Delivering Microrobots in the Musculoskeletal System
Corresponding Author: Yunfeng Rui
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 251
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Highlights:
1 A systematic review of recent advances of microrobots applied in the musculoskeletal system with an emphasis on design strategies of microrobotic systems for tissue regeneration.
2 The fabrication, motion and control, and image-guided delivery of microrobots in the musculoskeletal system are reviewed based on the up-to-date works.
3 Prospects and challenges for future clinical translation of microrobots in the musculoskeletal system and regenerative medicine are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Abbafati, K.M. Abbas, M. Abbasi, M. Abbasifard, M. Abbasi-Kangevari et al., Collaborators global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 1204–1222 (2020). https://doi.org/10.1016/S0140-6736(20)30925-9
- R. Gheno, J.M. Cepparo, C.E. Rosca, A. Cotten, Musculoskeletal disorders in the elderly. J. Clin. Imag. Sci. 2, 39 (2012). https://doi.org/10.4103/2156-7514.99151
- R. Buchbinder, C. Maher, I.A. Harris, Setting the research agenda for improving health care in musculoskeletal disorders. Nat. Rev. Rheumatol. 11, 597–605 (2015). https://doi.org/10.1038/nrrheum.2015.81
- A. Cieza, K. Causey, K. Kamenov, S.W. Hanson, S. Chatterji et al., Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 2006–2017 (2021). https://doi.org/10.1016/S0140-6736(20)32340-0
- S. Chatterji, J. Byles, D. Cutler, T. Seeman, E. Verdes, Health, functioning, and disability in older adults: present status and future implications. Lancet 385, 563–575 (2015). https://doi.org/10.1016/S0140-6736(14)61462-8
- J.E. Morley, Pharmacologic options for the treatment of sarcopenia. Calcif. Tissue Int. 98, 319–333 (2016). https://doi.org/10.1007/s00223-015-0022-5
- K.N. Tu, J.D. Lie, C.K.V. Wan, M. Cameron, A.G. Austel et al., Osteoporosis: a review of treatment options. P&T 43, 92–104 (2018)
- W. Zhang, H. Ouyang, C.R. Dass, J. Xu, Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016). https://doi.org/10.1038/boneres.2015.40
- J. Huang, Y. Chen, C. Tang, Y. Fei, H. Wu et al., The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell. Mol. Life Sci. 76, 505–521 (2019). https://doi.org/10.1007/s00018-018-2945-2
- M. Stephenson, W. Grayson, Recent advances in bioreactors for cell-based therapies. [version 1; peer review: 2 approved]. F1000Research 7 (F1000 Faculty Rev):517 (2018). https://doi.org/10.12688/f1000research.12533.1
- J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). https://doi.org/10.1016/j.smim.2007.11.004
- J. Ye, C. Xie, C. Wang, J. Huang, Z. Yin et al., Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact. Mater. 6, 4096–4109 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.017
- C. Murphy, J. Withrow, M. Hunter, Y. Liu, Y.L. Tang et al., Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med. 60, 123–128 (2018). https://doi.org/10.1016/j.mam.2017.09.006
- X. Yao, W. Wei, X. Wang, C. Li, M. Björklund et al., Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 224, 119492 (2019). https://doi.org/10.1016/j.biomaterials.2019.119492
- C.H. Evans, J. Huard, Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 11, 234–242 (2015). https://doi.org/10.1038/nrrheum.2015.28
- C.H. Evans, P.D. Robbins, Genetically augmented tissue engineering of the musculoskeletal system. Clin. Orthop. Relat. Res. (1999). https://doi.org/10.1097/00003086-199910001-00040
- C. Evans, Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. Int. Orthop. 38, 1761–1769 (2014). https://doi.org/10.1007/s00264-014-2423-x
- G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
- E. Basad, B. Ishaque, G. Bachmann, H. Stürz, J. Steinmeyer, Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg. Sports Traumatol. Arthrosc. 18, 519–527 (2010). https://doi.org/10.1007/s00167-009-1028-1
- B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98, 1–22 (2016). https://doi.org/10.1016/j.biomaterials.2016.04.018
- D.C. Carneiro, L.T. Araújo, G.C. Santos, P.K.F. Damasceno, J.L. Vieira et al., Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage. Int. J. Mol. Sci. 24, 9939 (2023). https://doi.org/10.3390/ijms24129939
- K. Čamernik, A. Barlič, M. Drobnič, J. Marc, M. Jeras et al., Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev. Rep. 14, 346–369 (2018). https://doi.org/10.1007/s12015-018-9800-6
- H.I.M.F.L. Pas, M.H. Moen, H.J. Haisma, M. Winters, No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br. J. Sports Med. 51, 996–1002 (2017). https://doi.org/10.1136/bjsports-2016-096794
- B.J. Nelson, S. Pané, Delivering drugs with microrobots biomedical microrobots could overcome current challenges in targeted therapies. Science 382, 1120–1122 (2023). https://doi.org/10.1126/science.adh3073
- M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu et al., Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019). https://doi.org/10.1038/s41467-019-08670-8
- X. Ma, X. Wang, K. Hahn, S. Sánchez, Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016). https://doi.org/10.1021/acsnano.5b08067
- S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 29, 1808900 (2019). https://doi.org/10.1002/adfm.201808900
- A.C. Hortelão, R. Carrascosa, N. Murillo-Cremaes, T. Patiño, S. Sánchez, Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019). https://doi.org/10.1021/acsnano.8b06610
- M. Hansen-Bruhn, B.E. de Ávila, M. Beltrán-Gastélum, J. Zhao, D.E. Ramírez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
- Y. Shen, W. Zhang, G. Li, P. Ning, Z. Li et al., Adaptive control of nanomotor swarms for magnetic-field-programmed cancer cell destruction. ACS Nano 15, 20020–20031 (2021). https://doi.org/10.1021/acsnano.1c07615
- R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10, 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
- M. Ussia, M. Urso, S. Kment, T. Fialova, K. Klima et al., Light-propelled nanorobots for facial titanium implants biofilms removal. Small 18, e2200708 (2022). https://doi.org/10.1002/smll.202200708
- Z. Cong, S. Tang, L. Xie, M. Yang, Y. Li et al., Magnetic-powered Janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv. Mater. 34, e2201042 (2022). https://doi.org/10.1002/adma.202201042
- S. Ahmed, D.T. Gentekos, C.A. Fink, T.E. Mallouk, Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8, 11053–11060 (2014). https://doi.org/10.1021/nn5039614
- X. Yi, H. Zhou, Y. Chao, S. Xiong, J. Zhong et al., Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci. Adv. 6, eaba3546 (2020). https://doi.org/10.1126/sciadv.aba3546
- D. Blackiston, E. Lederer, S. Kriegman, S. Garnier, J. Bongard et al., A cellular platform for the development of synthetic living machines. Sci. Robot. 6, eabf1571 (2021). https://doi.org/10.1126/scirobotics.abf1571
- O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y. Zhong Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016). https://doi.org/10.1038/nnano.2016.137
- H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit et al., Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398
- B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
- H. Mu, C. Liu, Q. Zhang, H. Meng, S. Yu et al., Magnetic-driven hydrogel microrobots selectively enhance synthetic lethality in MTAP-deleted osteosarcoma. Front. Bioeng. Biotechnol. 10, 911455 (2022). https://doi.org/10.3389/fbioe.2022.911455
- C. Xu, Y. Jiang, H. Wang, Y. Zhang, Y. Ye et al., Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv. Sci. 10, e2204881 (2023). https://doi.org/10.1002/advs.202204881
- G.-Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi et al., The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018). https://doi.org/10.1126/scirobotics.aar7650
- Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019). https://doi.org/10.1146/annurev-control-053018-023803
- Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15, 149–174 (2021). https://doi.org/10.1021/acsnano.0c07753
- Q. Wang, J. Zhang, J. Yu, J. Lang, Z. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17, 13081–13109 (2023). https://doi.org/10.1021/acsnano.3c05328
- F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022). https://doi.org/10.1021/acs.chemrev.0c00999
- F. Sylos-Labini, M. Zago, P.A. Guertin, F. Lacquaniti, Y.P. Ivanenko, Muscle coordination and locomotion in humans. Curr. Pharm. Des. 23, 1821–1833 (2017). https://doi.org/10.2174/1381612823666170125160820
- A. Oryan, S. Sahvieh, Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003–1011 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.124
- S. Roberts, P. Colombier, A. Sowman, C. Mennan, J.H.D. Rölfing et al., Ageing in the musculoskeletal system. Acta Orthop. 87, 15–25 (2016). https://doi.org/10.1080/17453674.2016.1244750
- D. Goltzman, The aging skeleton, in Advances in experimental medicine and biology. ed. by J.S. Rhim, A. Dritschilo, R. Kremer (Springer International Publishing, Cham, 2019), pp.153–160. https://doi.org/10.1007/978-3-030-22254-3_12
- R. Sheng, M. Cao, M. Song, M. Wang, Y. Zhang et al., Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J. Orthop. Translat. 43, 36–46 (2023). https://doi.org/10.1016/j.jot.2023.09.007
- B. Kirk, J. Feehan, G. Lombardi, G. Duque, Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 18, 388–400 (2020). https://doi.org/10.1007/s11914-020-00599-y
