Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout
Corresponding Author: Hengwei Lin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 198
Abstract
Near-infrared (NIR), particularly NIR-containing dual-/multi-mode afterglow, is very attractive in many fields of application, but it is still a great challenge to achieve such property of materials. Herein, we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots (CDs) through in situ embedding o-CDs (being prepared from o-phenylenediamine) into cyanuric acid (CA) matrix (named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) of o-CDs, respectively. In addition, the formation of covalent bonds between o-CDs and CA, and the presence of multiple fixation and rigid effects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA, it is completely covered by the green TADF during directly observing. The NIR RTP signal, however, can be readily captured if an optical filter (cut-off wavelength of 600 nm) being used. By utilizing these unique features, the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally, the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances.
Highlights:
1 A facile method was developed to achieve visible light (green) and near infrared dual-mode afterglow emissions from carbon dots (CDs)-based materials at ambient conditions for the first time.
2 We proposed a promising method in advanced information security applications through a special manner of readout.
3 The as-developed method was confirmed to be applicable to many kinds of CDs for achieving or enhancing their afterglow performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 32(18), 1901430 (2020). https://doi.org/10.1002/adma.201901430
- X. Yu, H. Zhang, J. Yu, Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2(1), 20–34 (2021). https://doi.org/10.1002/agt2.15
- S. Liu, X. Liu, J. Yuan, J. Bao, Multidimensional information encryption and storage: when the input is light. Research 2021, 7897849 (2021)
- A. Abdollahi, H. Roghani-Mamaqani, B. Razavi, M. Salami-Kalajahi, Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano 14(11), 14417–14492 (2020). https://doi.org/10.1021/acsnano.0c07289
- C. Zhang, B. Wang, W. Li, S. Huang, L. Kong et al., Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 8(1), 1138 (2017). https://doi.org/10.1038/s41467-017-01248-2
- Z. Song, T. Lin, L. Lin, S. Lin, F. Fu et al., Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Ed. 55(8), 2773–2777 (2016). https://doi.org/10.1002/anie.201510945
- J. Andres, R.D. Hersch, J.-E. Moser, A.-S. Chauvin, A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv. Funct. Mater. 24(32), 5029–5036 (2014). https://doi.org/10.1002/adfm.201400298
- H. Tan, T. Wang, Y. Shao, C. Yu, L. Hu, Crucial breakthrough of functional persistent luminescence materials for biomedical and information technological applications. Front. Chem. 7, 387 (2019). https://doi.org/10.3389/fchem.2019.00387
- S. Xu, R. Chen, C. Zheng, W. Huang, Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28(45), 9920–9940 (2016). https://doi.org/10.1002/adma.201602604
- Z. Zhou, Y. Li, M. Peng, Near-infrared persistent phosphors: Synthesis, design, and applications. Chem. Eng. J. 399, 125688 (2020). https://doi.org/10.1016/j.cej.2020.125688
- C. Ma, H. Liu, F. Ren, Z. Liu, Q. Sun et al., The second near-infrared window persistent luminescence for anti-counterfeiting application. Cryst. Growth Des. 20(3), 1859–1867 (2020). https://doi.org/10.1021/acs.cgd.9b01575
- Y. Zhang, R. Huang, H. Li, Z. Lin, D. Hou et al., Triple-mode emissions with invisible near-infrared after-glow from Cr3+-doped zinc aluminum germanium nanoparticles for advanced anti-counterfeiting applications. Small 16(35), 2003121 (2020). https://doi.org/10.1002/smll.202003121
