichberg, P. Anversa, Origin of cardiomyocytes in the adult heart. Circ. Res. 116, 150–166 (2015). https://doi.org/10.1161/CIRCRESAHA.116.303595
- L.F. Santana, E.P. Cheng, W.J. Lederer, How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J. Mol. Cell. Cardiol. 49, 901–903 (2010). https://doi.org/10.1016/j.yjmcc.2010.09.005
- E. Carmeliet, J. Vereecke, Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 313, 300–315 (1969). https://doi.org/10.1007/BF00593955
- C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991). https://doi.org/10.1161/01.res.68.6.1501
- Z.C. Lin, A.F. McGuire, P.W. Burridge, E. Matsa, H.Y. Lou et al., Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3, 16080 (2017). https://doi.org/10.1038/micronano.2016.80
- Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 (2018). https://doi.org/10.1002/adhm.201800304
- S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
- L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019). https://doi.org/10.1007/s40820-019-0250-8
- Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
- D. Kireev, S. Seyock, J. Lewen, V. Maybeck, B. Wolfrum et al., Graphene multielectrode arrays as a versatile tool for extracellular measurements. Adv. Healthc. Mater. 6, 1601433 (2017). https://doi.org/10.1002/adhm.201601433
- P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, Solvated first-principles excited-state charge-transfer dynamics with time-dependent polarizable continuum model and solvent dielectric relaxation. J. Phys. Chem. Lett. 3, 2898–2904 (2012). https://doi.org/10.1021/jz301042f
- L.H. Hess, C. Becker-Freyseng, M.S. Wismer, B.M. Blaschke, M. Lottner et al., Electrical coupling between cells and graphene transistors. Small 11, 1703–1710 (2015). https://doi.org/10.1002/smll.201402225
- F. Veliev, A. Cresti, D. Kalita, A. Bourrier, T. Belloir et al., Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater. 5, 045020 (2018). https://doi.org/10.1088/2053-1583/aad78f
- J. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5, 66–80 (2013). https://doi.org/10.1007/BF03354852
- V. Dupuit, O. Terral, G. Bres, A. Claudel, B. Fernandez et al., A multifunctional hybrid graphene and microfluidic platform to interface topological neuron networks. Adv. Funct. Mater. 32, 2207001 (2022). https://doi.org/10.1002/adfm.202207001
- J.A. Huang, V. Caprettini, Y. Zhao, G. Melle, N. Maccaferri et al., On-demand intracellular delivery of single ps in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019). https://doi.org/10.1021/acs.nanolett.8b03764
- V. Caprettini, J.A. Huang, F. Moia, A. Jasi, C.A. Gonano et al., Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 5, 1800560 (2018). https://doi.org/10.1002/advs.201800560
- M. Donnelly, D. Mao, J. Park, G. Xu, Graphene field-effect transistors: the road to bioelectronics. J. Phys. D Appl. Phys. 51, 493001 (2018). https://doi.org/10.1088/1361-6463/aadcca
- D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118–123 (2012). https://doi.org/10.1007/BF03353702
- L. Raes, S. Stremersch, J.C. Fraire, T. Brans, G. Goetgeluk et al., Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 12, 185 (2020). https://doi.org/10.1007/s40820-020-00523-0
- H. Yin, W. Jiang, Y. Liu, D. Zhang, F. Wu et al., Advanced near-infrared light approaches for neuroimaging and neuromodulation. BMEMat 1, e12023 (2023). https://doi.org/10.1002/bmm2.12023
- C. Lin, X. Li, T. Wu, J. Xu, Z. Gong et al., Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network. BMEMat 1, e12007 (2023). https://doi.org/10.1002/bmm2.12015
- H. Song, M. Kim, E. Kim, J. Lee, I. Jeong et al., Neuromodulation of the peripheral nervous system: Bioelectronic technology and prospective developments. BMEMat 1, e12048 (2023). https://doi.org/10.1002/bmm2.12048
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- B. Hou, X. Liu, Stretching boundaries in neurophysiological monitoring. BMEMat 1, e12054 (2023). https://doi.org/10.1002/bmm2.12054
References
M. Jia, H. Dechiruji, J. Selberg, P. Pansodtee, J. Mathews et al., Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Mater. 8, 091106 (2020). https://doi.org/10.1063/5.0013867
P.R.F. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L.K.J. Vandamme et al., Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 6, 34843 (2016). https://doi.org/10.1038/srep34843
J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, R. Arias, High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008). https://doi.org/10.1038/nrd2552
R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017). https://doi.org/10.1021/acs.nanolett.6b04752