- GBD 2016 Disease and injury incidence and prevalence collaborators, global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, pp. 1211–1259 (2017). https://doi.org/10.1016/S0140-6736(17)32154-2
- D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. Lancet 393, 1745–1759 (2019). https://doi.org/10.1016/S0140-6736(19)30417-9
- M. Ondrésik, F.R. Azevedo Maia, A. da Silva Morais, A.C. Gertrudes, A.H. Dias Bacelar et al., Management of knee osteoarthritis. Current status and future trends. Biotechnol. Bioeng. 114, 717–739 (2017). https://doi.org/10.1002/bit.26182
- H. Madry, Surgical therapy in osteoarthritis. Osteoarthr. Cartil. 30, 1019–1034 (2022). https://doi.org/10.1016/j.joca.2022.01.012
- B.R. Freedman, D.J. Mooney, E. Weber, Advances toward transformative therapies for tendon diseases. Sci. Transl. Med. 14, eabl814 (2022). https://doi.org/10.1126/scitranslmed.abl8814
- G. Nourissat, F. Berenbaum, D. Duprez, Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol. 11, 223–233 (2015). https://doi.org/10.1038/nrrheum.2015.26
- J.L. Cook, C. Purdam, Is compressive load a factor in the development of tendinopathy? Br. J. Phys. Med. 46, 163–168 (2012). https://doi.org/10.1136/bjsports-2011-090414
- F. Abat, H. Alfredson, M. Cucchiarini, H. Madry, A. Marmotti et al., Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. J. Exp. Orthop. 5, 38 (2018). https://doi.org/10.1186/s40634-018-0145-5
- F. Oliva, D. Barisani, A. Grasso, N. Maffulli, Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur. Cell. Mater. 21, 548–557 (2011). https://doi.org/10.22203/ecm.v021a41
- G.-C. Dai, H. Wang, Z. Ming, P.-P. Lu, Y.-J. Li et al., Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: a new candidate marker for aging. Ageing Res. Rev. 95, 102215 (2024). https://doi.org/10.1016/j.arr.2024.102215
- T.S.O. Sleeswijk Visser, A.C. van der Vlist, R.F. van Oosterom, P. van Veldhoven, J.A.N. Verhaar et al., Impact of chronic Achilles tendinopathy on health-related quality of life, work performance, healthcare utilisation and costs. BMJ Open Sport Exerc. Med. 7, e001023 (2021). https://doi.org/10.1136/bmjsem-2020-001023
- A.C. Colvin, N. Egorova, A.K. Harrison, A. Moskowitz, E.L. Flatow, National trends in rotator cuff repair. J. Bone Jt. Surg. Am. 94, 227–233 (2012). https://doi.org/10.2106/jbjs.j.00739
- S.A. Rodeo, Biologic augmentation of rotator cuff tendon repair. J. Shoulder Elbow Surg. 16, S191–S197 (2007). https://doi.org/10.1016/j.jse.2007.03.012
- D. Goutallier, J.-M. Postel, P. Gleyze, P. Leguilloux, S. Van, Driessche Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 12, 550–554 (2003). https://doi.org/10.1016/S1058-2746(03)00211-8
- Z. Wang, L. Xiang, F. Lin, Y. Tang, L. Deng et al., A biomaterial-based hedging immune strategy for scarless tendon healing. Adv. Mater. 35, 2200789 (2023). https://doi.org/10.1002/adma.202200789
- G.A. Rodan, T.J. Martin, Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000). https://doi.org/10.1126/science.289.5484.1508
- W. Chen, H. Lv, S. Liu, B. Liu, Y. Zhu et al., National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob. Health 5, e807–e817 (2017). https://doi.org/10.1016/S2214-109X(17)30222-X
- W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007
- Q. Wang, J. Yan, J. Yang, B. Li, Nanomaterials promise better bone repair. Mater. Today 19, 451–463 (2016). https://doi.org/10.1016/j.mattod.2015.12.003
- M.A.A. Mahdy, Skeletal muscle fibrosis: an overview. Cell Tissue Res. 375, 575–588 (2019). https://doi.org/10.1007/s00441-018-2955-2
- B.T. Corona, J.C. Rivera, J.G. Owens, J.C. Wenke, C.R. Rathbone, Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 52, 785–792 (2015). https://doi.org/10.1682/jrrd.2014.07.0165
- F. Relaix, P.S. Zammit, Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139, 2845–2856 (2012). https://doi.org/10.1242/dev.069088
- A. Aurora, J.L. Roe, B.T. Corona, T.J. Walters, An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 67, 393–407 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.040
- K. Garg, C.L. Ward, B.J. Hurtgen, J.M. Wilken, D.J. Stinner et al., Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015). https://doi.org/10.1002/jor.22730
- J. Larouche, S.M. Greising, B.T. Corona, C.A. Aguilar, Robust inflammatory and fibrotic signaling following volumetric muscle loss: a barrier to muscle regeneration. Cell Death Dis. 9, 409 (2018). https://doi.org/10.1038/s41419-018-0455-7
- B.F. Grogan, J.R. Hsu, Volumetric muscle loss. Am. Acad. Orthop. Surg. 19, S35–S37 (2011). https://doi.org/10.5435/00124635-201102001-00007
- B.J. Hurtgen, C.L. Ward, C.M. Leopold Wager, K. Garg, S.M. Goldman et al., Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol. Rep. 5, e13362 (2017). https://doi.org/10.14814/phy2.13362
- M.T.A. Li, N.J. Willett, B.A. Uhrig, R.E. Guldberg, G.L. Warren, Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris. J. Biomech. 47, 2013–2021 (2014). https://doi.org/10.1016/j.jbiomech.2013.10.057
- C.H. Evans, Advances in regenerative orthopedics. Mayo Clin. Proc. 88, 1323–1339 (2013). https://doi.org/10.1016/j.mayocp.2013.04.027
- T. Gonzalez-Fernandez, P. Sikorski, J.K. Leach, Bio-instructive materials for musculoskeletal regeneration. Acta Biomater. 96, 20–34 (2019). https://doi.org/10.1016/j.actbio.2019.07.014
- H.-G. Ha, G. Han, S. Lee, K. Nam, S. Joung et al., Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Comput. Methods Programs Biomed. 228, 107239 (2023). https://doi.org/10.1016/j.cmpb.2022.107239
- J. Liu, D. Saul, K.O. Böker, J. Ernst, W. Lehman et al., Current methods for skeletal muscle tissue repair and regeneration. BioMed Res. Int. 2018, 1984879 (2018). https://doi.org/10.1155/2018/1984879
- J. Yuan, F. Xin, W. Jiang, Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell. Physiol. Biochem. 46, 1581–1594 (2018). https://doi.org/10.1159/000489206
- F. Shang, L. Ming, Z. Zhou, Y. Yu, J. Sun et al., The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials 35, 2789–2797 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.061
- Y. Liu, L. Ming, H. Luo, W. Liu, Y. Zhang et al., Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34, 9998–10006 (2013). https://doi.org/10.1016/j.biomaterials.2013.09.040
- P. Potdar, J. Sutar, Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J. Stem Cells Regen. Med. 6, 26–35 (2010). https://doi.org/10.46582/jsrm.0601005
- A. Marmotti, G.M. Peretti, S. Mattia, L. Mangiavini, L. de Girolamo et al., Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair-an in vitro study. Stem Cells Int. 2018, 9048237 (2018). https://doi.org/10.1155/2018/9048237
- J.H. Yea, T.S. Bae, B.J. Kim, Y.W. Cho, C.H. Jo, Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 114, 104–116 (2020). https://doi.org/10.1016/j.actbio.2020.07.020
- D.R. Kwon, G.Y. Park, Y.S. Moon, S.C. Lee, Therapeutic effects of umbilical cord blood-derived mesenchymal stem cells combined with polydeoxyribonucleotides on full-thickness rotator cuff tendon tear in a rabbit model. Cell Transplant. 27, 1613–1622 (2018). https://doi.org/10.1177/0963689718799040
- B.-M. Seo, M. Miura, S. Gronthos, P. Mark Bartold, S. Batouli et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004). https://doi.org/10.1016/S0140-6736(04)16627-0
- P.D. Potdar, Y.D. Jethmalani, Human dental pulp stem cells: applications in future regenerative medicine. World J. Stem Cells 7, 839–851 (2015). https://doi.org/10.4252/wjsc.v7.i5.839
- C. Chen, Q. Shi, M. Li, Y. Chen, T. Zhang et al., Engineering an enthesis-like graft for rotator cuff repair: an approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact. Mater. 16, 451–471 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.021
- K.I. Kim, M.C. Lee, J.H. Lee, Y.W. Moon, W.S. Lee et al., Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase III, randomized, double-blind, placebo-controlled trial. Am. J. Sports Med. 51, 2243–2253 (2023). https://doi.org/10.1177/03635465231179223
- J.R. Garza, R.E. Campbell, F.P. Tjoumakaris, K.B. Freedman, L.S. Miller et al., Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial. Am. J. Sports Med. 48, 588–598 (2020). https://doi.org/10.1177/0363546519899923
- W.S. Lee, H.J. Kim, K.I. Kim, G.B. Kim, W. Jin, Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511 (2019). https://doi.org/10.1002/sctm.18-0122
- J.M. Lamo-Espinosa, G. Mora, J.F. Blanco, F. Granero-Moltó, J.M. Nuñez-Córdoba et al., Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 14, 246 (2016). https://doi.org/10.1186/s12967-016-0998-2
- C.-F. Chen, C.-C. Hu, C.-T. Wu, H.-T.H. Wu, C.-S. Chang et al., Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res. Ther. 12, 562 (2021). https://doi.org/10.1186/s13287-021-02631-z
- L. Lu, C. Dai, Z. Zhang, H. Du, S. Li et al., Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res. Ther. 10, 143 (2019). https://doi.org/10.1186/s13287-019-1248-3
- C.H. Jo, J.W. Chai, E.C. Jeong, S. Oh, P.S. Kim et al., Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-In-human trial. Stem Cells 36, 1441–1450 (2018). https://doi.org/10.1002/stem.2855
- S. Toosi, H. Naderi-Meshkin, A. Moradi, M. Daliri, V. Moghimi et al., Scaphoid bone nonunions: clinical and functional outcomes of collagen/PGA scaffolds and cell-based therapy. ACS Biomater. Sci. Eng. 9, 1928–1939 (2023). https://doi.org/10.1021/acsbiomaterials.2c00677
- F.G. Usuelli, M. Grassi, C. Maccario, M. Vigano’, L. Lanfranchi et al., Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg. Sports Traumatol. Arthrosc. 26, 2000–2010 (2018). https://doi.org/10.1007/s00167-017-4479-9