- Y. Park, Y. Kim, H. Chang, S. Won, H. Kim et al., Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J. Mater. Chem. B 8(39), 8935–8951 (2020). https://doi.org/10.1039/D0TB01334J
- S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao et al., Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 33, 100879 (2020). https://doi.org/10.1016/j.nantod.2020.100879
- Z. Li, L. Wang, Y. Li, Y. Feng, W. Feng, Frontiers in carbon dots: design, properties and applications. Mater. Chem. Front. 3(12), 2571–2601 (2019). https://doi.org/10.1039/C9QM00415G
- S. Li, M. Qi, Y. Fan, Y. Yang, M. Anpo et al., Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal. B-Environ. 292, 120157 (2021). https://doi.org/10.1016/j.apcatb.2021.120157
- C. Han, Y. Li, M. Qi, F. Zhang, Z. Tang et al., Surface/interface engineering of carbon-based materials for constructing multidimensional functional hybrids. Sol. RRL 4(8), 1900577 (2020). https://doi.org/10.1002/solr.201900577
- X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao et al., Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30(1), 1704740 (2018). https://doi.org/10.1002/adma.201704740
- R. Wang, K. Lu, Z. Tang, Y. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5(8), 3717–3734 (2017). https://doi.org/10.1039/C6TA08660H
- K. Lu, Q. Quan, N. Zhang, Y. Xu, Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J. Energy Chem. 25(6), 927–935 (2016). https://doi.org/10.1016/j.jechem.2016.09.015
- Y. Sun, X. Zhang, J. Zhuang, H. Zhang, C. Hu et al., The room temperature afterglow mechanism in carbon dots: current state and further guidance perspective. Carbon 165, 306–316 (2020). https://doi.org/10.1016/j.carbon.2020.04.030
- K. Jiang, Y. Wang, Z. Li, H. Lin, Afterglow of carbon dots: mechanism, strategy and applications. Mater. Chem. Front. 4(2), 386–399 (2020). https://doi.org/10.1039/C9QM00578A
- S. Tao, S. Li, Y. Geng, S. Zhu, S.A.T. Redfern et al., Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 57(9), 2393–2398 (2018). https://doi.org/10.1002/anie.201712662
- K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 57(21), 6216–6220 (2018). https://doi.org/10.1002/anie.201802441
- C. Xia, S. Zhu, S.-T. Zhang, Q. Zeng, S. Tao et al., Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl. Mater. Interfaces 12(34), 38593–38601 (2020). https://doi.org/10.1021/acsami.0c11867
- K. Jiang, Y. Wang, C. Cai, H. Lin, Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 30(26), 1800783 (2018). https://doi.org/10.1002/adma.201800783
- K. Jiang, S. Hu, Y. Wang, Z. Li, H. Lin, Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 16(31), 2001909 (2020). https://doi.org/10.1002/smll.202001909
- K. Jiang, X. Gao, X. Feng, Y. Wang, Z. Li et al., Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem. Int. Ed. 59(3), 1263–1269 (2020). https://doi.org/10.1002/anie.201911342
- S. Hu, K. Jiang, Y. Wang, S. Wang, Z. Li et al., Visible-light-excited room temperature phosphorescent carbon dots. Nanomaterials 10(3), 464 (2020). https://doi.org/10.3390/nano10030464
- C. Lin, Y. Zhuang, W. Li, T.-L. Zhou, R.-J. Xie, Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 11(14), 6584–6590 (2019). https://doi.org/10.1039/C8NR09672D
- W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang et al., A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem. Int. Ed. 58(22), 7278–7283 (2019). https://doi.org/10.1002/anie.201814629
- K. Jiang, Y. Wang, C. Cai, H. Lin, Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater. 29(11), 4866–4873 (2017). https://doi.org/10.1021/acs.chemmater.7b00831
- Y. Sun, S. Liu, L. Sun, S. Wu, G. Hu et al., Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11(1), 5591 (2020). https://doi.org/10.1038/s41467-020-19422-4
- Y. Sun, J. Liu, X. Pang, X. Zhang, J. Zhuang et al., Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. J. Mater. Chem. C 8(17), 5744–5751 (2020). https://doi.org/10.1039/D0TC00507J