S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5, 231–246 (2009). https://doi.org/10.1007/s12015-009-9080-2
D.J. Blackiston, K.A. McLaughlin, M. Levin, Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536 (2009). https://doi.org/10.4161/cc.8.21.9888
A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis et al., European society of cardiology: Cardiovascular disease statistics 2017. Oxford University Press, Oxford. (2018)
Correction to: heart disease and stroke statistics-2023 update: a report from the American heart association. Circulation 148, e4 (2023). https://doi.org/10.1161/CIR.0000000000001167
G. Vorobiof, C. Silverstein, Non-invasive cardiac imaging for evaluation of cardiotoxicity in cancer patients-early detection and follow-up. SA Heart (2017). https://doi.org/10.24170/9-4-1829
Y. Yang, A. Liu, C.-T. Tsai, C. Liu, J.C. Wu et al., Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens. Bioelectron. 216, 114617 (2022). https://doi.org/10.1016/j.bios.2022.114617
L. Xiao, Z. Hu, W. Zhang, C. Wu, H. Yu et al., Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens. Bioelectron. 26, 1493–1499 (2010). https://doi.org/10.1016/j.bios.2010.07.093
A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939). https://doi.org/10.1038/144710a0
L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009). https://doi.org/10.1039/B907394A
C.-X. Lin, J.-L. Gu, J.-M. Cao, The acute toxic effects of platinum nanops on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 14, 5595–5609 (2019). https://doi.org/10.2147/IJN.S209135
T. Meyer, K.-H. Boven, E. Günther, M. Fejtl, Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf. 27, 763–772 (2004). https://doi.org/10.2165/00002018-200427110-00002
D. Xu, J. Mo, X. Xie, N. Hu, In-cell nanoelectronics: opening the door to intracellular electrophysiology. Nano-Micro Lett. 13, 127 (2021). https://doi.org/10.1007/s40820-021-00655-x
J. Fang, S. Huang, F. Liu, G. He, X. Li et al., Semi-implantable bioelectronics. Nano-Micro Lett. 14, 125 (2022). https://doi.org/10.1007/s40820-022-00818-4
D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel et al., Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743–1750 (2015). https://doi.org/10.1021/nl504438z
B. Hille, Ion channels of excitable membranes sunderland. Sinauer Associates Inc. (2001)
A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology; 2003)
D. C. Sigg, P. A. Iaizzo, Y. F. Xiao, B. He. Electrophysiology of single cardiomyocytes: Patch clamp and other recording methods. (Chapter 16), 329–348 (2010). https://doi.org/10.1007/978-1-4419-6658-2_16
R.L. Schrøder, M. Christensen, B. Anson, M. Sunesen, Exploring stem cell-derived cardiomyocytes with automated patch clamp techniques. Biophys. J. 102, 544a (2012). https://doi.org/10.1016/j.bpj.2011.11.2968
B. Amuzescu, S. Frech, K. Lin, J. Eisfeld, J. Kudolo et al., Electrophysiology Characterization of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Using Automated Patch-clamp. (2015)
A. Marques-Smith, J.P. Neto, G. Lopes, J. Nogueira, L. Calcaterra et al., Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRxiv (2018). https://doi.org/10.1101/370080
V. Grenier, K.N. Martinez, B.R. Benlian, D.M. García-Almedina, B.K. Raliski et al., Molecular prosthetics for long-term functional imaging with fluorescent reporters. ACS Cent. Sci. 8, 118–121 (2022). https://doi.org/10.1021/acscentsci.1c01153
A. Grinvald, R. Hildesheim, VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004). https://doi.org/10.1038/nrn1536
L.N. Kahyaoglu, R. Madangopal, M. Stensberg, Rickus J.L, Light-directed functionalization methods for high-resolution optical fiber based biosensors. SPIE Sensing Technology + Applications. Proc SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII Baltimore, MD, USA 9486, 9–18 (2015). https://doi.org/10.1117/12.2177178
A. Matiukas, B.G. Mitrea, M. Qin, A.M. Pertsov, A.G. Shvedko et al., Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4, 1441–1451 (2007). https://doi.org/10.1016/j.hrthm.2007.07.012
M. Warren, K.W. Spitzer, B.W. Steadman, T.D. Rees, P. Venable et al., High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am. J. Physiol. Heart Circ. Physiol. 299, H1271–H1281 (2010). https://doi.org/10.1152/ajpheart.00248.2010
M. Warren, K.W. Spitzer, B.W. Steadman, P. Venable, T. Taylor et al., Near infrared emitting dye di-4-ANBDQBS for recording action potentials in isolated cardiomyocytes. Biophys. J. 96, 293a (2009). https://doi.org/10.1016/j.bpj.2008.12.1453
J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020). https://doi.org/10.1038/s41551-019-0455-7