- R.G. Thomas, A.R. Unnithan, M.J. Moon, S.P. Surendran, T. Batgerel et al., Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells. Int. J. Biol. Macromol. 110, 465–471 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.003
- G. Go, A. Yoo, H.W. Song, H.K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15, 1059–1076 (2021). https://doi.org/10.1021/acsnano.0c07954
- G. Go, S.G. Jeong, A. Yoo, J. Han, B. Kang et al., Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay626 (2020). https://doi.org/10.1126/scirobotics.aay6626
- C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21, 1982–1991 (2021). https://doi.org/10.1021/acs.nanolett.0c04438
- A. Liu, Q. Wang, Z. Zhao, R. Wu, M. Wang et al., Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing. ACS Nano 15, 13339–13350 (2021). https://doi.org/10.1021/acsnano.1c03177
- G. Go, J. Han, J. Zhen, S. Zheng, A. Yoo et al., A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv. Healthc. Mater. 6, 201601378 (2017). https://doi.org/10.1002/adhm.201601378
- W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, C.-K. Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl. Acad. Sci. U.S.A. 118, e2023188118 (2021). https://doi.org/10.1073/pnas.2023188118
- Q. Wang, Q. Wang, Z. Ning, K.F. Chan, J. Jiang et al., Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 9, eadh1978 (2024). https://doi.org/10.1126/scirobotics.adh1978
- Q. Wang, K.F. Chan, K. Schweizer, X. Du, D. Jin et al., Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
- H. Yu, Y. Huang, L. Yang, Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res. Rev. 80, 101684 (2022). https://doi.org/10.1016/j.arr.2022.101684
- B. Chen, Y. Li, X. Zhang, F. Liu, Y. Liu et al., An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 170, 93–96 (2016). https://doi.org/10.1016/j.matlet.2016.02.006
- J.P. Bullivant, S. Zhao, B.J. Willenberg, B. Kozissnik, C.D. Batich et al., Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int. J. Mol. Sci. 14, 17501–17510 (2013). https://doi.org/10.3390/ijms140917501
- G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Synthesis optimization and characterization of chitosan-coated iron oxide nanops produced for biomedical applications. J. Nanopart. Res. 14, 964 (2012). https://doi.org/10.1007/s11051-012-0964-8
- C. Guo, R.A. Gemeinhart, Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) ps. Eur. J. Pharm. Biopharm. 70, 597–604 (2008). https://doi.org/10.1016/j.ejpb.2008.06.008
- E. Vey, C. Rodger, J. Booth, M. Claybourn, A.F. Miller et al., Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 96, 1882–1889 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.07.011
- U. Akgun, B. Kocaoglu, S. Ergun, M. Karahan, M. Turkmen, The effect of environmental pH change on bovine articular cartilage metabolism: implications for the use of buffered solution during arthroscopy? Knee Surg. Phys. Traumatol. Arthrosc. 22, 2843–2848 (2014). https://doi.org/10.1007/s00167-013-2441-z
- K. Lee, G. Go, A. Yoo, B. Kang, E. Choi et al., Wearable fixation device for a magnetically controllable therapeutic agent carrier: application to cartilage repair. Pharmaceutics 12, 593 (2020). https://doi.org/10.3390/pharmaceutics12060593
- L.C. Barnsley, D. Carugo, J. Owen, E. Stride, Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Phys. Med. Biol. 60, 8303–8327 (2015). https://doi.org/10.1088/0031-9155/60/21/8303
- G. Go, A. Yoo, S. Kim, J.K. Seon, C.S. Kim et al., Magnetization-switchable implant system to target delivery of stem cell-loaded bioactive polymeric microcarriers. Adv. Healthc. Mater. 10, e2100068 (2021). https://doi.org/10.1002/adhm.202100068
- J. Lee, S. Lee, S.J. Huh, B.J. Kang, H. Shin, Directed regeneration of osteochondral tissue by hierarchical assembly of spatially organized composite spheroids. Adv. Sci. 9, e2103525 (2022). https://doi.org/10.1002/advs.202103525
- L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai et al., Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv. Healthc. Mater. 9, e2001008 (2020). https://doi.org/10.1002/adhm.202001008
- J. Lee, H.W. Song, K.T. Nguyen, S. Kim, M. Nan et al., Magnetically actuated microscaffold with controllable magnetization and morphology for regeneration of osteochondral tissue. Micromachines 14, 434 (2023). https://doi.org/10.3390/mi14020434
- B.D. Smith, D.A. Grande, The Current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015). https://doi.org/10.1038/nrrheum.2015.27
- P. Duan, Z. Pan, L. Cao, Y. He, H. Wang et al., The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J. Biomed. Mater. Res. A 102, 180–192 (2014). https://doi.org/10.1002/jbm.a.34683
- X.P. Wang, X.H. Qin, C.Z. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28, 1804107 (2018). https://doi.org/10.1002/adfm.201804107
- U. Bozuyuk, O. Yasa, I.C. Yasa, H. Ceylan, S. Kizilel et al., Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12, 9617–9625 (2018). https://doi.org/10.1021/acsnano.8b05997
- R. Pankov, K.M. Yamada, Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002). https://doi.org/10.1242/jcs.00059
- M. Ma, F. Zou, B. Abudureheman, F. Han, G. Xu et al., Magnetic microcarriers with accurate localization and proliferation of mesenchymal stem cell for cartilage defects repairing. ACS Nano 17, 6373–6386 (2023). https://doi.org/10.1021/acsnano.2c10995
- R. Calafiore, Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus. Expert Opin. Biol. Ther. 3, 201–205 (2003). https://doi.org/10.1517/14712598.3.2.201
- J. Zhang, B.A. Grzybowski, S. Granick, Janus p synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017). https://doi.org/10.1021/acs.langmuir.7b01123
- Z. Chen, X.X. Song, X.L. Mu, J.K. Zhang, U.K. Cheang, 2D magnetic microswimmers for targeted cell transport and 3D cell culture structure construction. ACS Appl. Mater. Interfaces 15, 8840–8853 (2023). https://doi.org/10.1021/acsami.2c18955
- K. Morozov, Y. Mirzae, O. Kenneth, A. Leshansky, Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Phys. Rev. Fluids 2, 29 (2017). https://doi.org/10.1103/PhysRevFluids.2.044202
- S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. J. Mater. Chem. 22, 11442 (2012). https://doi.org/10.1039/c2jm16019f
- Y. Mirzae, O. Dubrovski, O. Kenneth, K.I. Morozov, A.M. Leshansky, Geometric constraints and optimization in externally driven propulsion. Sci. Robot. 3, eaas8713 (2018). https://doi.org/10.1126/scirobotics.aas8713
- T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16, e1906908 (2020). https://doi.org/10.1002/smll.201906908
- G.S. Firestein, I.B. McInnes, Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017). https://doi.org/10.1016/j.immuni.2017.02.006
- J.S. Smolen, D. Aletaha, I.B. McInnes, Rheumatoid arthritis. Lancet 388, 2023–2038 (2016). https://doi.org/10.1016/s0140-6736(16)30173-8
- L.J.S. da Fonseca, V. Nunes-Souza, M.O.F. Goulart, L.A. Rabelo, Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev. 2019, 7536805 (2019). https://doi.org/10.1155/2019/7536805
- C.M. Weyand, Y. Shen, J.J. Goronzy, Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018). https://doi.org/10.1016/j.freeradbiomed.2018.03.004
- I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007). https://doi.org/10.1038/nm1577
- Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13, 8505–8511 (2019). https://doi.org/10.1021/acsnano.9b05124
- X. Xu, X. He, J. Liu, J. Qin, J. Ye et al., Protective effects of hydrogen-rich saline against renal ischemia-reperfusion injury by increased expression of heme oxygenase-1 in aged rats. Int. J. Clin. Exp. Pathol. 12, 1488–1496 (2019), PMID: 31933966; PMCID: PMC6947057
- K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Appl. Mater. Today 20, 100694 (2020). https://doi.org/10.1016/j.apmt.2020.100694
- J. Meng, P. Yu, H. Jiang, T. Yuan, N. Liu et al., Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress. Am. J. Transl. Res. 8, 4472–4477 (2016), PMID: 27830032; PMCID: PMC5095341
- H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
- T. Wu, Y. Liu, Y. Cao, Z. Liu, Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv. Mater. 34, e2110364 (2022). https://doi.org/10.1002/adma.202110364
- L. Zhang, Q.-C. Yang, S. Wang, Y. Xiao, S.-C. Wan et al., Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 34, e2108174 (2022). https://doi.org/10.1002/adma.202108174
- D. Tang, R.S. Tare, L.-Y. Yang, D.F. Williams, K.-L. Ou et al., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.024
- Y.-W. Zhang, M.-M. Cao, Y.-J. Li, P.-P. Lu, G.-C. Dai et al., Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J. Orthop. Translat. 37, 46–60 (2022). https://doi.org/10.1016/j.jot.2022.08.003
- Y.-W. Zhang, M.-M. Cao, Y.-J. Li, G.-C. Dai, P.-P. Lu et al., The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit. Rev. Food Sci. Nutr. 63, 7510–7528 (2023). https://doi.org/10.1080/10408398.2022.2047005
- D. Cao, J.G. Martinez, E.S. Hara, E.W.H. Jager, Biohybrid variable-stiffness soft actuators that self-create bone. Adv. Mater. 34, e2107345 (2022). https://doi.org/10.1002/adma.202107345
- A.V. Singh, M.H. Dad Ansari, C.B. Dayan, J. Giltinan, S. Wang et al., Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 219, 119394 (2019). https://doi.org/10.1016/j.biomaterials.2019.119394
- A. Yamauchi, K. Yamauchi, New aspects of the structure of human scalp hair-II: Tubular structure and material flow property of the medulla. J. Cosmetic Sci. 69(1), 19–33 (2018), PMID: 29658875.