- J. He, Y. Chen, Y. He, X. Xu, B. Lei et al., Anchoring carbon nanodots onto nanosilica for phosphorescence enhancement and delayed fluorescence nascence in solid and liquid states. Small 16(49), 2005228 (2020). https://doi.org/10.1002/smll.202005228
- K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu et al., Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
- Z. Zhou, E.V. Ushakova, E. Liu, X. Bao, D. Li et al., A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale 12(20), 10987–10993 (2020). https://doi.org/10.1039/D0NR02639E
- Q. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi et al., Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 28(22), 8221–8227 (2016). https://doi.org/10.1021/acs.chemmater.6b03049
- Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi et al., Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem. 84(19), 8378–8382 (2012). https://doi.org/10.1021/ac301945z
- S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013)
- X. Liang, X. Pu, H. Zhou, N.-B. Wong, A. Tian, Keto–enol tautomerization of cyanuric acid in the gas phase and in water and methanol. J. Mol. Struc-THEOCHEM 816(1–3), 125–136 (2007). https://doi.org/10.1016/j.theochem.2007.04.010
- X. Liang, W. Zheng, N.-B. Wong, J. Li, A. Tian, Theoretical study on the mechanism of keto–enol isomerization for cyanuric acid and cyameluric acid. J. Mol. Struc-THEOCHEM 672(1–3), 151–159 (2004). https://doi.org/10.1016/j.theochem.2003.11.020
- S. Lu, L. Sui, J. Liu, S. Zhu, A. Chen et al., Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv. Mater. 29(15), 1603443 (2017). https://doi.org/10.1002/adma.201603443
- Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song et al., Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 49(51), 5751 (2013). https://doi.org/10.1039/C3CC42600A
- J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang et al., Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3(5), e1603171 (2017). https://doi.org/10.1126/sciadv.1603171
- W. Zhao, Z. He, Jacky W.Y. Lam, Q. Peng, H. Ma et al., Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1(4), 592–602 (2016). https://doi.org/10.1016/j.chempr.2016.08.010
- H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012). https://doi.org/10.1038/nature11687
- X. Xiong, F. Song, J. Wang, Y. Zhang, Y. Xue et al., Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging. J. Am. Chem. Soc. 136(27), 9590–9597 (2014). https://doi.org/10.1021/ja502292p
- Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26(47), 7931–7958 (2014). https://doi.org/10.1002/adma.201402532
- Y. Gao, H. Zhang, Y. Jiao, W. Lu, Y. Liu et al., Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 31(19), 7979–7986 (2019). https://doi.org/10.1021/acs.chemmater.9b02176
References
W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 32(18), 1901430 (2020). https://doi.org/10.1002/adma.201901430
X. Yu, H. Zhang, J. Yu, Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2(1), 20–34 (2021). https://doi.org/10.1002/agt2.15
S. Liu, X. Liu, J. Yuan, J. Bao, Multidimensional information encryption and storage: when the input is light. Research 2021, 7897849 (2021)
A. Abdollahi, H. Roghani-Mamaqani, B. Razavi, M. Salami-Kalajahi, Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano 14(11), 14417–14492 (2020). https://doi.org/10.1021/acsnano.0c07289
C. Zhang, B. Wang, W. Li, S. Huang, L. Kong et al., Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 8(1), 1138 (2017). https://doi.org/10.1038/s41467-017-01248-2
Z. Song, T. Lin, L. Lin, S. Lin, F. Fu et al., Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Ed. 55(8), 2773–2777 (2016). https://doi.org/10.1002/anie.201510945
J. Andres, R.D. Hersch, J.-E. Moser, A.-S. Chauvin, A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv. Funct. Mater. 24(32), 5029–5036 (2014). https://doi.org/10.1002/adfm.201400298