T. Banno, S. Tsuruhara, Y. Seikoba, R. Tonai, K. Yamashita et al., Nanoneedle-electrode devices for in vivo recording of extracellular action potentials. ACS Nano 16, 10692–10700 (2022). https://doi.org/10.1021/acsnano.2c02399
A. Barbaglia, M. Dipalo, G. Melle, G. Iachetta, L. Deleye et al., Mirroring action potentials: label-free, accurate, and noninvasive electrophysiological recordings of human-derived cardiomyocytes. Adv. Mater. 33, e2004234 (2021). https://doi.org/10.1002/adma.202004234
B.X.E. Desbiolles, E. de Coulon, A. Bertsch, S. Rohr, P. Renaud, Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019). https://doi.org/10.1021/acs.nanolett.9b02209
J. Fang, D. Xu, H. Wang, J. Wu, Y. Li et al., Scalable and robust hollow nanopillar electrode for enhanced intracellular action potential recording. Nano Lett. 23, 243–251 (2023). https://doi.org/10.1021/acs.nanolett.2c04222
Z. Jahed, Y. Yang, C.-T. Tsai, E.P. Foster, A.F. McGuire et al., Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022). https://doi.org/10.1038/s41467-022-29726-2
J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012). https://doi.org/10.1038/nnano.2011.249
M. Abarkan, A. Pirog, D. Mafilaza, G. Pathak, G. N’Kaoua et al., Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals. Adv. Sci. 9, e2105211 (2022). https://doi.org/10.1002/advs.202105211
B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010). https://doi.org/10.1126/science.1192033
T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010). https://doi.org/10.1021/nl1002608
X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
S. Asgarifar, H. Gomes, A. Mestre, P.M. C. Inácio, J. Bragança et al., in Electrochemically Gated Graphene Field-effect Transistor for Extracellular Cell Signal Recording. ed. by (2016), pp. 558–564.
Y. Gu, C. Wang, N. Kim, J. Zhang, T.M. Wang et al., Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022). https://doi.org/10.1038/s41565-021-01040-w
A. Kyndiah, F. Leonardi, C. Tarantino, T. Cramer, R. Millan-Solsona et al., Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron. 150, 111844 (2020). https://doi.org/10.1016/j.bios.2019.111844
H. Gao, F. Yang, K. Sattari, X. Du, T. Fu et al., Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. Sci. Adv. 8, eabn2485 (2022). https://doi.org/10.1126/sciadv.abn2485
P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An Extracellular microelectrode Array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5, 223–234 (1990). https://doi.org/10.1016/0956-5663(90)80011-2
T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005). https://doi.org/10.1152/jn.01023.2004
P.J. Koester, C. Tautorat, H. Beikirch, J. Gimsa, W. Baumann, Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectron. 26, 1731–1735 (2010). https://doi.org/10.1016/j.bios.2010.08.003
M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013). https://doi.org/10.1038/nnano.2012.265
V. Zlochiver, S.L. Kroboth, C.R. Beal, J.A. Cook, R. Joshi-Mukherjee, Human iPSC-derived cardiomyocyte networks on multiwell micro-electrode arrays for recurrent action potential recordings. J. Vis. Exp. 149, e59906 (2019). https://doi.org/10.3791/59906
X. Wei, C. Qin, C. Gu, C. He, Q. Yuan et al., A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 145, 111673 (2019). https://doi.org/10.1016/j.bios.2019.111673
A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608
I. Zadorozhnyi, H. Hlukhova, Y. Kutovyi, V. Handziuk, N. Naumova et al., Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosens. Bioelectron. 137, 229–235 (2019). https://doi.org/10.1016/j.bios.2019.04.038
G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov et al., Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanops for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 88, 283–289 (2017). https://doi.org/10.1016/j.bios.2016.08.054
J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). https://doi.org/10.1038/nnano.2017.3
J.S. Park, S.I. Grijalva, D. Jung, S. Li, G.V. Junek et al., Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens. Bioelectron. 144, 111626 (2019). https://doi.org/10.1016/j.bios.2019.111626
J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic et al., High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015). https://doi.org/10.1039/C5LC00133A
C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36, 1052–1063 (2011). https://doi.org/10.1557/mrs.2011.269
B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, C.M. Lieber, Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010). https://doi.org/10.1109/TNANO.2009.2031807