- C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010). https://doi.org/10.1039/B901979K
- Y. Deng, X. Liu, A. Xu, L. Wang, Z. Luo et al., Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int. J. Nanomedicine 10, 1425–1447 (2015). https://doi.org/10.2147/IJN.S75557
- L.A. Goldsmith, H.P. Baden, The mechanical properties of hair I. the dynamic sonic modulus. J. Investig. Dermatol. 55(4), 256–259 (1970). https://doi.org/10.1111/1523-1747.ep12259955
- A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). https://doi.org/10.1016/j.cell.2006.06.044
- I.C. Yasa, A.F. Tabak, O. Yasa, H. Ceylan, M. Sitti, 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 29, 1808992 (2019). https://doi.org/10.1002/adfm.201808992
- A. Marino, C. Filippeschi, G.G. Genchi, V. Mattoli, B. Mazzolai et al., The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014). https://doi.org/10.1016/j.actbio.2014.05.032
- J. Li, X. Li, T. Luo, R. Wang, C. Liu et al., Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018). https://doi.org/10.1126/scirobotics.aat8829
- J. Li, L. Fan, Y. Li, T. Wei, C. Wang et al., Development of cell-carrying magnetic microrobots with bioactive nanostructured titanate surface for enhanced cell adhesion. Micromachines 12, 1572 (2021). https://doi.org/10.3390/mi12121572
- S. Liu, Y. Zhu, H. Gao, P. Ge, K. Ren et al., One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 70–78 (2018). https://doi.org/10.1016/j.msec.2018.03.003
- Y. Hu, J. Ran, Z. Zheng, Z. Jin, X. Chen et al., Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater. 71, 168–183 (2018). https://doi.org/10.1016/j.actbio.2018.02.019
- M.-J. Shen, C.-Y. Wang, D.-X. Hao, J.-X. Hao, Y.-F. Zhu et al., Multifunctional nanomachinery for enhancement of bone healing. Adv. Mater. 34, e2107924 (2022). https://doi.org/10.1002/adma.202107924
- W. Chaikittisilp, Y. Yamauchi, K. Ariga, Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv. Mater. 34, e2107212 (2022). https://doi.org/10.1002/adma.202107212
- B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/ nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, e2002047 (2021). https://doi.org/10.1002/adma.202002047
- J. Li, W. Liu, T. Li, I. Rozen, J. Zhao et al., Swimming microrobot optical nanoscopy. Nano Lett. 16, 6604–6609 (2016). https://doi.org/10.1021/acs.nanolett.6b03303
- H. Hoppeler, M. Flück, Normal mammalian skeletal muscle and its phenotypic plasticity. J. Exp. Biol. 205, 2143–2152 (2002). https://doi.org/10.1242/jeb.205.15.2143
- M.M. Smoak, A.G. Mikos, Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater. Today Bio 7, 100069 (2020). https://doi.org/10.1016/j.mtbio.2020.100069
- Y. Jin, D. Shahriari, E.J. Jeon, S. Park, Y.S. Choi et al., Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury. Adv. Mater. 33, e2007946 (2021). https://doi.org/10.1002/adma.202007946
- I. Eugenis, D. Wu, T.A. Rando, Cells, scaffolds, and bioactive factors: engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 278, 121173 (2021). https://doi.org/10.1016/j.biomaterials.2021.121173
- S. Han, S.H. Cruz, S. Park, S.R. Shin, Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 10, 48 (2023). https://doi.org/10.1186/s40580-023-00398-y
- W. Zhuge, X. Ding, W. Zhang, D. Zhang, H. Wang et al., Microfluidic generation of helical micromotors for muscle tissue engineering. Chem. Eng. J. 447, 137455 (2022). https://doi.org/10.1016/j.cej.2022.137455
- Y. Yu, J. Guo, Y. Wang, C. Shao, Y. Wang et al., Bioinspired helical micromotors as dynamic cell microcarriers. ACS Appl. Mater. Interfaces 12, 16097–16103 (2020). https://doi.org/10.1021/acsami.0c01264
- L.T. Denes, L.A. Riley, J.R. Mijares, J.D. Arboleda, K. McKee et al., Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet. Muscle 9, 17 (2019). https://doi.org/10.1186/s13395-019-0203-4
- T. Asano, T. Ishizuka, K. Morishima, H. Yawo, Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci. Rep. 5, 8317 (2015). https://doi.org/10.1038/srep08317
- T. Asano, H. Igarashi, T. Ishizuka, H. Yawo, Organelle optogenetics: direct manipulation of intracellular Ca2+ dynamics by light. Front. Neurosci. 12, 561 (2018). https://doi.org/10.3389/fnins.2018.00561
- L. Liu, J. Wu, B. Chen, J. Gao, T. Li et al., Magnetically actuated biohybrid microswimmers for precise photothermal muscle contraction. ACS Nano 16, 6515–6526 (2022). https://doi.org/10.1021/acsnano.2c00833
- T. Bito, M. Bito, Y. Asai, S. Takenaka, Y. Yabuta et al., Characterization and quantitation of vitamin B12 compounds in various Chlorella supplements. J. Agric. Food Chem. 64, 8516–8524 (2016). https://doi.org/10.1021/acs.jafc.6b03550
- D. Chen, Q. Tang, X. Li, X. Zhou, J. Zang et al., Biocompatibility of magnetic Fe3O4 nanops and their cytotoxic effect on MCF-7 cells. Int. J. Nanomedicine 7, 4973–4982 (2012). https://doi.org/10.2147/IJN.S35140
- J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng et al., Synthesis and characterization of biocompatible Fe3O4 nanops. J. Biomed. Mater. Res. A 80, 333–341 (2007). https://doi.org/10.1002/jbm.a.30909
- M. Abboud, S. Youssef, J. Podlecki, R. Habchi, G. Germanos et al., Superparamagnetic Fe3O4 nanops, synthesis and surface modification. Mater. Sci. Semicond. Process. 39, 641–648 (2015). https://doi.org/10.1016/j.mssp.2015.05.035
- K.G. Silbernagel, R. Thomeé, B.I. Eriksson, J. Karlsson, Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy. Am. J. Phys. Med. 35, 897–906 (2007). https://doi.org/10.1177/0363546506298279
- S. de Jonge, C. van den Berg, R.J. de Vos, H.J. van der Heide, A. Weir et al., Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 45, 1026–1028 (2011). https://doi.org/10.1136/bjsports-2011-090342
- K. Lee, Y. Xue, J. Lee, H.-J. Kim, Y. Liu et al., A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv. Funct. Mater. 30, 2000086 (2020). https://doi.org/10.1002/adfm.202000086
- N.L. Millar, G.A.C. Murrell, I.B. McInnes, Inflammatory mechanisms in tendinopathy–towards translation. Nat. Rev. Rheumatol. 13, 110–122 (2017). https://doi.org/10.1038/nrrheum.2016.213
- C.J. Pearce, M. Ismail, J.D. Calder, Is apoptosis the cause of noninsertional Achilles tendinopathy? Am. J. Sports Med. 37, 2440–2444 (2009). https://doi.org/10.1177/0363546509340264
- A.A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009). https://doi.org/10.1002/smll.200900021
- M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010). https://doi.org/10.1021/nn101289p
- W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006). https://doi.org/10.1021/ja0643164
- H. Zhang, W. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135, 15734–15737 (2013). https://doi.org/10.1021/ja4089549
- J. Ou, H. Tian, J. Wu, J. Gao, J. Jiang et al., MnO2-based nanomotors with active Fenton-like Mn2+ delivery for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 13, 38050–38060 (2021). https://doi.org/10.1021/acsami.1c08926
- J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh et al., Self-motile colloidal ps: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007). https://doi.org/10.1103/PhysRevLett.99.048102
- A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). https://doi.org/10.1021/nl900186w
- L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell et al., Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 3 (2009). https://doi.org/10.1063/1.3079655
- S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4, eaav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
- X.-Z. Chen, J.-H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis et al., Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Mater. Horiz. 6, 1512–1516 (2019). https://doi.org/10.1039/C9MH00279K
- C.E. Touw, B. Nemeth, A.M.R. Rondon, R.A. van Adrichem, T. Lisman et al., Lower-leg injury and knee arthroscopy have distinct effects on coagulation. Blood Adv. 6, 5232–5243 (2022). https://doi.org/10.1182/bloodadvances.2022007828
- J. Ramos, C. Perrotta, G. Badariotti, G. Berenstein, Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy. Cochrane Database Syst. Rev. (2007). https://doi.org/10.1002/14651858.CD005259.pub2
- Y. Mohammed, C.E. Touw, B. Nemeth, R.A. van Adrichem, C.H. Borchers et al., Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower-leg injury or knee arthroscopy. J. Thromb. Haemost. 20, 684–699 (2022). https://doi.org/10.1111/jth.15623
- C.E. Touw, B. Nemeth, R.A. van Adrichem, I.B. Schipper, R.G.H.H. Nelissen et al., The influence of lower-leg injury and knee arthroscopy on natural anticoagulants and fibrinolysis. J. Thromb. Haemost. 21, 227–236 (2023). https://doi.org/10.1016/j.jtha.2022.11.006
- Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
- N.A. Haq-Siddiqi, D. Britton, J. Kim, Montclare Protein-engineered biomaterials for cartilage therapeutics and repair. Adv. Drug Deliv. Rev. 192, 114647 (2023). https://doi.org/10.1016/j.addr.2022.114647
- S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman et al., Light-programmable assemblies of isotropic micromotors. Research 2022, 9816562 (2022). https://doi.org/10.34133/2022/9816562
- J. Liu, L. Li, C. Cao, Z. Feng, Y. Liu et al., Swarming multifunctional heater-thermometer nanorobots for precise feedback hyperthermia delivery. ACS Nano 17, 16731–16742 (2023). https://doi.org/10.1021/acsnano.3c03131
- L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