H. Tan, T. Wang, Y. Shao, C. Yu, L. Hu, Crucial breakthrough of functional persistent luminescence materials for biomedical and information technological applications. Front. Chem. 7, 387 (2019). https://doi.org/10.3389/fchem.2019.00387
S. Xu, R. Chen, C. Zheng, W. Huang, Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28(45), 9920–9940 (2016). https://doi.org/10.1002/adma.201602604
Z. Zhou, Y. Li, M. Peng, Near-infrared persistent phosphors: Synthesis, design, and applications. Chem. Eng. J. 399, 125688 (2020). https://doi.org/10.1016/j.cej.2020.125688
C. Ma, H. Liu, F. Ren, Z. Liu, Q. Sun et al., The second near-infrared window persistent luminescence for anti-counterfeiting application. Cryst. Growth Des. 20(3), 1859–1867 (2020). https://doi.org/10.1021/acs.cgd.9b01575
Y. Zhang, R. Huang, H. Li, Z. Lin, D. Hou et al., Triple-mode emissions with invisible near-infrared after-glow from Cr3+-doped zinc aluminum germanium nanoparticles for advanced anti-counterfeiting applications. Small 16(35), 2003121 (2020). https://doi.org/10.1002/smll.202003121
Y. Park, Y. Kim, H. Chang, S. Won, H. Kim et al., Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J. Mater. Chem. B 8(39), 8935–8951 (2020). https://doi.org/10.1039/D0TB01334J
S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao et al., Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 33, 100879 (2020). https://doi.org/10.1016/j.nantod.2020.100879
Z. Li, L. Wang, Y. Li, Y. Feng, W. Feng, Frontiers in carbon dots: design, properties and applications. Mater. Chem. Front. 3(12), 2571–2601 (2019). https://doi.org/10.1039/C9QM00415G
S. Li, M. Qi, Y. Fan, Y. Yang, M. Anpo et al., Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal. B-Environ. 292, 120157 (2021). https://doi.org/10.1016/j.apcatb.2021.120157
C. Han, Y. Li, M. Qi, F. Zhang, Z. Tang et al., Surface/interface engineering of carbon-based materials for constructing multidimensional functional hybrids. Sol. RRL 4(8), 1900577 (2020). https://doi.org/10.1002/solr.201900577
X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao et al., Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30(1), 1704740 (2018). https://doi.org/10.1002/adma.201704740
R. Wang, K. Lu, Z. Tang, Y. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5(8), 3717–3734 (2017). https://doi.org/10.1039/C6TA08660H
K. Lu, Q. Quan, N. Zhang, Y. Xu, Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J. Energy Chem. 25(6), 927–935 (2016). https://doi.org/10.1016/j.jechem.2016.09.015
Y. Sun, X. Zhang, J. Zhuang, H. Zhang, C. Hu et al., The room temperature afterglow mechanism in carbon dots: current state and further guidance perspective. Carbon 165, 306–316 (2020). https://doi.org/10.1016/j.carbon.2020.04.030
K. Jiang, Y. Wang, Z. Li, H. Lin, Afterglow of carbon dots: mechanism, strategy and applications. Mater. Chem. Front. 4(2), 386–399 (2020). https://doi.org/10.1039/C9QM00578A
S. Tao, S. Li, Y. Geng, S. Zhu, S.A.T. Redfern et al., Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 57(9), 2393–2398 (2018). https://doi.org/10.1002/anie.201712662
K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 57(21), 6216–6220 (2018). https://doi.org/10.1002/anie.201802441
C. Xia, S. Zhu, S.-T. Zhang, Q. Zeng, S. Tao et al., Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl. Mater. Interfaces 12(34), 38593–38601 (2020). https://doi.org/10.1021/acsami.0c11867
K. Jiang, Y. Wang, C. Cai, H. Lin, Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 30(26), 1800783 (2018). https://doi.org/10.1002/adma.201800783
K. Jiang, S. Hu, Y. Wang, Z. Li, H. Lin, Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 16(31), 2001909 (2020). https://doi.org/10.1002/smll.202001909
K. Jiang, X. Gao, X. Feng, Y. Wang, Z. Li et al., Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem. Int. Ed. 59(3), 1263–1269 (2020). https://doi.org/10.1002/anie.201911342