P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015). https://doi.org/10.1016/j.neuron.2015.01.004
Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng et al., Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 6, 1–19 (2014). https://doi.org/10.1007/BF03353763
M. Liu, Z. Wu, W.M. Lau, J. Yang, Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett. 4, 142–153 (2012). https://doi.org/10.1007/BF03353705
Y. Fang, Y. Jiang, H. Acaron Ledesma, J. Yi, X. Gao et al., Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487–4492 (2018). https://doi.org/10.1021/acs.nanolett.8b01626
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan et al., Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8, 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
D. Jäckel, D.J. Bakkum, T.L. Russell, J. Müller, M. Radivojevic et al., Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 7, 978 (2017). https://doi.org/10.1038/s41598-017-00981-4
Y. Zhang, Y. Tang, Y. Wang, L. Zhang, Nanomaterials for cardiac tissue engineering application. Nano-Micro Lett. 3, 270–277 (2011). https://doi.org/10.1007/BF03353683
J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13, 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
Y. Jin, H. Wang, K. Yi, S. Lv, H. Hu et al., Applications of nanobiomaterials in the therapy and imaging of acute liver failure. Nano-Micro Lett. 13, 25 (2020). https://doi.org/10.1007/s40820-020-00550-x
S. Kim, J. Seo, J. Choi, H. Yoo, Vertically integrated electronics: new opportunities from emerging materials and devices. Nano-Micro Lett. 14, 201 (2022). https://doi.org/10.1007/s40820-022-00942-1
X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016). https://doi.org/10.1038/nnano.2016.96
C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou et al., Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015). https://doi.org/10.1038/nmat4427
S.K. Krishnan, N. Nataraj, M. Meyyappan, U. Pal, Graphene-based field-effect transistors in biosensing and neural interfacing applications: recent advances and prospects. Anal. Chem. 95, 2590–2622 (2023). https://doi.org/10.1021/acs.analchem.2c03399
S. Wang, M.Z. Hossain, K. Shinozuka, N. Shimizu, S. Kitada et al., Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 165, 112363 (2020). https://doi.org/10.1016/j.bios.2020.112363
L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14, 3602–3607 (2014). https://doi.org/10.1021/nl5012855
C. Yao, Q. Li, J. Guo, F. Yan, I.-M. Hsing, Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528–533 (2015). https://doi.org/10.1002/adhm.201400406
S.J. Luck, An introduction to the event-related potential technique. Sveučilište u Rijeci. (2005)
S. Cabrini, Sub-10-nm three-dimensional plasmonic probes and sensors. 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai, China. IEEE, (2016). p 836
R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012). https://doi.org/10.1021/nl301623p
T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018). https://doi.org/10.1007/s40820-018-0206-4
S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600nm thickness with high carrier mobility. Nano-Micro Lett. 15, 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009). https://doi.org/10.1002/adfm.200900377
W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334–7341 (2011). https://doi.org/10.1021/nn202190c
M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017). https://doi.org/10.1016/j.bios.2017.07.010
W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017). https://doi.org/10.1002/adma.201603610
R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Anal. Chem. 85, 509–521 (2013). https://doi.org/10.1021/ac303190w
T. Feuk, On the transparency of the stroma in the mammalian Cornea. IEEE Trans. Biomed. Eng. BME-17, 186–190 (1970). https://doi.org/10.1109/tbme.1970.4502732
S.-A. Peng, Z. Jin, P. Ma, D.-Y. Zhang, J.-Y. Shi et al., The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 82, 500–505 (2015). https://doi.org/10.1016/j.carbon.2014.11.001
W. Fu, C. Nef, A. Tarasov, M. Wipf, R. Stoop et al., High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013). https://doi.org/10.1039/C3NR03940D
L.H. Hess, M. Seifert, J.A. Garrido, Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013). https://doi.org/10.1109/JPROC.2013.2261031
F. Veliev, Z. Han, D. Kalita, A. Briançon-Marjollet, V. Bouchiat et al., Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci. 11, 466 (2017). https://doi.org/10.3389/fnins.2017.00466
L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746–751 (2013). https://doi.org/10.1021/nl304435z
Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711–1716 (2012). https://doi.org/10.1021/nl300256r
T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 111, 1259–1264 (2014). https://doi.org/10.1073/pnas.1323389111
T. Cohen-Karni, D. anova, J.F. Cahoon, Q. Qing, D.C. Bell et al., Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12, 2639–2644 (2012). https://doi.org/10.1021/nl3011337
R. Elnathan, M. Kwiat, F. Patolsky, N.H. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196 (2014). https://doi.org/10.1016/j.nantod.2014.04.001
J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 554–557 (1997). https://doi.org/10.1116/1.589291
Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li et al., Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016). https://doi.org/10.1021/acs.nanolett.6b01461
S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010). https://doi.org/10.1016/j.pmatsci.2010.02.001
J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). https://doi.org/10.1021/ar9700365
A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.-R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. U.S.A. 107, 1870–1875 (2010). https://doi.org/10.1073/pnas.0909350107
Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012). https://doi.org/10.1021/nn300679d
Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
Z. Huang, H. Fang, J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 19, 744–748 (2007). https://doi.org/10.1002/adma.200600892
Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt et al., Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 1520–1526 (2009). https://doi.org/10.1116/1.3065991
R. Juhasz, N. Elfström, J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett. 5, 275–280 (2005). https://doi.org/10.1021/nl0481573
Y. Zhang, J. Clausmeyer, B. Babakinejad, A.L. Córdoba, T. Ali et al., Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10, 3214–3221 (2016). https://doi.org/10.1021/acsnano.5b05211
F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
D. Kireev, M. Brambach, S. Seyock, V. Maybeck, W. Fu et al., Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 (2017). https://doi.org/10.1038/s41598-017-06906-5
L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A.M. Ionescu, Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: fabrication, Experiments and Unified Analog Predictive Modeling. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020), 35.2.1–35.2.4.
S.J. Park, S.E. Seo, K.H. Kim, S.H. Lee, J. Kim et al., Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosens. Bioelectron. 174, 112804 (2021). https://doi.org/10.1016/j.bios.2020.112804
A.K. Geim, D. Jiang, E.H. Hill, F. Schedin, K.S. Novoselov et al., Detection of individual gas molecules absorbed on graphene. arXiv e-prints. (2006)
J. Ristein, W. Zhang, F. Speck, M. Ostler, L. Ley et al., Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. J. Phys. D Appl. Phys. 43, 345303 (2010). https://doi.org/10.1088/0022-3727/43/34/345303
Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein orption. Nano Lett. 9, 3318–3322 (2009). https://doi.org/10.1021/nl901596m
C. Homma, M. Tsukiiwa, H. Noguchi, M. Tanaka, M. Okochi et al., Designable peptides on graphene field-effect transistors for selective detection of odor molecules. Biosens. Bioelectron. 224, 115047 (2023). https://doi.org/10.1016/j.bios.2022.115047
R. Negishi, H. Hirano, Y. Ohno, K. Maehashi, K. Matsumoto et al., Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 519, 6447–6452 (2011). https://doi.org/10.1016/j.tsf.2011.04.229
B.M. Blaschke, M. Lottner, S. Drieschner, A.B. Calia, K. Stoiber et al., Flexible graphene transistors for recording cell action potentials. 2D Mater. 3, 025007 (2016). https://doi.org/10.1088/2053-1583/3/2/025007
L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert et al., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049, 4968 (2011). https://doi.org/10.1002/adma.201102990
C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). https://doi.org/10.1038/nnano.2012.8
J. Abbott, T. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018). https://doi.org/10.1021/acs.accounts.7b00519
M. Dipalo, G. Melle, L. Lovato, A. Jasi, F. Santoro et al., Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018). https://doi.org/10.1038/s41565-018-0222-z
M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017). https://doi.org/10.1021/acs.nanolett.7b01523
M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva et al., 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7, 3703–3711 (2015). https://doi.org/10.1039/c4nr05578k