- M. Yang, X. Guo, F. Mou, J. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123, 3944–3975 (2023). https://doi.org/10.1021/acs.chemrev.2c00062
- M. Yang, Y. Zhang, F. Mou, C. Cao, L. Yu et al., Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 9, eadk7251 (2023). https://doi.org/10.1126/sciadv.adk7251
- R.C. Nordberg, G.A. Otarola, D. Wang, J.C. Hu, K.A. Athanasiou, Navigating regulatory pathways for translation of biologic cartilage repair products. Sci. Transl. Med. 14, eabp8163 (2022). https://doi.org/10.1126/scitranslmed.abp8163
References
C. Abbafati, K.M. Abbas, M. Abbasi, M. Abbasifard, M. Abbasi-Kangevari et al., Collaborators global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 1204–1222 (2020). https://doi.org/10.1016/S0140-6736(20)30925-9
R. Gheno, J.M. Cepparo, C.E. Rosca, A. Cotten, Musculoskeletal disorders in the elderly. J. Clin. Imag. Sci. 2, 39 (2012). https://doi.org/10.4103/2156-7514.99151
R. Buchbinder, C. Maher, I.A. Harris, Setting the research agenda for improving health care in musculoskeletal disorders. Nat. Rev. Rheumatol. 11, 597–605 (2015). https://doi.org/10.1038/nrrheum.2015.81
A. Cieza, K. Causey, K. Kamenov, S.W. Hanson, S. Chatterji et al., Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 2006–2017 (2021). https://doi.org/10.1016/S0140-6736(20)32340-0
S. Chatterji, J. Byles, D. Cutler, T. Seeman, E. Verdes, Health, functioning, and disability in older adults: present status and future implications. Lancet 385, 563–575 (2015). https://doi.org/10.1016/S0140-6736(14)61462-8
J.E. Morley, Pharmacologic options for the treatment of sarcopenia. Calcif. Tissue Int. 98, 319–333 (2016). https://doi.org/10.1007/s00223-015-0022-5
K.N. Tu, J.D. Lie, C.K.V. Wan, M. Cameron, A.G. Austel et al., Osteoporosis: a review of treatment options. P&T 43, 92–104 (2018)
W. Zhang, H. Ouyang, C.R. Dass, J. Xu, Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016). https://doi.org/10.1038/boneres.2015.40
J. Huang, Y. Chen, C. Tang, Y. Fei, H. Wu et al., The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell. Mol. Life Sci. 76, 505–521 (2019). https://doi.org/10.1007/s00018-018-2945-2
M. Stephenson, W. Grayson, Recent advances in bioreactors for cell-based therapies. [version 1; peer review: 2 approved]. F1000Research 7 (F1000 Faculty Rev):517 (2018). https://doi.org/10.12688/f1000research.12533.1
J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). https://doi.org/10.1016/j.smim.2007.11.004
J. Ye, C. Xie, C. Wang, J. Huang, Z. Yin et al., Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact. Mater. 6, 4096–4109 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.017
C. Murphy, J. Withrow, M. Hunter, Y. Liu, Y.L. Tang et al., Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med. 60, 123–128 (2018). https://doi.org/10.1016/j.mam.2017.09.006
X. Yao, W. Wei, X. Wang, C. Li, M. Björklund et al., Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 224, 119492 (2019). https://doi.org/10.1016/j.biomaterials.2019.119492
C.H. Evans, J. Huard, Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 11, 234–242 (2015). https://doi.org/10.1038/nrrheum.2015.28
C.H. Evans, P.D. Robbins, Genetically augmented tissue engineering of the musculoskeletal system. Clin. Orthop. Relat. Res. (1999). https://doi.org/10.1097/00003086-199910001-00040
C. Evans, Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. Int. Orthop. 38, 1761–1769 (2014). https://doi.org/10.1007/s00264-014-2423-x
G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
E. Basad, B. Ishaque, G. Bachmann, H. Stürz, J. Steinmeyer, Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg. Sports Traumatol. Arthrosc. 18, 519–527 (2010). https://doi.org/10.1007/s00167-009-1028-1
B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98, 1–22 (2016). https://doi.org/10.1016/j.biomaterials.2016.04.018
D.C. Carneiro, L.T. Araújo, G.C. Santos, P.K.F. Damasceno, J.L. Vieira et al., Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage. Int. J. Mol. Sci. 24, 9939 (2023). https://doi.org/10.3390/ijms24129939
K. Čamernik, A. Barlič, M. Drobnič, J. Marc, M. Jeras et al., Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev. Rep. 14, 346–369 (2018). https://doi.org/10.1007/s12015-018-9800-6
H.I.M.F.L. Pas, M.H. Moen, H.J. Haisma, M. Winters, No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br. J. Sports Med. 51, 996–1002 (2017). https://doi.org/10.1136/bjsports-2016-096794
B.J. Nelson, S. Pané, Delivering drugs with microrobots biomedical microrobots could overcome current challenges in targeted therapies. Science 382, 1120–1122 (2023). https://doi.org/10.1126/science.adh3073
M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu et al., Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019). https://doi.org/10.1038/s41467-019-08670-8
X. Ma, X. Wang, K. Hahn, S. Sánchez, Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016). https://doi.org/10.1021/acsnano.5b08067
S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 29, 1808900 (2019). https://doi.org/10.1002/adfm.201808900
A.C. Hortelão, R. Carrascosa, N. Murillo-Cremaes, T. Patiño, S. Sánchez, Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019). https://doi.org/10.1021/acsnano.8b06610
M. Hansen-Bruhn, B.E. de Ávila, M. Beltrán-Gastélum, J. Zhao, D.E. Ramírez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
Y. Shen, W. Zhang, G. Li, P. Ning, Z. Li et al., Adaptive control of nanomotor swarms for magnetic-field-programmed cancer cell destruction. ACS Nano 15, 20020–20031 (2021). https://doi.org/10.1021/acsnano.1c07615
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10, 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
M. Ussia, M. Urso, S. Kment, T. Fialova, K. Klima et al., Light-propelled nanorobots for facial titanium implants biofilms removal. Small 18, e2200708 (2022). https://doi.org/10.1002/smll.202200708
Z. Cong, S. Tang, L. Xie, M. Yang, Y. Li et al., Magnetic-powered Janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv. Mater. 34, e2201042 (2022). https://doi.org/10.1002/adma.202201042
S. Ahmed, D.T. Gentekos, C.A. Fink, T.E. Mallouk, Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8, 11053–11060 (2014). https://doi.org/10.1021/nn5039614
X. Yi, H. Zhou, Y. Chao, S. Xiong, J. Zhong et al., Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci. Adv. 6, eaba3546 (2020). https://doi.org/10.1126/sciadv.aba3546
D. Blackiston, E. Lederer, S. Kriegman, S. Garnier, J. Bongard et al., A cellular platform for the development of synthetic living machines. Sci. Robot. 6, eabf1571 (2021). https://doi.org/10.1126/scirobotics.abf1571
O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y. Zhong Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016). https://doi.org/10.1038/nnano.2016.137
H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit et al., Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398
B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
H. Mu, C. Liu, Q. Zhang, H. Meng, S. Yu et al., Magnetic-driven hydrogel microrobots selectively enhance synthetic lethality in MTAP-deleted osteosarcoma. Front. Bioeng. Biotechnol. 10, 911455 (2022). https://doi.org/10.3389/fbioe.2022.911455
C. Xu, Y. Jiang, H. Wang, Y. Zhang, Y. Ye et al., Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv. Sci. 10, e2204881 (2023). https://doi.org/10.1002/advs.202204881
G.-Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi et al., The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018). https://doi.org/10.1126/scirobotics.aar7650
Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019). https://doi.org/10.1146/annurev-control-053018-023803
Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15, 149–174 (2021). https://doi.org/10.1021/acsnano.0c07753
Q. Wang, J. Zhang, J. Yu, J. Lang, Z. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17, 13081–13109 (2023). https://doi.org/10.1021/acsnano.3c05328
F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022). https://doi.org/10.1021/acs.chemrev.0c00999
F. Sylos-Labini, M. Zago, P.A. Guertin, F. Lacquaniti, Y.P. Ivanenko, Muscle coordination and locomotion in humans. Curr. Pharm. Des. 23, 1821–1833 (2017). https://doi.org/10.2174/1381612823666170125160820
A. Oryan, S. Sahvieh, Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003–1011 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.124
S. Roberts, P. Colombier, A. Sowman, C. Mennan, J.H.D. Rölfing et al., Ageing in the musculoskeletal system. Acta Orthop. 87, 15–25 (2016). https://doi.org/10.1080/17453674.2016.1244750
D. Goltzman, The aging skeleton, in Advances in experimental medicine and biology. ed. by J.S. Rhim, A. Dritschilo, R. Kremer (Springer International Publishing, Cham, 2019), pp.153–160. https://doi.org/10.1007/978-3-030-22254-3_12
R. Sheng, M. Cao, M. Song, M. Wang, Y. Zhang et al., Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J. Orthop. Translat. 43, 36–46 (2023). https://doi.org/10.1016/j.jot.2023.09.007
B. Kirk, J. Feehan, G. Lombardi, G. Duque, Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 18, 388–400 (2020). https://doi.org/10.1007/s11914-020-00599-y
GBD 2016 Disease and injury incidence and prevalence collaborators, global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, pp. 1211–1259 (2017). https://doi.org/10.1016/S0140-6736(17)32154-2