S. Hu, K. Jiang, Y. Wang, S. Wang, Z. Li et al., Visible-light-excited room temperature phosphorescent carbon dots. Nanomaterials 10(3), 464 (2020). https://doi.org/10.3390/nano10030464
C. Lin, Y. Zhuang, W. Li, T.-L. Zhou, R.-J. Xie, Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 11(14), 6584–6590 (2019). https://doi.org/10.1039/C8NR09672D
W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang et al., A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem. Int. Ed. 58(22), 7278–7283 (2019). https://doi.org/10.1002/anie.201814629
K. Jiang, Y. Wang, C. Cai, H. Lin, Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater. 29(11), 4866–4873 (2017). https://doi.org/10.1021/acs.chemmater.7b00831
Y. Sun, S. Liu, L. Sun, S. Wu, G. Hu et al., Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11(1), 5591 (2020). https://doi.org/10.1038/s41467-020-19422-4
Y. Sun, J. Liu, X. Pang, X. Zhang, J. Zhuang et al., Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. J. Mater. Chem. C 8(17), 5744–5751 (2020). https://doi.org/10.1039/D0TC00507J
J. He, Y. Chen, Y. He, X. Xu, B. Lei et al., Anchoring carbon nanodots onto nanosilica for phosphorescence enhancement and delayed fluorescence nascence in solid and liquid states. Small 16(49), 2005228 (2020). https://doi.org/10.1002/smll.202005228
K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu et al., Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
Z. Zhou, E.V. Ushakova, E. Liu, X. Bao, D. Li et al., A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale 12(20), 10987–10993 (2020). https://doi.org/10.1039/D0NR02639E
Q. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi et al., Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 28(22), 8221–8227 (2016). https://doi.org/10.1021/acs.chemmater.6b03049
Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi et al., Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem. 84(19), 8378–8382 (2012). https://doi.org/10.1021/ac301945z
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013)
X. Liang, X. Pu, H. Zhou, N.-B. Wong, A. Tian, Keto–enol tautomerization of cyanuric acid in the gas phase and in water and methanol. J. Mol. Struc-THEOCHEM 816(1–3), 125–136 (2007). https://doi.org/10.1016/j.theochem.2007.04.010
X. Liang, W. Zheng, N.-B. Wong, J. Li, A. Tian, Theoretical study on the mechanism of keto–enol isomerization for cyanuric acid and cyameluric acid. J. Mol. Struc-THEOCHEM 672(1–3), 151–159 (2004). https://doi.org/10.1016/j.theochem.2003.11.020
S. Lu, L. Sui, J. Liu, S. Zhu, A. Chen et al., Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv. Mater. 29(15), 1603443 (2017). https://doi.org/10.1002/adma.201603443
Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song et al., Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 49(51), 5751 (2013). https://doi.org/10.1039/C3CC42600A
J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang et al., Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3(5), e1603171 (2017). https://doi.org/10.1126/sciadv.1603171
W. Zhao, Z. He, Jacky W.Y. Lam, Q. Peng, H. Ma et al., Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1(4), 592–602 (2016). https://doi.org/10.1016/j.chempr.2016.08.010
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012). https://doi.org/10.1038/nature11687
X. Xiong, F. Song, J. Wang, Y. Zhang, Y. Xue et al., Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging. J. Am. Chem. Soc. 136(27), 9590–9597 (2014). https://doi.org/10.1021/ja502292p
Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26(47), 7931–7958 (2014). https://doi.org/10.1002/adma.201402532
Y. Gao, H. Zhang, Y. Jiao, W. Lu, Y. Liu et al., Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 31(19), 7979–7986 (2019). https://doi.org/10.1021/acs.chemmater.9b02176