E.A. Woodcock, S.J. Matkovich, Cardiomyocytes structure, function and associated pathologies. Int. J. Biochem. Cell Biol. 37, 1746–1751 (2005). https://doi.org/10.1016/j.biocel.2005.04.011
D.M. Bers, S. Despa, Cardiac excitation–contraction coupling. Encyclopedia of Biological Chemistry. Amsterdam: Elsevier, (2013), 379–383. https://doi.org/10.1016/b978-0-12-378630-2.00221-8
T. Kuo, Peter, Cardiac electrophysiology: From cell to bedside. JAMA 274(6), 507 (1991). https://doi.org/10.1001/jama.1995.03530060083043
D. Später, E.M. Hansson, L. Zangi, K.R. Chien, How to make a cardiomyocyte. Development 141, 4418–4431 (2014). https://doi.org/10.1242/dev.091538
A. Leri, M. Rota, F.S. Pasqualini, P. Goichberg, P. Anversa, Origin of cardiomyocytes in the adult heart. Circ. Res. 116, 150–166 (2015). https://doi.org/10.1161/CIRCRESAHA.116.303595
L.F. Santana, E.P. Cheng, W.J. Lederer, How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J. Mol. Cell. Cardiol. 49, 901–903 (2010). https://doi.org/10.1016/j.yjmcc.2010.09.005
E. Carmeliet, J. Vereecke, Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 313, 300–315 (1969). https://doi.org/10.1007/BF00593955
C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991). https://doi.org/10.1161/01.res.68.6.1501
Z.C. Lin, A.F. McGuire, P.W. Burridge, E. Matsa, H.Y. Lou et al., Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3, 16080 (2017). https://doi.org/10.1038/micronano.2016.80
Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 (2018). https://doi.org/10.1002/adhm.201800304
S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019). https://doi.org/10.1007/s40820-019-0250-8
Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
D. Kireev, S. Seyock, J. Lewen, V. Maybeck, B. Wolfrum et al., Graphene multielectrode arrays as a versatile tool for extracellular measurements. Adv. Healthc. Mater. 6, 1601433 (2017). https://doi.org/10.1002/adhm.201601433
P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, Solvated first-principles excited-state charge-transfer dynamics with time-dependent polarizable continuum model and solvent dielectric relaxation. J. Phys. Chem. Lett. 3, 2898–2904 (2012). https://doi.org/10.1021/jz301042f
L.H. Hess, C. Becker-Freyseng, M.S. Wismer, B.M. Blaschke, M. Lottner et al., Electrical coupling between cells and graphene transistors. Small 11, 1703–1710 (2015). https://doi.org/10.1002/smll.201402225
F. Veliev, A. Cresti, D. Kalita, A. Bourrier, T. Belloir et al., Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater. 5, 045020 (2018). https://doi.org/10.1088/2053-1583/aad78f
J. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5, 66–80 (2013). https://doi.org/10.1007/BF03354852
V. Dupuit, O. Terral, G. Bres, A. Claudel, B. Fernandez et al., A multifunctional hybrid graphene and microfluidic platform to interface topological neuron networks. Adv. Funct. Mater. 32, 2207001 (2022). https://doi.org/10.1002/adfm.202207001
J.A. Huang, V. Caprettini, Y. Zhao, G. Melle, N. Maccaferri et al., On-demand intracellular delivery of single ps in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019). https://doi.org/10.1021/acs.nanolett.8b03764
V. Caprettini, J.A. Huang, F. Moia, A. Jasi, C.A. Gonano et al., Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 5, 1800560 (2018). https://doi.org/10.1002/advs.201800560
M. Donnelly, D. Mao, J. Park, G. Xu, Graphene field-effect transistors: the road to bioelectronics. J. Phys. D Appl. Phys. 51, 493001 (2018). https://doi.org/10.1088/1361-6463/aadcca
D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118–123 (2012). https://doi.org/10.1007/BF03353702
L. Raes, S. Stremersch, J.C. Fraire, T. Brans, G. Goetgeluk et al., Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 12, 185 (2020). https://doi.org/10.1007/s40820-020-00523-0
H. Yin, W. Jiang, Y. Liu, D. Zhang, F. Wu et al., Advanced near-infrared light approaches for neuroimaging and neuromodulation. BMEMat 1, e12023 (2023). https://doi.org/10.1002/bmm2.12023
C. Lin, X. Li, T. Wu, J. Xu, Z. Gong et al., Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network. BMEMat 1, e12007 (2023). https://doi.org/10.1002/bmm2.12015
H. Song, M. Kim, E. Kim, J. Lee, I. Jeong et al., Neuromodulation of the peripheral nervous system: Bioelectronic technology and prospective developments. BMEMat 1, e12048 (2023). https://doi.org/10.1002/bmm2.12048
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
B. Hou, X. Liu, Stretching boundaries in neurophysiological monitoring. BMEMat 1, e12054 (2023). https://doi.org/10.1002/bmm2.12054