D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. Lancet 393, 1745–1759 (2019). https://doi.org/10.1016/S0140-6736(19)30417-9
M. Ondrésik, F.R. Azevedo Maia, A. da Silva Morais, A.C. Gertrudes, A.H. Dias Bacelar et al., Management of knee osteoarthritis. Current status and future trends. Biotechnol. Bioeng. 114, 717–739 (2017). https://doi.org/10.1002/bit.26182
H. Madry, Surgical therapy in osteoarthritis. Osteoarthr. Cartil. 30, 1019–1034 (2022). https://doi.org/10.1016/j.joca.2022.01.012
B.R. Freedman, D.J. Mooney, E. Weber, Advances toward transformative therapies for tendon diseases. Sci. Transl. Med. 14, eabl814 (2022). https://doi.org/10.1126/scitranslmed.abl8814
G. Nourissat, F. Berenbaum, D. Duprez, Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol. 11, 223–233 (2015). https://doi.org/10.1038/nrrheum.2015.26
J.L. Cook, C. Purdam, Is compressive load a factor in the development of tendinopathy? Br. J. Phys. Med. 46, 163–168 (2012). https://doi.org/10.1136/bjsports-2011-090414
F. Abat, H. Alfredson, M. Cucchiarini, H. Madry, A. Marmotti et al., Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. J. Exp. Orthop. 5, 38 (2018). https://doi.org/10.1186/s40634-018-0145-5
F. Oliva, D. Barisani, A. Grasso, N. Maffulli, Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur. Cell. Mater. 21, 548–557 (2011). https://doi.org/10.22203/ecm.v021a41
G.-C. Dai, H. Wang, Z. Ming, P.-P. Lu, Y.-J. Li et al., Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: a new candidate marker for aging. Ageing Res. Rev. 95, 102215 (2024). https://doi.org/10.1016/j.arr.2024.102215
T.S.O. Sleeswijk Visser, A.C. van der Vlist, R.F. van Oosterom, P. van Veldhoven, J.A.N. Verhaar et al., Impact of chronic Achilles tendinopathy on health-related quality of life, work performance, healthcare utilisation and costs. BMJ Open Sport Exerc. Med. 7, e001023 (2021). https://doi.org/10.1136/bmjsem-2020-001023
A.C. Colvin, N. Egorova, A.K. Harrison, A. Moskowitz, E.L. Flatow, National trends in rotator cuff repair. J. Bone Jt. Surg. Am. 94, 227–233 (2012). https://doi.org/10.2106/jbjs.j.00739
S.A. Rodeo, Biologic augmentation of rotator cuff tendon repair. J. Shoulder Elbow Surg. 16, S191–S197 (2007). https://doi.org/10.1016/j.jse.2007.03.012
D. Goutallier, J.-M. Postel, P. Gleyze, P. Leguilloux, S. Van, Driessche Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 12, 550–554 (2003). https://doi.org/10.1016/S1058-2746(03)00211-8
Z. Wang, L. Xiang, F. Lin, Y. Tang, L. Deng et al., A biomaterial-based hedging immune strategy for scarless tendon healing. Adv. Mater. 35, 2200789 (2023). https://doi.org/10.1002/adma.202200789
G.A. Rodan, T.J. Martin, Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000). https://doi.org/10.1126/science.289.5484.1508
W. Chen, H. Lv, S. Liu, B. Liu, Y. Zhu et al., National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob. Health 5, e807–e817 (2017). https://doi.org/10.1016/S2214-109X(17)30222-X
W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007
Q. Wang, J. Yan, J. Yang, B. Li, Nanomaterials promise better bone repair. Mater. Today 19, 451–463 (2016). https://doi.org/10.1016/j.mattod.2015.12.003
M.A.A. Mahdy, Skeletal muscle fibrosis: an overview. Cell Tissue Res. 375, 575–588 (2019). https://doi.org/10.1007/s00441-018-2955-2
B.T. Corona, J.C. Rivera, J.G. Owens, J.C. Wenke, C.R. Rathbone, Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 52, 785–792 (2015). https://doi.org/10.1682/jrrd.2014.07.0165
F. Relaix, P.S. Zammit, Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139, 2845–2856 (2012). https://doi.org/10.1242/dev.069088
A. Aurora, J.L. Roe, B.T. Corona, T.J. Walters, An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 67, 393–407 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.040
K. Garg, C.L. Ward, B.J. Hurtgen, J.M. Wilken, D.J. Stinner et al., Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015). https://doi.org/10.1002/jor.22730
J. Larouche, S.M. Greising, B.T. Corona, C.A. Aguilar, Robust inflammatory and fibrotic signaling following volumetric muscle loss: a barrier to muscle regeneration. Cell Death Dis. 9, 409 (2018). https://doi.org/10.1038/s41419-018-0455-7
B.F. Grogan, J.R. Hsu, Volumetric muscle loss. Am. Acad. Orthop. Surg. 19, S35–S37 (2011). https://doi.org/10.5435/00124635-201102001-00007
B.J. Hurtgen, C.L. Ward, C.M. Leopold Wager, K. Garg, S.M. Goldman et al., Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol. Rep. 5, e13362 (2017). https://doi.org/10.14814/phy2.13362
M.T.A. Li, N.J. Willett, B.A. Uhrig, R.E. Guldberg, G.L. Warren, Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris. J. Biomech. 47, 2013–2021 (2014). https://doi.org/10.1016/j.jbiomech.2013.10.057
C.H. Evans, Advances in regenerative orthopedics. Mayo Clin. Proc. 88, 1323–1339 (2013). https://doi.org/10.1016/j.mayocp.2013.04.027
T. Gonzalez-Fernandez, P. Sikorski, J.K. Leach, Bio-instructive materials for musculoskeletal regeneration. Acta Biomater. 96, 20–34 (2019). https://doi.org/10.1016/j.actbio.2019.07.014
H.-G. Ha, G. Han, S. Lee, K. Nam, S. Joung et al., Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Comput. Methods Programs Biomed. 228, 107239 (2023). https://doi.org/10.1016/j.cmpb.2022.107239
J. Liu, D. Saul, K.O. Böker, J. Ernst, W. Lehman et al., Current methods for skeletal muscle tissue repair and regeneration. BioMed Res. Int. 2018, 1984879 (2018). https://doi.org/10.1155/2018/1984879
J. Yuan, F. Xin, W. Jiang, Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell. Physiol. Biochem. 46, 1581–1594 (2018). https://doi.org/10.1159/000489206
F. Shang, L. Ming, Z. Zhou, Y. Yu, J. Sun et al., The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials 35, 2789–2797 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.061
Y. Liu, L. Ming, H. Luo, W. Liu, Y. Zhang et al., Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34, 9998–10006 (2013). https://doi.org/10.1016/j.biomaterials.2013.09.040
P. Potdar, J. Sutar, Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J. Stem Cells Regen. Med. 6, 26–35 (2010). https://doi.org/10.46582/jsrm.0601005
A. Marmotti, G.M. Peretti, S. Mattia, L. Mangiavini, L. de Girolamo et al., Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair-an in vitro study. Stem Cells Int. 2018, 9048237 (2018). https://doi.org/10.1155/2018/9048237
J.H. Yea, T.S. Bae, B.J. Kim, Y.W. Cho, C.H. Jo, Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 114, 104–116 (2020). https://doi.org/10.1016/j.actbio.2020.07.020
D.R. Kwon, G.Y. Park, Y.S. Moon, S.C. Lee, Therapeutic effects of umbilical cord blood-derived mesenchymal stem cells combined with polydeoxyribonucleotides on full-thickness rotator cuff tendon tear in a rabbit model. Cell Transplant. 27, 1613–1622 (2018). https://doi.org/10.1177/0963689718799040
B.-M. Seo, M. Miura, S. Gronthos, P. Mark Bartold, S. Batouli et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004). https://doi.org/10.1016/S0140-6736(04)16627-0
P.D. Potdar, Y.D. Jethmalani, Human dental pulp stem cells: applications in future regenerative medicine. World J. Stem Cells 7, 839–851 (2015). https://doi.org/10.4252/wjsc.v7.i5.839
C. Chen, Q. Shi, M. Li, Y. Chen, T. Zhang et al., Engineering an enthesis-like graft for rotator cuff repair: an approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact. Mater. 16, 451–471 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.021
K.I. Kim, M.C. Lee, J.H. Lee, Y.W. Moon, W.S. Lee et al., Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase III, randomized, double-blind, placebo-controlled trial. Am. J. Sports Med. 51, 2243–2253 (2023). https://doi.org/10.1177/03635465231179223
J.R. Garza, R.E. Campbell, F.P. Tjoumakaris, K.B. Freedman, L.S. Miller et al., Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial. Am. J. Sports Med. 48, 588–598 (2020). https://doi.org/10.1177/0363546519899923
W.S. Lee, H.J. Kim, K.I. Kim, G.B. Kim, W. Jin, Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511 (2019). https://doi.org/10.1002/sctm.18-0122
J.M. Lamo-Espinosa, G. Mora, J.F. Blanco, F. Granero-Moltó, J.M. Nuñez-Córdoba et al., Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 14, 246 (2016). https://doi.org/10.1186/s12967-016-0998-2
C.-F. Chen, C.-C. Hu, C.-T. Wu, H.-T.H. Wu, C.-S. Chang et al., Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res. Ther. 12, 562 (2021). https://doi.org/10.1186/s13287-021-02631-z
L. Lu, C. Dai, Z. Zhang, H. Du, S. Li et al., Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res. Ther. 10, 143 (2019). https://doi.org/10.1186/s13287-019-1248-3
C.H. Jo, J.W. Chai, E.C. Jeong, S. Oh, P.S. Kim et al., Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-In-human trial. Stem Cells 36, 1441–1450 (2018). https://doi.org/10.1002/stem.2855
S. Toosi, H. Naderi-Meshkin, A. Moradi, M. Daliri, V. Moghimi et al., Scaphoid bone nonunions: clinical and functional outcomes of collagen/PGA scaffolds and cell-based therapy. ACS Biomater. Sci. Eng. 9, 1928–1939 (2023). https://doi.org/10.1021/acsbiomaterials.2c00677
F.G. Usuelli, M. Grassi, C. Maccario, M. Vigano’, L. Lanfranchi et al., Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg. Sports Traumatol. Arthrosc. 26, 2000–2010 (2018). https://doi.org/10.1007/s00167-017-4479-9
R.G. Thomas, A.R. Unnithan, M.J. Moon, S.P. Surendran, T. Batgerel et al., Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells. Int. J. Biol. Macromol. 110, 465–471 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.003
G. Go, A. Yoo, H.W. Song, H.K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15, 1059–1076 (2021). https://doi.org/10.1021/acsnano.0c07954
G. Go, S.G. Jeong, A. Yoo, J. Han, B. Kang et al., Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay626 (2020). https://doi.org/10.1126/scirobotics.aay6626
C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21, 1982–1991 (2021). https://doi.org/10.1021/acs.nanolett.0c04438
A. Liu, Q. Wang, Z. Zhao, R. Wu, M. Wang et al., Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing. ACS Nano 15, 13339–13350 (2021). https://doi.org/10.1021/acsnano.1c03177
G. Go, J. Han, J. Zhen, S. Zheng, A. Yoo et al., A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv. Healthc. Mater. 6, 201601378 (2017). https://doi.org/10.1002/adhm.201601378
W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, C.-K. Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl. Acad. Sci. U.S.A. 118, e2023188118 (2021). https://doi.org/10.1073/pnas.2023188118
Q. Wang, Q. Wang, Z. Ning, K.F. Chan, J. Jiang et al., Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 9, eadh1978 (2024). https://doi.org/10.1126/scirobotics.adh1978
Q. Wang, K.F. Chan, K. Schweizer, X. Du, D. Jin et al., Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
H. Yu, Y. Huang, L. Yang, Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res. Rev. 80, 101684 (2022). https://doi.org/10.1016/j.arr.2022.101684
B. Chen, Y. Li, X. Zhang, F. Liu, Y. Liu et al., An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 170, 93–96 (2016). https://doi.org/10.1016/j.matlet.2016.02.006
J.P. Bullivant, S. Zhao, B.J. Willenberg, B. Kozissnik, C.D. Batich et al., Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int. J. Mol. Sci. 14, 17501–17510 (2013). https://doi.org/10.3390/ijms140917501
G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Synthesis optimization and characterization of chitosan-coated iron oxide nanops produced for biomedical applications. J. Nanopart. Res. 14, 964 (2012). https://doi.org/10.1007/s11051-012-0964-8
C. Guo, R.A. Gemeinhart, Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) ps. Eur. J. Pharm. Biopharm. 70, 597–604 (2008). https://doi.org/10.1016/j.ejpb.2008.06.008
E. Vey, C. Rodger, J. Booth, M. Claybourn, A.F. Miller et al., Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 96, 1882–1889 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.07.011
U. Akgun, B. Kocaoglu, S. Ergun, M. Karahan, M. Turkmen, The effect of environmental pH change on bovine articular cartilage metabolism: implications for the use of buffered solution during arthroscopy? Knee Surg. Phys. Traumatol. Arthrosc. 22, 2843–2848 (2014). https://doi.org/10.1007/s00167-013-2441-z
K. Lee, G. Go, A. Yoo, B. Kang, E. Choi et al., Wearable fixation device for a magnetically controllable therapeutic agent carrier: application to cartilage repair. Pharmaceutics 12, 593 (2020). https://doi.org/10.3390/pharmaceutics12060593
L.C. Barnsley, D. Carugo, J. Owen, E. Stride, Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Phys. Med. Biol. 60, 8303–8327 (2015). https://doi.org/10.1088/0031-9155/60/21/8303
G. Go, A. Yoo, S. Kim, J.K. Seon, C.S. Kim et al., Magnetization-switchable implant system to target delivery of stem cell-loaded bioactive polymeric microcarriers. Adv. Healthc. Mater. 10, e2100068 (2021). https://doi.org/10.1002/adhm.202100068
J. Lee, S. Lee, S.J. Huh, B.J. Kang, H. Shin, Directed regeneration of osteochondral tissue by hierarchical assembly of spatially organized composite spheroids. Adv. Sci. 9, e2103525 (2022). https://doi.org/10.1002/advs.202103525
L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai et al., Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv. Healthc. Mater. 9, e2001008 (2020). https://doi.org/10.1002/adhm.202001008
J. Lee, H.W. Song, K.T. Nguyen, S. Kim, M. Nan et al., Magnetically actuated microscaffold with controllable magnetization and morphology for regeneration of osteochondral tissue. Micromachines 14, 434 (2023). https://doi.org/10.3390/mi14020434
B.D. Smith, D.A. Grande, The Current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015). https://doi.org/10.1038/nrrheum.2015.27
P. Duan, Z. Pan, L. Cao, Y. He, H. Wang et al., The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J. Biomed. Mater. Res. A 102, 180–192 (2014). https://doi.org/10.1002/jbm.a.34683
X.P. Wang, X.H. Qin, C.Z. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28, 1804107 (2018). https://doi.org/10.1002/adfm.201804107
U. Bozuyuk, O. Yasa, I.C. Yasa, H. Ceylan, S. Kizilel et al., Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12, 9617–9625 (2018). https://doi.org/10.1021/acsnano.8b05997
R. Pankov, K.M. Yamada, Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002). https://doi.org/10.1242/jcs.00059
M. Ma, F. Zou, B. Abudureheman, F. Han, G. Xu et al., Magnetic microcarriers with accurate localization and proliferation of mesenchymal stem cell for cartilage defects repairing. ACS Nano 17, 6373–6386 (2023). https://doi.org/10.1021/acsnano.2c10995
R. Calafiore, Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus. Expert Opin. Biol. Ther. 3, 201–205 (2003). https://doi.org/10.1517/14712598.3.2.201
J. Zhang, B.A. Grzybowski, S. Granick, Janus p synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017). https://doi.org/10.1021/acs.langmuir.7b01123
Z. Chen, X.X. Song, X.L. Mu, J.K. Zhang, U.K. Cheang, 2D magnetic microswimmers for targeted cell transport and 3D cell culture structure construction. ACS Appl. Mater. Interfaces 15, 8840–8853 (2023). https://doi.org/10.1021/acsami.2c18955
K. Morozov, Y. Mirzae, O. Kenneth, A. Leshansky, Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Phys. Rev. Fluids 2, 29 (2017). https://doi.org/10.1103/PhysRevFluids.2.044202
S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. J. Mater. Chem. 22, 11442 (2012). https://doi.org/10.1039/c2jm16019f
Y. Mirzae, O. Dubrovski, O. Kenneth, K.I. Morozov, A.M. Leshansky, Geometric constraints and optimization in externally driven propulsion. Sci. Robot. 3, eaas8713 (2018). https://doi.org/10.1126/scirobotics.aas8713
T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16, e1906908 (2020). https://doi.org/10.1002/smll.201906908
G.S. Firestein, I.B. McInnes, Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017). https://doi.org/10.1016/j.immuni.2017.02.006
J.S. Smolen, D. Aletaha, I.B. McInnes, Rheumatoid arthritis. Lancet 388, 2023–2038 (2016). https://doi.org/10.1016/s0140-6736(16)30173-8
L.J.S. da Fonseca, V. Nunes-Souza, M.O.F. Goulart, L.A. Rabelo, Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev. 2019, 7536805 (2019). https://doi.org/10.1155/2019/7536805
C.M. Weyand, Y. Shen, J.J. Goronzy, Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018). https://doi.org/10.1016/j.freeradbiomed.2018.03.004
I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007). https://doi.org/10.1038/nm1577
Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13, 8505–8511 (2019). https://doi.org/10.1021/acsnano.9b05124
X. Xu, X. He, J. Liu, J. Qin, J. Ye et al., Protective effects of hydrogen-rich saline against renal ischemia-reperfusion injury by increased expression of heme oxygenase-1 in aged rats. Int. J. Clin. Exp. Pathol. 12, 1488–1496 (2019), PMID: 31933966; PMCID: PMC6947057
K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Appl. Mater. Today 20, 100694 (2020). https://doi.org/10.1016/j.apmt.2020.100694
J. Meng, P. Yu, H. Jiang, T. Yuan, N. Liu et al., Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress. Am. J. Transl. Res. 8, 4472–4477 (2016), PMID: 27830032; PMCID: PMC5095341
H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
T. Wu, Y. Liu, Y. Cao, Z. Liu, Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv. Mater. 34, e2110364 (2022). https://doi.org/10.1002/adma.202110364
L. Zhang, Q.-C. Yang, S. Wang, Y. Xiao, S.-C. Wan et al., Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 34, e2108174 (2022). https://doi.org/10.1002/adma.202108174
D. Tang, R.S. Tare, L.-Y. Yang, D.F. Williams, K.-L. Ou et al., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.024
Y.-W. Zhang, M.-M. Cao, Y.-J. Li, P.-P. Lu, G.-C. Dai et al., Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J. Orthop. Translat. 37, 46–60 (2022). https://doi.org/10.1016/j.jot.2022.08.003
Y.-W. Zhang, M.-M. Cao, Y.-J. Li, G.-C. Dai, P.-P. Lu et al., The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit. Rev. Food Sci. Nutr. 63, 7510–7528 (2023). https://doi.org/10.1080/10408398.2022.2047005
D. Cao, J.G. Martinez, E.S. Hara, E.W.H. Jager, Biohybrid variable-stiffness soft actuators that self-create bone. Adv. Mater. 34, e2107345 (2022). https://doi.org/10.1002/adma.202107345
A.V. Singh, M.H. Dad Ansari, C.B. Dayan, J. Giltinan, S. Wang et al., Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 219, 119394 (2019). https://doi.org/10.1016/j.biomaterials.2019.119394
A. Yamauchi, K. Yamauchi, New aspects of the structure of human scalp hair-II: Tubular structure and material flow property of the medulla. J. Cosmetic Sci. 69(1), 19–33 (2018), PMID: 29658875.
C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010). https://doi.org/10.1039/B901979K
Y. Deng, X. Liu, A. Xu, L. Wang, Z. Luo et al., Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int. J. Nanomedicine 10, 1425–1447 (2015). https://doi.org/10.2147/IJN.S75557
L.A. Goldsmith, H.P. Baden, The mechanical properties of hair I. the dynamic sonic modulus. J. Investig. Dermatol. 55(4), 256–259 (1970). https://doi.org/10.1111/1523-1747.ep12259955
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). https://doi.org/10.1016/j.cell.2006.06.044
I.C. Yasa, A.F. Tabak, O. Yasa, H. Ceylan, M. Sitti, 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 29, 1808992 (2019). https://doi.org/10.1002/adfm.201808992
A. Marino, C. Filippeschi, G.G. Genchi, V. Mattoli, B. Mazzolai et al., The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014). https://doi.org/10.1016/j.actbio.2014.05.032
J. Li, X. Li, T. Luo, R. Wang, C. Liu et al., Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018). https://doi.org/10.1126/scirobotics.aat8829
J. Li, L. Fan, Y. Li, T. Wei, C. Wang et al., Development of cell-carrying magnetic microrobots with bioactive nanostructured titanate surface for enhanced cell adhesion. Micromachines 12, 1572 (2021). https://doi.org/10.3390/mi12121572
S. Liu, Y. Zhu, H. Gao, P. Ge, K. Ren et al., One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 70–78 (2018). https://doi.org/10.1016/j.msec.2018.03.003
Y. Hu, J. Ran, Z. Zheng, Z. Jin, X. Chen et al., Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater. 71, 168–183 (2018). https://doi.org/10.1016/j.actbio.2018.02.019
M.-J. Shen, C.-Y. Wang, D.-X. Hao, J.-X. Hao, Y.-F. Zhu et al., Multifunctional nanomachinery for enhancement of bone healing. Adv. Mater. 34, e2107924 (2022). https://doi.org/10.1002/adma.202107924
W. Chaikittisilp, Y. Yamauchi, K. Ariga, Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv. Mater. 34, e2107212 (2022). https://doi.org/10.1002/adma.202107212
B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/ nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, e2002047 (2021). https://doi.org/10.1002/adma.202002047
J. Li, W. Liu, T. Li, I. Rozen, J. Zhao et al., Swimming microrobot optical nanoscopy. Nano Lett. 16, 6604–6609 (2016). https://doi.org/10.1021/acs.nanolett.6b03303
H. Hoppeler, M. Flück, Normal mammalian skeletal muscle and its phenotypic plasticity. J. Exp. Biol. 205, 2143–2152 (2002). https://doi.org/10.1242/jeb.205.15.2143
M.M. Smoak, A.G. Mikos, Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater. Today Bio 7, 100069 (2020). https://doi.org/10.1016/j.mtbio.2020.100069
Y. Jin, D. Shahriari, E.J. Jeon, S. Park, Y.S. Choi et al., Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury. Adv. Mater. 33, e2007946 (2021). https://doi.org/10.1002/adma.202007946
I. Eugenis, D. Wu, T.A. Rando, Cells, scaffolds, and bioactive factors: engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 278, 121173 (2021). https://doi.org/10.1016/j.biomaterials.2021.121173
S. Han, S.H. Cruz, S. Park, S.R. Shin, Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 10, 48 (2023). https://doi.org/10.1186/s40580-023-00398-y
W. Zhuge, X. Ding, W. Zhang, D. Zhang, H. Wang et al., Microfluidic generation of helical micromotors for muscle tissue engineering. Chem. Eng. J. 447, 137455 (2022). https://doi.org/10.1016/j.cej.2022.137455
Y. Yu, J. Guo, Y. Wang, C. Shao, Y. Wang et al., Bioinspired helical micromotors as dynamic cell microcarriers. ACS Appl. Mater. Interfaces 12, 16097–16103 (2020). https://doi.org/10.1021/acsami.0c01264
L.T. Denes, L.A. Riley, J.R. Mijares, J.D. Arboleda, K. McKee et al., Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet. Muscle 9, 17 (2019). https://doi.org/10.1186/s13395-019-0203-4
T. Asano, T. Ishizuka, K. Morishima, H. Yawo, Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci. Rep. 5, 8317 (2015). https://doi.org/10.1038/srep08317
T. Asano, H. Igarashi, T. Ishizuka, H. Yawo, Organelle optogenetics: direct manipulation of intracellular Ca2+ dynamics by light. Front. Neurosci. 12, 561 (2018). https://doi.org/10.3389/fnins.2018.00561
L. Liu, J. Wu, B. Chen, J. Gao, T. Li et al., Magnetically actuated biohybrid microswimmers for precise photothermal muscle contraction. ACS Nano 16, 6515–6526 (2022). https://doi.org/10.1021/acsnano.2c00833
T. Bito, M. Bito, Y. Asai, S. Takenaka, Y. Yabuta et al., Characterization and quantitation of vitamin B12 compounds in various Chlorella supplements. J. Agric. Food Chem. 64, 8516–8524 (2016). https://doi.org/10.1021/acs.jafc.6b03550
D. Chen, Q. Tang, X. Li, X. Zhou, J. Zang et al., Biocompatibility of magnetic Fe3O4 nanops and their cytotoxic effect on MCF-7 cells. Int. J. Nanomedicine 7, 4973–4982 (2012). https://doi.org/10.2147/IJN.S35140
J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng et al., Synthesis and characterization of biocompatible Fe3O4 nanops. J. Biomed. Mater. Res. A 80, 333–341 (2007). https://doi.org/10.1002/jbm.a.30909
M. Abboud, S. Youssef, J. Podlecki, R. Habchi, G. Germanos et al., Superparamagnetic Fe3O4 nanops, synthesis and surface modification. Mater. Sci. Semicond. Process. 39, 641–648 (2015). https://doi.org/10.1016/j.mssp.2015.05.035
K.G. Silbernagel, R. Thomeé, B.I. Eriksson, J. Karlsson, Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy. Am. J. Phys. Med. 35, 897–906 (2007). https://doi.org/10.1177/0363546506298279
S. de Jonge, C. van den Berg, R.J. de Vos, H.J. van der Heide, A. Weir et al., Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 45, 1026–1028 (2011). https://doi.org/10.1136/bjsports-2011-090342
K. Lee, Y. Xue, J. Lee, H.-J. Kim, Y. Liu et al., A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv. Funct. Mater. 30, 2000086 (2020). https://doi.org/10.1002/adfm.202000086
N.L. Millar, G.A.C. Murrell, I.B. McInnes, Inflammatory mechanisms in tendinopathy–towards translation. Nat. Rev. Rheumatol. 13, 110–122 (2017). https://doi.org/10.1038/nrrheum.2016.213
C.J. Pearce, M. Ismail, J.D. Calder, Is apoptosis the cause of noninsertional Achilles tendinopathy? Am. J. Sports Med. 37, 2440–2444 (2009). https://doi.org/10.1177/0363546509340264
A.A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009). https://doi.org/10.1002/smll.200900021
M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010). https://doi.org/10.1021/nn101289p
W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006). https://doi.org/10.1021/ja0643164
H. Zhang, W. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135, 15734–15737 (2013). https://doi.org/10.1021/ja4089549
J. Ou, H. Tian, J. Wu, J. Gao, J. Jiang et al., MnO2-based nanomotors with active Fenton-like Mn2+ delivery for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 13, 38050–38060 (2021). https://doi.org/10.1021/acsami.1c08926
J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh et al., Self-motile colloidal ps: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007). https://doi.org/10.1103/PhysRevLett.99.048102
A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). https://doi.org/10.1021/nl900186w
L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell et al., Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 3 (2009). https://doi.org/10.1063/1.3079655
S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4, eaav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
X.-Z. Chen, J.-H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis et al., Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Mater. Horiz. 6, 1512–1516 (2019). https://doi.org/10.1039/C9MH00279K
C.E. Touw, B. Nemeth, A.M.R. Rondon, R.A. van Adrichem, T. Lisman et al., Lower-leg injury and knee arthroscopy have distinct effects on coagulation. Blood Adv. 6, 5232–5243 (2022). https://doi.org/10.1182/bloodadvances.2022007828
J. Ramos, C. Perrotta, G. Badariotti, G. Berenstein, Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy. Cochrane Database Syst. Rev. (2007). https://doi.org/10.1002/14651858.CD005259.pub2
Y. Mohammed, C.E. Touw, B. Nemeth, R.A. van Adrichem, C.H. Borchers et al., Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower-leg injury or knee arthroscopy. J. Thromb. Haemost. 20, 684–699 (2022). https://doi.org/10.1111/jth.15623
C.E. Touw, B. Nemeth, R.A. van Adrichem, I.B. Schipper, R.G.H.H. Nelissen et al., The influence of lower-leg injury and knee arthroscopy on natural anticoagulants and fibrinolysis. J. Thromb. Haemost. 21, 227–236 (2023). https://doi.org/10.1016/j.jtha.2022.11.006
Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
N.A. Haq-Siddiqi, D. Britton, J. Kim, Montclare Protein-engineered biomaterials for cartilage therapeutics and repair. Adv. Drug Deliv. Rev. 192, 114647 (2023). https://doi.org/10.1016/j.addr.2022.114647
S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman et al., Light-programmable assemblies of isotropic micromotors. Research 2022, 9816562 (2022). https://doi.org/10.34133/2022/9816562
J. Liu, L. Li, C. Cao, Z. Feng, Y. Liu et al., Swarming multifunctional heater-thermometer nanorobots for precise feedback hyperthermia delivery. ACS Nano 17, 16731–16742 (2023). https://doi.org/10.1021/acsnano.3c03131
L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
M. Yang, X. Guo, F. Mou, J. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123, 3944–3975 (2023). https://doi.org/10.1021/acs.chemrev.2c00062
M. Yang, Y. Zhang, F. Mou, C. Cao, L. Yu et al., Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 9, eadk7251 (2023). https://doi.org/10.1126/sciadv.adk7251
R.C. Nordberg, G.A. Otarola, D. Wang, J.C. Hu, K.A. Athanasiou, Navigating regulatory pathways for translation of biologic cartilage repair products. Sci. Transl. Med. 14, eabp8163 (2022). https://doi.org/10.1126/scitranslmed.abp8163